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Abstract—Context information is widely used in computer
vision for tracking arbitrary objects. Most existing works focus on
how to distinguish the object of interest from background orhow
to use keypoint-based supporters as their auxiliary information
to assist them in tracking. However, in most cases, how to
discover and represent both the intrinsic property inside the
object and the surrounding context is still an open problem.In
this paper, we propose a unified context learning framework that
can effectively capture spatio-temporal relations, priorknowledge
and motion consistency to enhance the tracker’s performance.
The proposed Weighted Part Context Tracker (WPCT) consists
of an appearance model, an internal relation model and a
context relation model. The appearance model represents the
appearances of the object and parts. The internal relation model
utilizes the parts inside the object to describe the spatio-temporal
structure property directly, while the context relation model
takes advantage of the latent intersection between the object
and background regions. Then the three models are embedded
in a max-margin structured learning framework. Furthermor e,
prior label distribution is added, which can effectively exploit the
spatial prior knowledge for learning the classifier and inferring
the object state in the tracking process. Meanwhile, we define
online update functions to decide when to update WPCT as well
as how to reweight the parts. Extensive experiments and com-
parisons with the state-of-the-arts demonstrate the effectiveness
of the proposed method.

Index Terms—Visual Tracking, Part Context model, Structure
Leaning

I. I NTRODUCTION

V ISUAL tracking is a fundamental problem in computer
vision and has wide-ranging applications including ac-

tivity recognition, surveillance, augmented reality, andhuman-
computer interaction [1]–[5]. For a visual tracking approach,
it should be designed to cope with the inevitable appearance
changes due to occlusion, rotation, illumination, etc. Recent
progresses in object tracking [6]–[15] have yielded a steady
increase in performance, but designing a robust approach to
track generic objects in presence of occluded and deformable
targets is still a major challenge. To overcome these difficul-
ties, numerous models have been designed, most of which
focus on building a strong appearance model to encode the
variations of the object appearance.

Meanwhile, there is additional information (e.g., context
information) which can be exploited instead of using only the
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object region. Context information has been applied actively in
object detection [16], object classification [17], object recog-
nition [18]. Since the spatio-temporal context information is
important and necessary for tracking, it has been employed
recently in several tracking methods [19]–[28], where it was
still underestimated and under-utilized because these methods
mainly paid attention to the supporting roles of the external
or internal context patches, rather than considered the internal
and external relations together in the spatio-temporal space.

Most existing works focus on how to distinguish the tracked
object from background (i.e., we treat it as global context)
or how to use inter-frame object similarity information (e.g.,
fragment-based template matching) or key-points supporters
in the object (i.e., it can be treated as internal context) as
auxiliary information in tracking. However, global context can-
not deal with the object deformation problem, while internal
context with key points ignore the background context. We
observe that the local part context interactions are relatively
stable. In other words, when the target appearance changes
gradually, the intrinsic property of internal interactionbetween
the parts inside object and context interaction between object
and background are relatively stable while the global context
provides an effective representation. Therefore, effectively
exploiting the rich context information around the tracked
object could improve the tracking performance. In this paper,
we propose a novel Weighted Part Context Tracker (WPCT).
It consists of an appearance model, an internal relation model,
a context relation model and online update functions. The
appearance model depicts the whole variation of the decision
boundary between the object and its surrounding background.
The internal relation model formulates the temporal relations
of the object itself or the intra-object parts themselves as
well as the spatio-temporal relations between the object and
intra-object parts to preserve the internal structure. Thecon-
text relation model constructs the spatio-temporal relations
between the intra-object parts as well as the context parts
and the temporal relations of the context parts themselves to
preserve the external structure. The online update functions not
only decide when to update the model, but also consider the
importance of different parts based on the prior knowledge of
occlusion, motion or spatial distribution. Hence the physical
properties and the appearance information are considered in
the optimization process through parts and relations.

In summary, our main contributions are four-fold: (1) We
first propose a unified context framework which formulates the
single object tracking as a part context learning problem; (2)
The parts of the intra-object and context region are selected so
that we not only pay attention to the appearance of object, but
also consider the stable relations among the object, the intra-
object parts and the context parts; (3) Prior label distribution
is added in the processes of model learning and inference.
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(4) Online update functions are presented to decide when to
update WPCT as well as how to reweight the parts.

A preliminary conference version of this paper can be
referred to Zhuet al. [29] and [30]. Compared to the prior
papers, this study contains (1) a substantial number of addi-
tional explanations and analysis, (2) prior label distribution
as context information to improve the tracker performance,
and (3) online update functions to decide when to update the
model and how to reweight the parts, and (4) various additional
experiments to investigate the impact of spatio-temporal part
context in the tracking process.

II. RELATED WORK

In recent decades, numerous tracking methods have been
proposed in literatures. In what follows, we only briefly make a
representative selection of recent trackers and categorize them
into generative trackers and discriminative approaches roughly.

A. Generative Trackers

These methods learn an appearance model to represent only
the object and search for the most similar image region as
the predicted object. Examples of generative approaches are
FT [6], IVT [31], L1 [32], VTD [33], MTT [12], ASLA
[11] and LSHT [34] . FT [6] represented the target with
histogram of local patches, which took fixed spatial structural
information of the target itself and handle partial occlusion
very well. However, its template is not updated over time and
the correlation of target and surrounding is not constructed.
IVT [31] incrementally learned a low-dimensional subspace
representation, and efficiently adapted to online changes in
target appearance, where the lack of spatial information re-
sulted in drift problem. L1 tracker [32] was to represent the
candidates sparsely usingℓ1 norm minimization. VTD [33]
effectively extended the conventional particle filter framework
[35] with multiple motion and observation models to account
for appearance variation. MTT [12] mined the self-similarities
between particles via multi-task learning to improve the track-
ing performance. ALSA [11] proposed a structural local sparse
appearance model to exploit both partial information and
spatial information of the target for visual tracking. LSHT
[34] adopted a locality sensitive histogram which exploited the
spatial weight for every pixel. Generally, generative trackers
are robust to the object occlusion and tend to obtain more
accurate performance in a small searching region, but sensitive
to similar distracters in the surrounding area of the object.

B. Discriminative Trackers

These methods formulate visual object tracking as a clas-
sification or structure prediction problem, which seeks the
object location that can best separate the object from its
background. Examples of discriminative methods are OAB
[36], co-training tracking [37], MIL [38], TLD [22], PROST
[39], Struck [9], CSK [40], SPOT [13], PT [41], AOGTracker
[42] and CNTracker [43]. AOB [36] was adopted to select
useful features using boosting for object tracking. Its perfor-
mance was affected by background clutter, and the tracker

can easily drift. TLD [10] decomposed the long-term tracking
task into tracking, learning and detection, which utilizedthe
P-N learning to guarantee the online detector’s estimated
error. PROST [39] merged the template correlation, mean
shift optical flow and random forests in a cascade way which
can alleviate the drift problem. Struck [9] first introducedthe
structure output learning for visual tracking which avoided the
label prediction problem existing in common online classifiers
and got good performance. CSK [40] exploited the circulant
structure to get fast tracking through the Fourier analysis,
and worked by evaluating a classifier trained using kernel
regularised least squares quickly at all sub-windows around the
estimated object location and maximising the response. SPOT
[13] incorporated spatial constraints between the objectsusing
a pictorial-structures framework [44] and trained a structured
SVM online, which was effective for occlusion and deforma-
tion. PT [41] modeled the unknown parts of a part-based target
model using latent variables into a structure prediction case
for tracking. Song [28] explored the most informative features
from random projections by maximising entropy energy for
object tracking. AOGTracker [42] simultaneously combined
with tracking, learning and parsing objects with a hierarchical
and compositional And-Or graph (AOG) representation so as
to handle occlusion and background clutter. CNTracker [43]
builded on correlation filters by introducing colour attributes
to achieve superior performance on colour sequences. In
general, discriminative trackers are relatively more robust in
suppressing background clutters than generative trackers.

C. Most Related Approaches

Many approaches utilize the context information or structure
property in some sense. CAT [45] tracked random field around
the target instead of the target. The tracker in [21] utilized
strong motion coupling constraints to locate the target even
when the target was invisible, with the help of some available
related context information. However, detecting and matching
all of the local features are expensive and the motion of the
object is not easily predicted. CXT [23] developed a new con-
text framework based on distracters and supporters. STT [25]
proposed a spatio-temporal context method in which temporal
context captured the historical appearance information while
spatial context model integrated key-points based contributors.
Generally, since these trackers in [21], [23], [25] worked with
the key points as auxiliary information, the main differences
are how to utilize supporters or distracters. Although the
introduction of context in these trackers expanded the available
information which can be obtained from the scene, it may
collapse when motion blur occurs due to the utilization of
key-points descriptors. STC [27] utilized the spatiao-temporal
context in the Bayesian framework to interpret correlation
filter based tracking. CKST [24] proposed a SVM tracker by
designing a graph mode-based contextual kernel, where the
high-order contexts between the training samples could be dis-
covered in their similarity matrix. PNTracker [22] proposed P-
N learning (i.e., P-constraints and N-constraints) to restrict the
binary labeling of the unlabeled set for training the long-term
detector and extended it to TLD tracker [10]. Different from
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Fig. 1: The pipeline of the proposed tracker.

them, we not only explore the similarity context information
between training samples, but also model the spatio-temporal
context between their correlative intra-object parts and context
parts in structure learning framework. Moreover, our labeling
was that suppose the label of the estimated object state without
occlusion was1, the labels of other samples were set as the
overlapping rates between the samples states and the estimated
object state so that the labels of these samples fitted a Gaussian
distribution for training. In addition, the prior label distribution
could be treated as motion prior to assist in inferring the final
object state.

Part-based visual models have been investigated by many
researchers. In general, there are two types of part-based
appearance representation: local patch-based visual represen-
tation and global-local coupled visual representation. The fore-
ground shape was modeled as a small number of rectangular
blocks which were selected with non-empty intersection with
the interior region of the target defined by the contour [46].
An object by a set of local patches with topological structure
was represented in [19]. However, these methods only consider
the local information. LGT [26] modeled a target’s global and
local appearance by a coupled-layer with coupled constraints.

An object detection approach with structured SVM [47] was
proposed in [48]. Motivated by this success, structured learn-
ing was applied to online visual tracking [9], [49]. Inspired by
deformable part-based appearance models [50]–[52], Zhang
and van der Maaten [53] proposed a structure preserving
model and Yaoet al. [41] presented part-based with latent
structural learning for tracking. Although the two approaches
paid attention to the parts of the object and their deformation
cost, there are still many intrinsic properties in object tracking
(e.g., temporal constraints, context information) which have
not been considered. Actually they only considered one aspect
about the appearance model and the internal relations that our
model proposed, but not considered the context relations inour
model, e.g., the context parts in the surrounding environment
that have motion consensus with the object. In addition, they
did not treat all of the auxiliary information as context.

III. W EIGHTED PART CONTEXT TRACKING

In this section, we will give an overview of the proposed
weighted part context learning model in a unified framework
shown in Fig. 1. We first introduce the part context formulation
and then describe the model training problem with a structured
learning approach. After the learning mechanism, we develop
an online learning strategy to update the model parameters
efficiently. Then how to select the parts and give them weights
are discussed. Finally, prior label distribution is adopted to

TABLE I: Important notation and terms

MA The appearance model
MI The internal relation model
MC The context relation model
B0 The object

B1, ..,BK The intra-object parts
BK+1, ...,BK+M The context parts

Φ.(·) The transformed feature representation
Φ.,.(·, ·) The transformed relation feature representation

w. The weights of the feature represenation
w.,. The weights of the relation feature

maximally preserve the spatial structure of the object and assist
for inferring the final object state.

A. Model Definition

Our framework not only models the object with intra-
object parts, but also incorporates the interaction between the
object and background with context parts. The deformable
configurations [44], [54] together with the temporal structure
of these parts are also considered in. Please refer to Table I
for important terms used throughout the rest of this section.

In Fig. 2, with the object bounding box as the rootR, the
intra-object partsI are defined as the parts selected insideR,
which covers part of the object appearance. The context parts
C are selected from the overlapping area between the object
and the background. For a target with K intra-object parts
and M context parts, the configuration is denoted asB =
(B0, B1, ..., BK , BK+1, ..., BK+M ), whereB0 stands for the
target bounding boxR, (B1, ..., BK) ∈ I are theK intra-
object part boxes, and(BK+1, ..., BK+M ) ∈ C are theM
context part boxes. The corresponding features of the root and
parts are represented asX = (x0, ...,xK ,xK+1, ...,xK+M ).
In a word, our framework models the object with three
components:

M = MA +MI +MC , (1)

whereMA, MI andMC are the appearance model, the internal
relation model and the context relation model respectively.

For online tracking, an appearance model is essential. It
represents the intrinsic property of one object or the discrim-
inative information between the object and background. To
better mine the information, we factorize the appearance model
MA into Eq. (1):

MA = AR +AI +AC

= w
T
RΦR(x0) +

K∑

i=1

w
T
I ΦI(xi) +

K+M∑

i=K+1

w
T
CΦC(xi).

(2)
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Fig. 2: Illustration of the proposed weighted part context tracking framework using the“sylvester” video. Bold circles denote
larger weights, e.g., cyan circle in the first frame, and red circle in the520th frame.

whereAR, AI andAC are the global root appearance model,
intra-object parts appearance model and context parts model
separately.ΦR, ΦI andΦC denote the root appearance feature,
the intra-object parts appearance feature and the context parts
appearance feature.wR, wI andwC are the weights of appear-
ance features correspondingly.xi is theith part corresponding
to bounding boxBi = (ci, ri, wi, hi) with center location
Bi,c = (ci, ri), width wi and heighthi.

In addition, all relatively stable spatio-temporal relations
between the object and its corresponding parts frame-to-frame
provide rich information for tracking. Therefore we designan
internal relation model to formulate the interactions between
root and the intra-object parts, which includes the spatial
constraints and the temporal constraints between them, as:

MI = SI + ER + EI

=
K∑

i=1

w
T
R,IΦR,I(x0,xi) +

−1∑

t=−H

w
T
t,RΦ(x

t
0,x0)

+
−1∑

t=−H

K∑

i=1

w
T
t,IΦ(x

t
i,xi)

(3)

whereSI , ER, andEI are spatial relation between root and
intra-object parts, temporal relation between root and their his-
torical roots, and temporal relation between intra-objectpart-
s and their historical information respectively.ΦR,I(x0,xi)
denotes the spatial interaction function between the rootB0

and intra-object partBi. Φ(xt
0,x0) is the temporal relation

function of the bounding boxB0 in the lasttth frame and the
current frame.H is the upper bound of last frames. Likely,
Φ(xt

i,xi) is the bounding boxBi’s temporal relation func-
tion. wR,I , wt,R and wt,I are the weights correspondingly.
Similar to [51], the spatial interaction betweenxi andxj is
fc = (cj − ci, rj − ri) and:

Φ(xi,xj) = (fc, f
2
c ). (4)

Herein, fc and f
2
c can preserve the relative and absolute

information betweenxi and xj . For detail, the temporal
relation functionΦ

x
t
i,xi

can be represented as:

Φ(xt
i,xi) = exp(−(||Bt

i,c −Bi,c||2/δ2)) (5)

whereδ is a constant value.

Except internal relations inside the object, some information
in latent intersection area between the object and background
is neglected by previous works, such as the partial contour
and the object are consensus in motion. To make full use
of this information, we formulate the context relation model
to express the interactions between root and the context
parts, which also includes the spatial and temporal constraints
between them. Similar to Eq. (3), we describe the context
relation model mathematically as:

MC = SC + SC,I + EC

=

M∑

j=1

w
T
R,CΦR,C(x0,xi) +

K∑

i=1

M∑

j=1

w
T
C,IΦC,I(xi,xj)

+

−1∑

t=−H

M∑

j=1

w
T
t,CΦ(x

t
j ,xj)

(6)

whereSC , SC,I andEC denote spatial relation between root
and context parts, spatial relation between intra-object parts
and context parts, and temporal relation between context parts
and their historical information.ΦR,C(x0,xj) denotes the
spatial interaction function between the rootB0 and context
partBj , ΦC,I(xi,xj) denotes the spatial interaction function
between the intra-object partBi and the context partBj .
Φ(xt

j ,xj) denotes the bounding boxBj ’s temporal relation
function.wR,C , wC,I andwt,C are the weights corresponding
to ΦR,C(x0,xj), ΦC,I(xi,xj) andΦ(xt

j ,xj) respectively.

For the linear property, the model of object and its config-
uration can be simplified as:

M = w
TΦ(X) (7)

where

w = [wT
R,w

T
I ,w

T
C ,w

T
R,I ,w

T
R,C ,w

T
I,C ,w

T
t,R,w

T
t,I ,w

T
t,C ]

T ,
(8)
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Φ(X) =[ΦT
R(x0),Φ

T
I (xi),Φ

T
C(xi),

K∑

i=1

ΦT
R,I(x0,xi),

−1∑

t=−H

ΦT (xt
0,x0),

−1∑

t=−H

K∑

i=1

ΦT (xt
i,xi),

M∑

j=1

ΦT
R,C(x0,xi),

K∑

i=1

M∑

j=1

ΦT
C,I(xi,xj),

−1∑

t=−H

M∑

j=1

ΦT (xt
j ,xj)]

T

(9)

where w is the model parameter we need to learn. Given
a configurationB in a frameF , there needs a function to
measure how well the configurationB matches object model
M . We compute the similarity score as follows,

S(F,B,M) = S(F,B,MA) + S(F,B,MI) + S(F,B,MC)
(10)

Eq. (7)-(9) are hard to solve so we need to relax it to be
a convex optimization problem. Moreover, to reduce the time
complexity of learning the model parameterw, we utilize the
tree structure with minimum spanning tree based on the parts’
locations inspired by [13].

B. Optimization

In this section, we will describe the optimization of the
proposed discriminative model from three aspects: inference,
model learning and update strategy.

1) Inference: Although the object appearance varies fre-
quently during the tracking process, there exist stable intrinsic
relations between the object and intra-object parts or context
parts across continuous frames. Given the definition ofM , a
model is constructed to constrain the deformation of parts by
modeling their temporal and spatial relations with the root. To
avoid the problem caused by high-order loopy graph, we not
only keep the model to be tree-structured, but also introduce
the temporal relations based on the historical information
without increasing time complexity. Standard sliding window
procedure is used to scan images around the previous object
location with a fixed scale to determine the object location.For
each scanning window in imageF , we first fit the window to
structure modelM to get the part configuration on it, and then
calculate the score of the window according to the inferred
configuration by Eq. (1)-(10).

The fitting step aims to find a candidate object’s configu-
ration B∗ with the highest matching score according to the
learned modelM . Mathematically, the optimization problem
is to findB∗ that satisfies:

B∗
0 = argmax

B
S(F,B,M) = argmax

B
w

TΦ(X) (11)

The score of each part in the model is independent once
the root is specified, so that maximizingB∗

i is transformed to
find the optimal configurationBi for part i:

B∗
i = argmax

Bi

S(F,Bi,M) = argmax
Bi

w
T
i Φi(xi) (12)

where Φ(xi) are the related items withxi in Φ(X) and
wi is the weight vector corresponding to theith part. The

complexity of maximizing a single sliding window is high,
but benefiting from the generalized distance transform [55],
the average complexity in simultaneously optimizing all the
sliding windows is of linear complexity with the search radius.

2) Model Learning: Since we adopted the large-margin
framework with structure SVM loss to learn our model, we
follow the optimization method in structure SVM to solve our
problem. Structure SVM was firstly used for visual tracking
in [9]. By explicitly allowing the output space to accurately
estimate of object position, the struck tracker can avoid the
label prediction, which is an intermediate classification step
in common tracking-by-detection methods. In addition, like
other trackers [8], [9], [53], to enhance its adaptivity and
robustness, we need to update the model online. In general,
most of online trackers use the tracked object configuration
in previous frames as positive examples to update. We argue
this method and choose to update the proposed model while
the last object configuration satisfies some conditions (e.g., an
update threshold or occlusion detection). We apply an adaptive
thresholding strategy to select samples to update.

The similarityS measures the compatibility between train-
ing pairs, and gives a higher score to well matched ones.
By Eq. (7), it can be learned in a large-margin framework
from a set of training sample pairs{(F,B1), ..., (F,Bn)} by
minimizing the following convex optimization object function
with structure SVM loss [47]:

min
w,η≥0

1

2
||w||2 + C

n

Σ
i=1

ηi

s.t.∀i, ∀B 6= Bi : 〈w, δΦi(B)〉 ≥ ∆(Bi, B)− ηi

(13)

whereδΦi(B) = Φ(F,Bi)−Φ(F,B). This optimization aims
to ensure that the value ofS(F,Bi,M) = 〈w,Φ(F,Bi)〉 is
greater thanS(F,B,M) for B 6= Bi, by a margin which
depends on a loss function∆. Herein,∆(Bi, B) measures
dissimilarity betweenBi andB, as in [9], [48], [53]:

∆(Bi, B) = 1− B ∩Bi

B ∪Bi

. (14)

where the two bounding boxesB andBi are both measured
in pixels.

For training the structure SVM efficiently, we adopt the cut-
ting plane algorithm [47] to select the most violated constraints
to train. The most violated constraint can transform to structure
SVM lossℓ by configurationB:

ℓ(w;F,B) = max
B

[S(F,Bi,M)− S(F,B,M) + ∆(B,Bi)]

(15)
Then we apply online passive-aggressive algorithm [56]to
perform the parameter update in the tracking process. Suppose
learning the new weight vectorwt+1 based on roundt
sets is treated as the solution to the following constrained
optimization problem,

wt+1 = arg
w∈R

min
1

2
||w−wt||2 s.t. ℓ(w; (xt, yt)) = 0.

(16)
wherewt+1 is the projection ofwt into the half-space of
vectors which attain a loss of zero on the current example.
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The solution to the optimization problem in Eq. (16) has a
simple closed form solution,

wt+1 = wt + τtytxt where τt =
ℓt
||xt||2

. (17)

where τt is the step size of learning. Please refer to [56]
for more technical details. Then the parameter updates is
calculated as follows,

wt+1 ← wt −
ℓ(w;F,B)

||d||2 + 0.5
d. (18)

Herein, d = ∇wS(w;F, B̂) − ∇wS(w;F,B) is gradient of
the structured SVM loss, and̂B = argmaxB(S(w;F,B) +
∆(Bi, B).

The construction of training set is important to decide
whether a classifier is trained well. Inspired by [10], [51],we
construct training data consisting of the positive samplesand
hard negative samples. An object model is trained by positive
samples bootstrapped and negative samples randomly sampled
around the object in the first frame. Then we collect the in-
correctly classified samples whose configure matching scores
are close to positive samples and have low overlapping rate
as hard negative samples. Since there are many hard negative
samples, we randomly discard some negative samples.

3) Prior Label Distribution for Parts:Prior label informa-
tion can be used as an effective complement for a classifier,
such as [57], [58]. To utilize the information better, we further
add the prior label distribution for the tracking system. Inone
word, we not only add the label prior in the training step, but
also in the decision step.

In the model learning of section III-B2, we can treat the
dissimilarity betweenBi and B as the label prior or label
context, because it is used for guaranteeing the importanceof
training samples. It equals to that the higher the overlapping
rate between the training sample and the labeled positive
sample, the less the loss term is. If we sample every sample
surrounding the labeled positive sample, assign the positive
sample as one and other samples as the values equaling to the
overlapping rate between the samples and positive sample, the
label values centered the positive sample center can form one
distribution which can be called as label distribution.

In the inference process, we can also treat the motion prior
as prior label distribution for assisting the object prediction.
That is to say, the higher the probability of the candidate
sample which belongs to the positive object is, the closer the
candidate sample from the previous object location. We adopt
Gaussian distribution as our prior label distribution. In details,
the prior label distribution is as follows:

p(y|B0,c) = exp(− 1

2σ2
D(Bc,c, Bp,c)), (19)

whereD(., .) is the Euclidean distance function,σ is empiri-
cally set as

√
W ×H . Here,W,H are the width and height

of the root object, respectively.

C. Online Update

1) Update function:The goal of updating the WPCT online
is to account for both the structural and appearance variations

of the target object, as well as handle hard negatives (dis-
tracters) in the background. If the object is occluded, the model
doesn’t need to be updated. But if the object is self-occluded
(e.g., rotation) or appearance changes due to illumination, the
model updating is necessary. However, evaluating whether and
when the appearance changes (e.g., occlusion) is a difficult
problem. Therefore, most of the tracking algorithms update
the appearance model every frame.

Like [53], we only update the weightwi corresponding to
part bounding boxBi when the exponentiated score for that
object exceeds a given threshold to avoid erroneous update.
Different from [53], the threshold is adaptive and generated
by an update criteria function for leveraging the adaptivity
and stability of the object model. The update criteria function
is as follows.

G(x) =





1, if x >= T + τ

0.95 + rand(abs(x− T )), if |x− T | < τ

exp(−κ(T − τ − x)), if x < T − τ

(20)

whereT is the prior threshold,τ is the bandwidth for relaxing
the limitation, andκ is the hyper-parameter to keep some small
probability to update. In our paper,T = 0.3, τ = 0.05, κ = 30.
In particular, we only update thewi whenG(x) >= rand(1),
whererand(1) is to generate uniform random variables rang-
ing 0 to 1.

2) Reweighting the Parts:In the tracking process, parts are
not contributed equally. For example, while a part is occluded,
it should be less important than other parts.

Generally, three aspects are considered: (a) the similarity
to the trained part model,Oi; (b) the degree of motion
consistency between the tracked object and the historical parts,
Mi; (c) the spatial distanceRi, i.e., the more important the part
is, the closer it is to the tracked object center. Since the part
is close to the center of the tracked object, it should be more
reliable. With the three factors, we define the part weighting
function as follows,

wi = Oi ×Mi ×Ri

= sign(Si − ST )
Pi∑
i Pi

exp(−D(B0,c, Bi,c)

σ2
),

(21)

sign(x) =

{
1,ifx >= 0

0,ifx < 0
(22)

where Si is the score of each part’s classifier,ST is the
occluding threshold,Pi is the cumulative motion consistency
between theith part and the tracked object which is computed
by the cosine similarity based on the motion vector of their
center locations between the adjacent frames.D(., .) is the
Euclidean distance between the center of objectB0,c and
the center of theith part Bi,c, σ is the hyper-parameter for
restraining the strength of parts’ importance on the spatial
distribution. Empirically, we set theσ =

√
W ×H , W,H

are the width and height of the root object.

D. Part Initialization

How to select proper parts is very important for part models,
especially in the online learning applications. Inspired by the
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deformable part-based models [59], we will search for these
parts that cover high-energy regions of the root filter. Here, the
“energy” of a region is defined by the norm of the positive
weights in a subwindow. We will introduce how to select in
the following section.

1) Learning Pixel Weights:To select discriminative parts,
we need to evaluate the confidence for each pixel in an object
bounding box. Considering the characteristic of exemplar-
SVM [60], we use it to choose discriminative parts. The
idea of Exemplar-SVM is that, for each positive sample (also
regarded as an exemplar), each Exemplar-SVM is trained by
the corresponding set of samples, where there is only one
positive sample and the rest are all negative.

For each sample, we extract the HOG [51], [61] features
using Piotr Dollár’s toolbox [62] where the size of cell is
set as4. Then we concatenate them to one vector to present
one positive sample (exemplar)xE in the first frame or
negative samples. We randomly sample negative windows as
the negative samples,NE , with the regionsr ≥ 50 (r is the
distance between the centers of them and the positive sample).
Thus, the object function of Exemplar-SVMfE(x) can be
described as:

fE(x) = w
T
Ex+ bE , (23)

The weightwE and the offsetbE can be solved by optimizing
the following convex objective function,

Ω(w, b) = ||w||2+C1h(w
T
xE+b)+C2

∑

x∈NE

h(−w
T
x−b), (24)

where the hinge loss function is used inh(x) = max(0, 1−x),
C1 andC2 are both regularization parameters. For simplicity,
we adopted LibSVM [63], whereC1 = 50, C2 = 1 and
NE = 50. The training processes of exemplar-SVMs for the
intra-object and the context parts are same except the training
samples. With Eq. (24), we can obtain the confidence value
for each pixel.

2) Discriminative part selection:Based on Exemplar-SVM,
we get the optimized valuewE , and utilize the correspondence
between the weightwE and the pixel location in the annotated
bounding box to mine the discriminative parts, which include
intra-object parts and context parts.

Intra-object Parts: We initialize the intra-object partBi

at the location in which the weights of the initial object
Exemplar-SVM wE are large and positive, because these
correspond to features that are highly indicative of object
presence. Mathematically, we denote the object partBi as:

Bi = argmax
Bi⊂B

∑

(xi,yi)∈Bi

max(0,wE(xi,yi)) (25)

whereB denotes the bounding box of the object and(xi, yi)
represents a pixel location. We fix the number of parts in
advance, setting it to 2; we fix the width and height of the
part bounding box to60% of the object bounding box’s size
empirically. Once a part is placed, the weights of the covered
pixels are set to zero, and we look for the next part based on
Eq. (25), until2 parts are chosen.

Context Parts: The procedure to choose discriminative
parts in context region is similar with intra-object. We define
the context partCj as:

Cj = argmax
Cj⊂C

∑

(xj ,yj)∈Cj

max(0,wE(xj ,yj)) (26)

whereC represents the bounding box of the context. Different
from intra-object parts, the size of context parts is set to75%
of the whole context region, and the context region size is
0.618 times larger than the object.

IV. EXPERIMENTS

To evaluate the performance of the proposed approach, ex-
tensive experiments are performed with public dataset. Firstly,
we perform a comprehensive evaluation of part initialization
for visual tracking. Secondly, we evaluate the proposed up-
date scheme for parts. Thirdly, we evaluate our prior label
distribution for visual tracking. Fourthly, we evaluate the
importance of the temporal information. Finally, we provide
both quantitative and attribute-based comparisons with state-
of-the-art trackers.

A. Experimental Setup

Our method is implemented with Matlab 2013b. The exper-
iments are performed on an Intel core i53.1 GHz CPU with
20 GB RAM. The proposed WPCT tracker ran at10 FPS in
average for all sequences, which was sped up compared with
our previous tracker PCT tracker. We initialize the parts in
first frame where the part scale is60% times of the object,
the numbers of in-parts and context parts are both set to2. We
test our tracker with fixed parameters in a public benchmark
including 50 video sequences [64]. The dataset is collected
from many previous works, so we can prevent the training
process from the danger of overfitting to a small subset. The
sequences used in our experiments pose challenging situations
such as heavy occlusions, deformation, out-of-view, motion
blur, illumination changes, scale variation, in-plane andout-
of-plane rotations, background clutter and low resolution.

Evaluation Methodology: To validate the performance of
our proposed approach, we follow the protocol used in [64].
The results are presented using three evaluation metrics based
on [38], [64]: distance precision (DP), and overlap precision
(OP). DP is the relative number of frames in the sequence
where the center location error is smaller than a certain
threshold. We use the same parameter as [38], [64] and report
DP values at a threshold of20 pixels. OP is defined as the
percentage of frames where the bounding box overlap exceeds
a thresholdt ∈ [0, 1] between the identified bounding box and
the ground-truth bounding box. If the overlap ratio of bounding
boxes exceeds0.5, it is considered to be successful in tracking
for each frame and we can call OP as correct detection rate
(CDR). The results are summarized over all50 sequences with
51 objects. We present them with precision and success plots
[64].
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Fig. 3: Plots of overall performance comparison for the bench-
mark [64] with different part selection strategies.
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Fig. 4: Plots of overall performance comparison with different
ratios between the object size and the context region.

B. Part Initialization

We can adopt the examplar-SVM to choose the represen-
tative and discriminative parts based on the first frame. To
evaluate the effectiveness of the part selection strategy in the
proposed method, we compared with different part selection
strategies in Fig. 3.

Random Selection (RS)We randomly choose the intra-
object and context parts with the same size in the tracked
object and the context region respectively.

Block Division (RD) We divide the object into four over-
lapping parts in the range of the target object equally.

Discriminative Parts with Examplar-SVM (DPE) We
choose the discriminative parts as described in the section
III-D.

We choose four parts besides the tracked object based
on SPOT [13] and our algorithm. Here the part number is
predefined empirically. Choosing small number of parts can
hardly utilize enough context information while more parts
may increase the computational complexity. It is necessaryto
pay attention on that all the strategies will only adopted two
parts (the tracked object and context region part) while the
tracked object size is too small so as not to choose appropriate
parts. To get one relative confident part size of the context
region, we test it in the benchmark dataset. The context region
is set based on the object size, i.e.,ζ is the ratio between
the object size and the size of the context region. Different
ζ results to different performance are shown in Fig. 4. Using
the sequence Lemming for example, the part visualization in
the tracking process is shown in Fig. 5.

C. Online Update Scheme

1) Update Function:In order to evaluate the performance
of our update strategy, we conduct the experiments to compare

Fig. 5: Part visualization in the tracking process. The yellow
rectangle represents the bounding box of object and two
smaller rectangles denote the bounding box of intra-object
parts, and the larger rectangles denote the bounding box of
context parts.
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Fig. 6: lots of overall performance comparison with different
update thresholds.

different update thresholds and our strategy. As shown in
Fig. 6, we can see that the update threshold affects the
performance of our trackers heavily because it determines
the learning rate and the leverage between adaptivity and
stability of the tracker. As shown in Fig. 6, our update function
can get better performance because it not only considers the
prior knowledge, but also takes the random perturbation into
consideration.

2) Part Weights: To investigate the importance of part
reweighting on our results, we next perform a set of exper-
iments against different part weighting methods. To achieve
this we modify our tracking framework such that the parts are
reweighted by different strategies. They are the strategies of
Occluded, Motion, Spatial, and Integration. In more details,
Occluded is only using the occlusion function for validating,
Motion is only using the motion information for decision,
Spatial only endows the weights using spatial distance be-
tween the object and the parts, and Integration uses the three
strategies simultaneously. As shown in Fig. 7, the method of
Integration is worse than the Spatial method mainly because
of the decision whether the object or parts are occluded or
move consistently may be inaccurate. We can see from these
results that overall the median precision and correct detection
ratio for Spatial strategy are better than other methods, which
demonstrate that the Spatial reweighting framework we use is
able to produce gains in accuracy over other approaches.

D. Evaluation of Prior Label Distribution

We evaluate the proposed tracker with and without prior
label distribution in Fig. 8. From Fig. 8, we can see that prior
label distribution has led to a significant improvement in the
performance of the tracker.
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Fig. 7: Plots of overall performance comparison with different
part weight strategies.
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Fig. 8: Plots of overall performance whether adding prior label
distribution.

E. Evaluation of Temporal Information

We evaluate the proposed tracker with and without the
temporal information in Fig. 9. From Fig. 9, we can see that
the temporal information has led to a significant improvement
in the performance of the tracker.

F. Comparison of Different Context Part Models

To show the role of different context in object tracking,
we compared the following four kinds of models: appearance
model, internal context part model, external context part model
and weighted part context tracker (WPCT). Appearance model
is only modeling the object appearance. Internal context part
model is only modeling the appearance and relations of the
object and intra-object parts. External context part modelonly
models the appearance and relations of the object and context
parts. WPCT models all the appearance and relations of the
object, intra-object parts and context parts. The performance of
different parts in our model is shown in Fig. 10. From Fig. 10,
we can see that adding the internal and external context part
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Fig. 9: Plots of overall performance whether adding temporal
information.
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Fig. 10: Plots of overall performance comparison with different
context part models

model to the appearance model enhances the robustness of the
tracker and improves the performance respectively. Although
they don’t have significant improvement in the performance
independently, they jointly contribute the performance. The
reason is that both of them preserve some locality structure
information and highly complementary each other.
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Fig. 11: Comparisons on the center distance error per frame.

G. Fine-grained Evaluation

To evaluate WPCT in more close view, we show six
examples of the center distance error per frame in Fig. 11
with some part-based (e.g., PartTracker (PT) [41], structure
preserving tracker (SPOT) [53]), context-based (e.g., Context-
Tracker (CXT) [23]) or label-based trackers(e.g., MIL [8],
Struck [9]).Their source codes or binary codes are providedby
the authors and the parameters are tuned finely. All algorithms
are compared in terms of the same initial positions in the
first frame in [64]. Fig. 11 shows that our method can handle
illumination, occlusion and rotation well.

As illustrated in Fig. 11, our tracker outperforms the struc-
ture SVM based trackers such as Struck [9], PT [41] and
SPOT [53], because most of the sequences for more context
information are used in our tracker. Fig. 11 shows the center
location error per frame with the compared trackers and some
trackers lose the target in several key frames. In general, the
robustness of WPCT lies in the context parts with spatial
and temporal compositional structures which are locality-
preserving and discriminatively trained online to accountfor
the variations.
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Fig. 12: Plots of overall performance comparison for the50
videos in the benchmark [64]. The proposed methods WPCT
and WPCTScale obtain the top-2 and top-1 performance in
precision plot (left) and the top-5 and top-1 performance in
success plot (right).

H. Comparison with State-of-the-art Trackers

We compare our method with9 different state-of-the-art
trackers. The trackers used for comparison are: SPOT [53],
TLD [10], CXT [23], Struck [9], SCM [65], KCF [66], PT
[41] and PCT [29] are shown in Fig. 12. Their source codes
or binary codes are provided by the authors and the parameters
are tuned finely. All algorithms are compared in terms of
the same initial positions in the first frame in [64]. They
are also provided with the benchmark evaluation [64] except
KCF. Here, KCF uses HOG feature and the gaussian kernel
which gets the best performance in [66]. For handling scale
variation, we introduced scale estimation into the proposed
tracker WPCT, denoted as WPCTScale. The scale estimation
was using nearest neighbor search in multiple scale spaces
based on the estimated object center of WPCT.

Fig. 12 shows precision and success plots which contains
the mean distance and overlap precision over all the50
sequences. The values in the legend are the mean precision
score and AUC, respectively. Our approaches PCT, WPCT,
and WPCTScale both improve the baseline SPOT tracker
with a relative reduction in accuracy. Specifically, our PCT
tracker improves the distance precision rate of the baseline
method SPOT from48.7% to 63.0% and WPCT boosts the
PCT tracker with a gain of11.7%, and then WPCTScale
approximates WPCT. In addition, our PCT, WPCT and W-
PCT Scale trackers improve the success rate of their baseline
methods from34.2% to 41.8% and from41.8% to 47.1%,
and then from47.1% to 56.2%, respectively. Struck, which
has shown to obtain the best performance in a recent evaluation
until year2013 [64]. In [66], the performance of KCF is better
than Struck in precision of predicting the object state. Shown
in Fig. 12, our trackers are better than the other trackers and
achieves a significant gain in precision plots and success plots.

Attribute-based Evaluation: There are several factors
which can affect the performance of a visual tracker. In the
recent benchmark evaluation [64], the sequences are annotated
with 11 different attributes, which are named as: occlusion,
deformation, illumination variation, fast motion, motionblur,
out-of-plane rotation, scale variation, background clutter, out-
of-view, low resolution and in-plane rotation. We perform a
comparison with other methods. Fig. 13 and Fig. 14 show ex-
ample precision plots and success plots of different attributes.

TABLE II: Time cost distribution of the proposed approach.
There are four parts for each object in the experiments.

Sequence Jogging-1 Sylvester
Image Size 352 × 288 320 × 240
Object Size 25× 101 61 × 51
Holistic Feature Extraction 14ms 12ms
Part Classifier Update 2ms 1ms
Part Pictorial Structure 11ms 11ms
Part Prediction 14ms 12ms
Total Time 149ms 132ms

As shown in Fig. 13, WPCT provides superior results com-
pared to existing methods in5 of 11 attributes, which includes
illumination, out-of-plane rotation, motion blur, occlusion, low
resolution and so on, mainly because of the locality-preserving
structure and context information. That is because the passive-
aggressive algorithm may not less effective than KCF in mod-
eling rotation and deformation variation. Specially, although
low resolution cases are lack of gradient information, our
tracker can still get a reasonable results since the context
region can provide rich complementary information. After
introducing the scale estimation, the proposed tracker WPC-
T Scale also gets good performance in most of attributes
shown in Fig. 14.

I. Time complexity Analysis

The extraction of HOG features and the computation of
the appearance score per object with pictorial structures are
the main computational costs to run our tracker. And the
optimization process for tracking is very fast, i.e., only takes a
few milliseconds. The number of parts (i.e., in|V |) affects the
computational complexity linearly. To accelerate the approach,
we make some attempts to speed up the tracker. Firstly, we
adopted fast HOG extraction method using Dollár’s toolbox
[62], which is almost4 times faster than the implementation
by Felzenszwalbet al. [51]. Secondly, the model update is fast
because only a positive sample and a hard negative sample
are used for online passive-aggressive algorithm. Thirdly,
minimum spanning tree can reduce the complexity of pictorial
structures. Using the sequencesJogging-1andSylvesteras an
example, we give the time cost in Table II.

V. CONCLUSION

We presented a unified context framework for simultane-
ously tracking and learning with spatial and temporal structure
context inference. The proposed tracker was robust to certain
conditions of occlusion, illumination and out-of-view because
of exploring different context information. The proposed up-
date strategy alleviated the drifting problem caused by update
in some extent. Additionally, the prior label distributionfor
the inference process of the tracker provided a significant
promotion for the performance of the tracker. Experiments on
challenging video sequences showed that the proposed method
performed better than several state-of-the-art approaches.
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Fig. 13: Precision plots of different attributes (best-viewed on high-resolution display). The valued appearing in the title denotes
the number of videos associated with the respective attribute. The proposed methods in this paper perform favorably against
state-of-the-art algorithms.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

 

 

WPCT_Scale [0.562]

KCF [0.517]

SCM [0.499]

PT [0.495]

Struck [0.474]

WPCT [0.471]

TLD [0.437]

CXT [0.426]

PCT [0.418]

SPOT [0.342]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - illumination variation (25)

 

 

WPCT_Scale [0.539]

KCF [0.500]

WPCT [0.475]

SCM [0.473]

PT [0.443]

Struck [0.428]

TLD [0.399]

SPOT [0.399]

PCT [0.392]

CXT [0.368]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - out-of-plane rotation (39)
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Success plots of OPE - in-plane rotation (31)
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Fig. 14: Precision plots of different attributes [64]. The proposed methods (WPCT and WPCTScale) obtain better or comparable
performance in all the subsets.
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