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Weighted Part Context Learning for Visual Tracking
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_ Abstract—Context information is widely used in computer —object region. Context information has been applied algtive
vision for_tracklr)g arbltrar_y objeqts. Most existing works focus on object detection [16], object classification [17], objeetog-
how to distinguish the object of interest from background orhow nition [18]. Since the spatio-temporal context informatis

to use keypoint-based supporters as their auxiliary infornation . . .
to assist them in tracking. However, in most cases, how to important and necessary for tracking, it has been employed

discover and represent both the intrinsic property inside he recently in several tracking methods [19]-[28], where itswa
object and the surrounding context is still an open problem.In  still underestimated and under-utilized because thesbadst
this paper, we propose a unified context learning frameworkhat  mainly paid attention to the supporting roles of the externa

can effec_tively capture spatio-temporal relations, priorknowledge or internal context patches, rather than considered tieeriat
and motion consistency to enhance the tracker’s performare

The proposed Weighted Part Context Tracker (WPCT) consists and eXtemal_ relations together in the spat_lo—te_mporatespa
of an appearance mode|’ an internal relation model and a Most eX|St|ng works focus on how to dIStIﬂgUISh the tracked

context relation model. The appearance model represents éh object from background (i.e., we treat it as global context)
appearances of the object and parts. The internal relation radel  or how to use inter-frame object similarity informationge.
utilizes the parts inside the object to describe the spatitemporal fragment-based template matching) or key-points supporte

structure property directly, while the context relation model . th biect (i it be treated int I text
takes advantage of the latent intersection between the olge in the object (i.e., it can be treated as internal context) as

and background regions. Then the three models are embedded auxiliary information in tracking. However, global contean-
in a max-margin structured learning framework. Furthermor e, not deal with the object deformation problem, while intdrna
prior label distribution is added, which can effectively exploit the  context with key points ignore the background context. We
spatial prior knowledge for learning the classifier and infaring observe that the local part context interactions are welbti

the object state in the tracking process. Meanwhile, we defm: table. In oth d hen the t ¢ h
online update functions to decide when to update WPCT as well stable. In other words, when {he larget appearance changes

as how to reweight the parts. Extensive experiments and com- gradually, the intrinsic property of internal interactibetween
parisons with the state-of-the-arts demonstrate the efféiveness the parts inside object and context interaction betweeaabbj

of the proposed method. and background are relatively stable while the global cdnte
Index Terms—Visual Tracking, Part Context model, Structure ~ Provides an effective representation. Therefore, effebti
Leaning exploiting the rich context information around the tracked
object could improve the tracking performance. In this pape
[. INTRODUCTION we propose a novel Weighted Part Context Tracker (WPCT).

o ) It consists of an appearance model, an internal relationetnod

V ISUAL tracking is a fundamental problem in computef, ¢ontext relation model and online update functions. The
'V vision and has wide-ranging applications including acjnhearance model depicts the whole variation of the deisio
tivity recognition, surveillance, augmented reality, dndnan- ,,,n4ary between the object and its surrounding background
computer interaction [1}-[S]. For a visual tracking apmAa The jnternal relation model formulates the temporal refzi

it should be designed to cope with the inevitable appearangehe gpject itself or the intra-object parts themselves as
changes due to occlusion, rotation, illumination, etc. €R&C o) 45 the spatio-temporal relations between the objedt an
progresses in object tracking [6]-[15] have yielded a steadi 5 ohject parts to preserve the internal structure. G-

increase in performance, but designing a robust approachdoy ejation model constructs the spatio-temporal refei
track generic objects in presence of occluded and defoenaflyeen the intra-object parts as well as the context parts
targets is still a major challenge. To overcome these difficl, g the temporal relations of the context parts themselves t
ties, numerous models have been designed, most of Whighise e the external structure. The online update fumstiot
focus on building a strong appearance model to encode {}g, gecide when to update the model, but also consider the
variations of the object appearance. , importance of different parts based on the prior knowledge o

~ Meanwhile, there is additional information (e.g., contexf.q|ysjon, motion or spatial distribution. Hence the phgbi
information) which can be exploited instead of using onlg thy operties and the appearance information are considered i

. . o the optimization process through parts and relations.
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(4) Online update functions are presented to decide whencan easily drift. TLD [10] decomposed the long-term tragkin
update WPCT as well as how to reweight the parts. task into tracking, learning and detection, which utilizbe

A preliminary conference version of this paper can be-N learning to guarantee the online detector’s estimated
referred to Zhuet al. [29] and [30]. Compared to the priorerror. PROST [39] merged the template correlation, mean
papers, this study contains (1) a substantial number of- adshift optical flow and random forests in a cascade way which
tional explanations and analysis, (2) prior label distiithu can alleviate the drift problem. Struck [9] first introducie
as context information to improve the tracker performancstructure output learning for visual tracking which avaldiee
and (3) online update functions to decide when to update tladoel prediction problem existing in common online class§i
model and how to reweight the parts, and (4) various additiorand got good performance. CSK [40] exploited the circulant
experiments to investigate the impact of spatio-tempoaat p structure to get fast tracking through the Fourier analysis

context in the tracking process. and worked by evaluating a classifier trained using kernel
regularised least squares quickly at all sub-windows atdbe
[l. RELATED WORK estimated object location and maximising the response TSPO

incorporated spatial constraints between the objesitsg
ictorial-structures framework [44] and trained a stiuetl
SVM online, which was effective for occlusion and deforma-
tion. PT [41] modeled the unknown parts of a part-based targe
model using latent variables into a structure predictioseca
for tracking. Song [28] explored the most informative feati
A. Generative Trackers from random projections by maximising entropy energy for
These methods learn an appearance model to represent GRICt tracking. AOGTracker [42] simultaneously combined
the object and search for the most similar image region W&h tracking, learning and parsing objects with a hierezah
the predicted object. Examples of generative approaches @d compositional And-Or graph (AOG) representation so as
FT [6], IVT [31], L1 [32], VTD [33], MTT [12], ASLA to handle occlusion and background clutter. CNTracker [43]
[11] and LSHT [34] . FT [6] represented the target witdpuilded on correlation filters by introducing colour attribs
histogram of local patches, which took fixed spatial streaitu ©© achieve superior performance on colour sequences. In
information of the target itself and handle partial ocausi 9€neral, discriminative trackers are relatively more sitio
very well. However, its template is not updated over time arf¥PPressing background clutters than generative trackers
the correlation of target and surrounding is not constuicte
IVT [31] ingrementally .Ie.arned a Iow—dimensiqnal subspace_ Most Related Approaches
representation, and efficiently adapted to online changes i N _ _
target appearance, where the lack of spatial informatien re Many approaches utilize the context information or streeetu
sulted in drift problem. L1 tracker [32] was to represent thB/OPerty in some sense. CAT [45] tracked random field around
candidates sparsely using norm minimization. VTD [33] the target |_nstead of the target.. The tracker in [21] utiize
effectively extended the conventional particle filter feamork Strong motion coupling constraints to locate the targeneve
[35] with multiple motion and observation models to accounthen the target was invisible, with the help of some avagiabl
for appearance variation. MTT [12] mined the self-simtias related context information. However, detecting and matgh
between particles via multi-task learning to improve treke all of the local features are expensive and the motion of the
ing performance. ALSA [11] proposed a structural local Sparobject is not easily predlcte_d. CXT [23] developed a new con-
appearance model to exploit both partial information arf§Xt framework based on distracters and supporters. STJ [25
spatial information of the target for visual tracking. LSHTProPosed a spatio-temporal context method in which tenipora
[34] adopted a locality sensitive histogram which explditee cont_ext captured the _hlstorlcal appearance |nformat|or_iewh
spatial weight for every pixel. Generally, generative kexs spatial conte_xt model mtegrated_key—pomts based cojtn_n‘s.
are robust to the object occlusion and tend to obtain mdgenerally, since these trackers in [21], [23], [25] workeithw
accurate performance in a small searching region, buttsensithe key points as auxiliary information, the main differeac

to similar distracters in the surrounding area of the object @€ how to utilize supporters or distracters. Although the
introduction of context in these trackers expanded thdaviai

S information which can be obtained from the scene, it may

B. Discriminative Trackers collapse when motion blur occurs due to the utilization of

These methods formulate visual object tracking as a cldsey-points descriptors. STC [27] utilized the spatiao{tenal
sification or structure prediction problem, which seeks theontext in the Bayesian framework to interpret correlation
object location that can best separate the object from fiker based tracking. CKST [24] proposed a SVM tracker by
background. Examples of discriminative methods are OAdesigning a graph mode-based contextual kernel, where the
[36], co-training tracking [37], MIL [38], TLD [22], PROST high-order contexts between the training samples could®e d
[39], Struck [9], CSK [40], SPOT [13], PT [41], AOGTrackercovered in their similarity matrix. PNTracker [22] propdde-
[42] and CNTracker [43]. AOB [36] was adopted to seled learning (i.e., P-constraints and N-constraints) torietsthe
useful features using boosting for object tracking. Itsfarer binary labeling of the unlabeled set for training the loegat
mance was affected by background clutter, and the trackktector and extended it to TLD tracker [10]. Different from

In recent decades, numerous tracking methods have bé%ag
proposed in literatures. In what follows, we only briefly reak
representative selection of recent trackers and categtrem
into generative trackers and discriminative approacheghty.
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Fig. 1: The pipeline of the proposed tracker.

them, we not only explore the similarity context informatio TABLE I: Important notation and terms
between training samples, but also model the spatio-temhpof Ma The appearance model

context between their correlative intra-object parts amatext ]1\\441 me internal rel'at_ion mogel'

parts in structure learning framework. Moreovgr, our Iiitm_l Bg Thg gg?ég(t relation mode

was that suppose the label of the estimated object stateuwtith Bi,..,Bg The intra-object parts

occlusion wasl, the labels of other samples were set as theBK+17(I>---7BK+M me ;:ontefxt |oar(§sf . .
. . G € transtormed teature representation

ovgrlapplng rates between the samples states and the fmbma D () The transformed relation feature representation

object state so that the labels of these samples fitted a @auss w. The weights of the feature represenation

distribution for training. In addition, the prior label digbution w., The weights of the relation feature

could be treated as motion prior to assist in inferring thalfin

object state. ) ) ) )
Part-based visual models have been investigated by maRgximally preserve the spatial structure of the object astsa

researchers. In general, there are two types of part-bafgiginferring the final object state.

appearance representation: local patch-based visuasepr

tation and global-local coupled visual representatiore fitie- A. Model Definition

ground shape was modeled as a small number of rectangul

blocks which were selected with non-empty intersectiorhwit

the interior region of the target defined by the contour [46]. !
An object by a set of local patches with topological Strueturgbject and background with context parts. The deformable

was represented in [19]. However, these methods only Censiaonﬂguratlons [44], [54] together with the temporal sturet

the local information. LGT [26] modeled a target's gIobadanOf these parts are also considered in. Please refer to Table |
' . . for important terms used throughout the rest of this section
local appearance by a coupled-layer with coupled congsrain X . . .
bp y up yerwl up ! In Fig. 2, with the object bounding box as the rd®t the

An object detection approach with structured SVM [47] was

proposed in [48]. Motivated by this success, structurechlea'ntr.a'ObjeCt partd are defingd as the parts selected insitje
ing was applied to online visual tracking [9], [49]. Insirby which covers part of the object appearance. The contexs part

deformable part-based appearance models [50]-[52], Zha((;rg';g‘re selected from the overlapping area b_etween_the object
and van der Maaten [53] proposed a structure preservi?iﬁ d mecgﬁtcegmi?ti' It:r?(; ioﬁirgtej:a\'g/gz iz (ljnet:]ao—t%t()jjgl:;parts
model and Yaoet al. [41] presented part-based with laten B B B g ’ B ? where B. stands for the
structural learning for tracking. Although the two approes ) 0> tll;m’ d?(’ é“;%”B K+MB' / 0 the & intra-

paid attention to the parts of the object and their deforomati arget bounding boxc, (By, .., Bx) € I are theX intra

cost, there are still many intrinsic properties in objeatking object part boxes, an@Bic+1,..., Bxk+u) € C are theM
(e.g., temporal constraints, context information) whicivé context part boxes. The corresponding features of the mabt a
not been considered. Actually they only considered onecasp arts are represented a8 = (Xo, .., XK, XK41, -, XK 41)-
about the appearance model and the internal relations that g @ word, .our framework models the object with three
model proposed, but not considered the context relationatin components:

model, e.g., the context parts in the surrounding envirarime

that have motion consensus with the object. In additiory thﬁ/hereMA,
did not treat all of the auxiliary information as context.

aE)ur framework not only models the object with intra-
bject parts, but also incorporates the interaction batvtbe

M = My + M; + M, 1)

My andM¢ are the appearance model, the internal
relation model and the context relation model respectively
For online tracking, an appearance model is essential. It
[1l. WEIGHTED PART CONTEXT TRACKING represents the intrinsic property of one object or the discr
In this section, we will give an overview of the propose&ﬂative information between the object and background. To

weighted part context learning model in a unified framewofRetter mine the information, we factorize the appearanagahno
shown in Fig. 1. We first introduce the part context formwlati M4 into Eq. (1):
and then describe the model training problem \_/vith a strectur Ma=Agr+ A; + Ac
learning approach. After the learning mechanism, we dgvelo o KM
an online learning strategy to update the model parameters _ o 7g T T
= + wrOr(x;) + w-Po(x;).
efficiently. Then how to select the parts and give them waight R®r(%0) ; 1 21(xi) i:;l c®olxi)
are discussed. Finally, prior label distribution is addpte 2)



4 JOURNAL OF BTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

g #001 #002
faal 1

T
|
I E
A J
context
TR
4 L

# ! § #0520

Spatial
context

\

Object| Parts Context Parts

Fig. 2: lllustration of the proposed weighted part conteatking framework using the“sylvester” video. Bold cirgldenote
larger weights, e.g., cyan circle in the first frame, and redesin the 520" frame.

where AR, A; and A are the global root appearance model, Except internal relations inside the object, some inforomat

intra-object parts appearance model and context parts Imoidelatent intersection area between the object and backglrou

separatelydr, ®; and®- denote the root appearance featurés neglected by previous works, such as the partial contour

the intra-object parts appearance feature and the conaetg pand the object are consensus in motion. To make full use

appearance feature.z, w; andw are the weights of appear-of this information, we formulate the context relation mbde

ance features correspondingty.is thei!” part corresponding to express the interactions between root and the context

to bounding boxB; = (¢;,r;,w;, h;) with center location parts, which also includes the spatial and temporal canssra

B . = (ci,ri), width w; and heighth;. between them. Similar to Eq. (3), we describe the context
In addition, all relatively stable spatio-temporal redats relation model mathematically as:

between the object and its corresponding parts frameator

provide rich information for tracking. Therefore we desim

internal relation model to formulate the interactions besw .

root and the intra-object parts, which includes the spatia(wc -

constraints and the temporal constraints between them, as: M L
o = E Wi o Pro (X0, x;) + E E wi e (xi, x;)
My =S+ Ep+E; i=1

Sc + Sc,r + Ec

i=1 j=1
K —1 -1 M
=Y WhPri(x0, %)+ ¥ Wi p®(xh,%0) + ) wlod(x),x))
i=1 t=—H 3 t=—H j=1
-1 K (6)
+ ) wiex %)
t=—H i=1

whereSc, Sc,r and E¢ denote spatial relation between root
where S;, Er, and E; are spatial relation between root anthnd context parts, spatial relation between intra-objectsp
intra-object parts, temporal relation between root and tris-  and context parts, and temporal relation between contets pa
torical roots, and temporal relation between intra-obEsit- and their historical information® ¢ (xo,%;) denotes the

s and their historical information respectiveyz (x0,%;) spatial interaction function between the ra8§ and context
denotes the spatial interaction function between the 80t part B;, . ;(x;,x;) denotes the spatial interaction function
and intra-object part3;. ®(x{,xo) is the temporal relation petween the intra-object paf®; and the context pari;.
function of the bounding box, in the lastt!” frame and the ®(x!,x;) denotes the bounding boR,’s temporal relation
current frame.H is the upper bound of last frames. Like')’:funcjtion.wR,c, we,; andwy ¢ are the weights corresponding
cp(xﬁ,xi) is the bounding boxB;'s temporal relation func- to ¢ (xo, x;), ®¢.r(x;,%;) and ®(x,x;) respectively.

tion. wp, 1, wy.p andwy; are the weights correspondingly. g, e jinear property, the model of object and its config-
Similar to [51], the spatial interaction betweean and x; is uration can be simplified as:

f, = (Cj —Ci, Tj — ’I“,L') and:

(I)(Xivxj) = (fc,ff)' (4)

Herein, f. and ff can preserve the relative and absolute
information betweenx; and x;. For detail, the temporal
relation function®,: ., can be represented as:

) (Bt — B, 12/82
®(xj,xi) = exp(—(||B; . — Bi.ll”/57)) ©) W:[WﬁvWITvWgaWﬁ,laWﬁ,CaW?CthT,RaWZthT,C 7

whered is a constant value. (8)

M =wld(X) (7)

where

]T
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K

—[pT T(x.) &L (x: T . complexity of maximizing a single sliding window is high,
) =[x 21 (XZ)’@C(XZ%;@R’I(XO’XZ)’ but benefiting from the generalized distance transform,[55]
—1 -1 K the average complexity in simultaneously optimizing ak th

Z T (xh, x¢), Z Z T (x!,x;), sliding windows is of linear complexity with the search nasi

t=—H t=—H i=1 2) Model Learning: Since we adopted the large-margin
M K M ©) framework with structure SVM loss to learn our model, we
Z ‘I’ﬁ,c(xo, Xi), Z Z (I%J(xi, X;), follow the optimization method in structure SVM to solve our
j=1 i=1 j=1 problem. Structure SVM was firstly used for visual tracking

-1 M in [9]. By explicitly allowing the output space to accuratel
> e )" estimate of object position, the struck tracker can avoi th

t=—H j=1 label prediction, which is an intermediate classificatideps

where w is the model parameter we need to learn. GiveR common tracking-by-detection methods. In additiong lik
a configurationB in a frame F, there needs a function toother trackers [8], [9], [53], to enhance its adaptivity and

measure how well the configuratidh matches object model fobustness, we need to update the model online. In general,
M. We compute the similarity score as follows, most of online trackers use the tracked object configuration

in previous frames as positive examples to update. We argue
S(F,B,M) = S(F,B,Ma) + S(F,B, M) + S(F,B,Mc)  this method and choose to update the proposed model while
- the last object configuration satisfies some conditions,(arg
Eq. (7)-(9) are hard to solve so we need to relax it to hgyqate threshold or occlusion detection). We apply an agapt
a convex optimization problem. Moreover, to reduce the timgresholding strategy to select samples to update.

complexity of learning the model parameter we utilize th,e The similarity S measures the compatibility between train-
tree structure with minimum spanning tree based on the parﬁg pairs, and gives a higher score to well matched ones.

locations inspired by [13]. By Eg. (7), it can be learned in a large-margin framework
from a set of training sample paifg F, B1), ..., (F, By,)} by
B. Optimization minimizing the following convex optimization object fumah

In this section, we will describe the optimization of thévith structure SVM loss [47]:
proposed discriminative model from three aspects: infezen 1 ) "
mo?el Ifearning ar;c:} upd:tehstratt)egy. f “I,TigogHWH +C 2 mi (13)
1) Inference: Although the object appearance varies fre- "~ _
quently during the tracking process, there exist stabknsit 5:4.Vi,YB # B : (w,09:(B)) = A(Bi, B) — i
relations between the object and intra-object parts orexdntwheresd,(B) = (F, B;) — ®(F, B). This optimization aims
parts across continuous frames. Given the definitiodfofa o ensure that the value of(F, B;, M) = (w,®(F, B;)) is
model is constructed to constrain the deformation of payts Breater thanS(F, B, M) for B # B;, by a margin which
modeling their temporal and spatial relations with the r@ot  gepends on a loss functiaf. Herein, A(B;, B) measures

avoid the problem caused by high-order loopy graph, we ngisimilarity betweenB; and B, as in [9], [48], [53]:
only keep the model to be tree-structured, but also intreduc

the temporal relations based on the historical information A(Bi,B)=1— BﬁBi. (14)
without increasing time complexity. Standard sliding womd ’ BUB;

procedure is used to scan images around the previous ob
location with a fixed scale to determine the object locatien. in pixels.
each scanning window in image, we .f'rSt ﬂ.t the w_mdow to For training the structure SVM efficiently, we adopt the cut-
structure modelM to get the part configuration on it, and ther{in

. . : g plane algorithm [47] to select the most violated coaisiis
calculate the score of the window according to the |nferr§d . . .
. . 0 train. The most violated constraint can transform tocttrie
configuration by Eq. (1)-(10).

The fitting step aims to find a candidate object’s configuS—VNI loss ¢ by configurations:

ration B* with the highest matching score according to theé(w;F,B) = max[S(F, B;, M) — S(F, B, M) + A(B, B;)]
learned modelM/. Mathematically, the optimization problem B (15)

Is to find 5" that satisfies: Then we apply online passive-aggressive algorithm [56]to
B} = argmax S(F, B, M) = argmaxw’ ®(X) (11) perform the parameter update in the tracking process. S@ppo
B B

learning the new weight vectow,;; based on round

The score of each part in the model is independent onggts is treated as the solution to the following constrained
the root is specified, so that maximizid]' is transformed to gptimization problem,

find the optimal configuratiom; for part: )

B} = argmax S(F, B;, M) = argmax w; ®;(x;) (12) Wt+1 = al8wer min §||W —wil[? st L(wy (%, 41)) = 0.
where ®(z;) are the related items with; in ®(X) and wherew;,; is the projection ofw; into the half-space of
w; is the weight vector corresponding to tlié& part. The vectors which attain a loss of zero on the current example.

lﬁﬁ%re the two bounding boxe&8 and B; are both measured
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The solution to the optimization problem in Eq. (16) has af the target object, as well as handle hard negatives (dis-
simple closed form solution, tracters) in the background. If the object is occluded, tioeleh
‘0 doesn’t need to be updated. But if the object is self-ocdude
(17) (e.g., rotation) or appearance changes due to illuminatizn
model updating is necessary. However, evaluating whetiner a
where 7; is the step size of learning. Please refer to [S&hen the appearance changes (e.g., occlusion) is a difficult
for more technical details. Then the parameter updatespigblem. Therefore, most of the tracking algorithms update

Wil = Wi + Tep Xy where 1 = W

calculated as follows, the appearance model every frame.
{(w; F,B) Like [53], we only update the weight; corresponding to
Wikt W l|d||? + 0.5d' (18) part bounding boxB; when the exponentiated score for that

_ N _ . object exceeds a given threshold to avoid erroneous update.
Herein,d = V,,S(w; F, B) — V,,S(w; F, B) is gradient of pijfferent from [53], the threshold is adaptive and genetate
the structured SVM loss, anf8 = argmaxpg(S(w; F, B) + by an update criteria function for leveraging the adaptivit

A(B;, B). and stability of the object model. The update criteria fiorct
The construction of training set is important to decidg as follows.

whether a classifier is trained well. Inspired by [10], [54k
construct training data consisting of the positive sampled
hard negative samples. An object model is trained by peasitiv
samples bootstrapped and negative samples randomly sample
around the object in the first frame. Then we collect the ifvhereT is the prior thresholds is the bandwidth for relaxing
correctly classified samples whose configure matching scotRe limitation, ands is the hyper-parameter to keep some small
are close to positive samples and have low overlapping rgi@bability to update. In our papéf,= 0.3, 7 = 0.05, & = 30.
as hard negative samples. Since there are many hard negativgarticular, we only update the; whenG(z) >= rand(1),
samples, we randomly discard some negative samples.  whererand(1) is to generate uniform random variables rang-
3) Prior Label Distribution for Parts: Prior label informa- ing 0 to 1.
tion can be used as an effective complement for a classifier2) Reweighting the Partstn the tracking process, parts are
such as [57], [58]. To utilize the information better, wether not contributed equally. For example, while a part is ocetld
add the prior label distribution for the tracking systemolte it should be less important than other parts.
word, we not only add the label prior in the training step, but Generally, three aspects are considered: (a) the sirgilarit
also in the decision step. to the trained part modelQ;; (b) the degree of motion
In the model learning of section I1I-B2, we can treat theonsistency between the tracked object and the historiz#s p
dissimilarity betweenB; and B as the label prior or label )z;; (c) the spatial distancR;, i.e., the more important the part
context, because it is used for guaranteeing the importahces, the closer it is to the tracked object center. Since the pa
training samples. It equals to that the higher the overtagpiis close to the center of the tracked object, it should be more

rate between the training sample and the labeled positikgiable. With the three factors, we define the part weightin
sample, the less the loss term is. If we sample every sampl@ction as follows,

surrounding the labeled positive sample, assign the pesiti

1, if z>=T+r
G(z) =< 0.95 + rand(abs(z = T)), if |z—T|<7 (20)
exp(—k(T —7—x)), if =z<T-—7

sample as one and other samples as the values equaling to thé’: ~ Oi x My x R;
overlapping rate between the samples and positive sanmgle, t — sign(S; — Sr) % e:cp(fp(BO’c’ Bi,c)> (21)
label values centered the positive sample center can foem on > P o? ’
distribution which can be called as label distribution. )

In the inference process, we can also treat the motion prior sign(z) = { Life>=0 (22)
as prior label distribution for assisting the object préidit. 0ifz <0

That is to say, the higher the probability of the candidate o ) . .
sample which belongs to the positive object is, the closer twhere 5; is the score of each parts classifigfy is the

. . . . occluding thresholdpP; is the cumulative motion consistency
candidate sample from the previous object location. We &d th . e
. N . T etween thé"" part and the tracked object which is computed
Gaussian distribution as our prior label distribution. btalls,

the orior label distribution is as follows: by the cosine similarity based on the motion vector of their
P ‘ center locations between the adjacent fran®s, .) is the

1 Euclidean distance between the center of objBgt. and

—QD(B(:.(:;Bp,c)); (19) th . ’

20 ’ the center of the'”" part B; ., o is the hyper-parameter for

whereD(.,.) is the Euclidean distance functiom,is empiri- restraining the strength of parts’ importance on the spatia

cally set asy/W x H. Here,W, H are the width and height distribution. Empirically, we set thee = VW x H, W, H
of the root object, respectively. are the width and height of the root object.

p(y|Bo,c) = exp(—

C. Online Update D. Part Initialization

1) Update function:The goal of updating the WPCT online How to select proper parts is very important for part models,
is to account for both the structural and appearance vanigti especially in the online learning applications. Inspirgdtie
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deformable part-based models [59], we will search for theseContext Parts: The procedure to choose discriminative
parts that cover high-energy regions of the root filter. Hére parts in context region is similar with intra-object. We defi
“energy” of a region is defined by the norm of the positivéhe context part’; as:
weights in a subwindow. We will introduce how to select in
the following section. C; = argmax Z maz(0, Wi, ) (26)

1) Learning Pixel WeightsTo select discriminative parts, CiCC (o, m)€C;
we need to evaluate the confidence for each pixel in an object
bounding box. Considering the characteristic of exemplashereC' represents the bounding box of the context. Different
SVM [60], we use it to choose discriminative parts. Th&om intra-object parts, the size of context parts is setfh
idea of Exemplar-SVM is that, for each positive sample (alsf the whole context region, and the context region size is
regarded as an exemplar), each Exemplar-SVM is trained B18 times larger than the object.
the corresponding set of samples, where there is only one
positive sample and the rest are all negative.

For each sample, we extract the HOG [51], [61] features

using Piotr Dollar’s toolbox [62] where the size of cell is 1q eyaluate the performance of the proposed approach, ex-
set as4. Then we concatenate them to one vector to presgghsjve experiments are performed with public datasestlgir
one positive sample (exemplagy in the first frame or \ye perform a comprehensive evaluation of part initializati
negative samples. We randomly sample negative windowstgs yisyal tracking. Secondly, we evaluate the proposed up-
the negative samplesy, with the regions: > 50 (r is the  gate scheme for parts. Thirdly, we evaluate our prior label
distance between the centers of them and the positive Sempigstribution for visual tracking. Fourthly, we evaluateeth
Thus, the object function of Exemplar-SVWlz(x) can be importance of the temporal information. Finally, we praid
described as: both quantitative and attribute-based comparisons witest
fe(x) =whx +bg, (23) of-the-art trackers.

IV. EXPERIMENTS

The weightw z and the offseby can be solved by optimizing
the following convex objective function, A. Experimental Setup

Q(w, b) = [|w|[2+Crh(wTx5+b)+Cs Z h(—wTx—b), (24) Our method is implemented with Matl_ab 2013b. The exper-
<EN g iments are performed on an Intel core33 GHz CPU with
20 GB RAM. The proposed WPCT tracker ran Hi FPS in
where the hinge loss function is usediifr) = maxz(0,1—x), average for all sequences, which was sped up compared with
C: andC, are both regularization parameters. For simplicityur previous tracker PCT tracker. We initialize the parts in
we adopted LibSVM [63], whereZ; = 50, Co = 1 and first frame where the part scale 6% times of the object,
Ng = 50. The training processes of exemplar-SVMs for ththe numbers of in-parts and context parts are both s&t\ge
intra-object and the context parts are same except thartgaintest our tracker with fixed parameters in a public benchmark
samples. With Eg. (24), we can obtain the confidence valiseluding 50 video sequences [64]. The dataset is collected
for each pixel. from many previous works, so we can prevent the training
2) Discriminative part selectionBased on Exemplar-SVM, process from the danger of overfitting to a small subset. The
we get the optimized value z, and utilize the correspondencesequences used in our experiments pose challenging sitgati
between the weight/; and the pixel location in the annotatedsuch as heavy occlusions, deformation, out-of-view, nmotio
bounding box to mine the discriminative parts, which ingéudblur, illumination changes, scale variation, in-plane anud-
intra-object parts and context parts. of-plane rotations, background clutter and low resolution
Intra-object Parts: We initialize the intra-object parB; Evaluation Methodology: To validate the performance of
at the location in which the weights of the initial objecbur proposed approach, we follow the protocol used in [64].
Exemplar-SVM wg are large and positive, because thesEhe results are presented using three evaluation metrgzdba
correspond to features that are highly indicative of objeon [38], [64]: distance precision (DP), and overlap prexisi
presence. Mathematically, we denote the object paras: (OP). DP is the relative number of frames in the sequence
where the center location error is smaller than a certain
B; = argmax Z maz(0,Wg (s, 4,)) (25) threshold. We use the same parameter as [38], [64] and report
B;CB ’ DP values at a threshold @0 pixels. OP is defined as the
percentage of frames where the bounding box overlap exceeds
where B denotes the bounding box of the object gngl, y;) a threshold € [0, 1] between the identified bounding box and
represents a pixel location. We fix the number of parts the ground-truth bounding box. If the overlap ratio of boingd
advance, setting it to 2; we fix the width and height of thboxes exceeds.5, it is considered to be successful in tracking
part bounding box t$0% of the object bounding box’s size for each frame and we can call OP as correct detection rate
empirically. Once a part is placed, the weights of the caveréCDR). The results are summarized overslisequences with
pixels are set to zero, and we look for the next part based &h objects. We present them with precision and success plots
Eqg. (25), until2 parts are chosen. [64].

(zi,y:)€DB;
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Fig. 4: Plots of overall performance comparison with digfietr

ratios between the object size and the context region. Fig. 6: lots of overall performance comparison with differe

update thresholds.

B. Part Initialization _ _
We can adopt the examplar-SVM to choose the repres%‘f-rerem update thresholds and our strategy. As shown in

tative and discriminative parts based on the first frame. 49 6, we can see that the upd_ate thresholq affects_the
performance of our trackers heavily because it determines

evaluate the effectiveness of the part selection stratedie Be learning rate and the leverage between adaptivity and
roposed method, we compared with different part selecti Tu - e .
propos W P W I part s Is ability of the tracker. As shown in Fig. 6, our update fuorct

strategies in Fig. 3. . X
Random Selection (RS)We randomly choose the intra-can get better performance because it not only considers the

object and context parts with the same size in the trackBHC" knowledge, but also takes the random perturbation int

: : : consideration.
object and the context region respectively. . ) . . .
Block Division (RD) We divide the object into four over- 2) Part Weights: To investigate the importance of part

lapping parts in the range of the target object equally. .reweightingl on our results, we r_1extl perform a set of exper-
Discriminative Parts with Examplar-SVM (DPE) We iments against different part weighting methods. To aahiev

choose the discriminative parts as described in the sectityf We modify our tracking framework such that the parts are
11-D. reweighted by different strategies. They are the strasegfe

We choose four parts besides the tracked object badgfciuded. Motion, Spatial, and Integration. In more defail
on SPOT [13] and our algorithm. Here the part number cc_Iudgd is only using the ocglu5|_on funct_|on for vahd_g_tm
predefined empirically. Choosing small number of parts cafi°tion is only using the motion information for decision,
hardly utilize enough context information while more part§Ioatlal only 9nd°WS the weights using spa_tlal distance be-
may increase the computational complexity. It is necestmrytwee” Fhe o_bject and the parts, and I_nteg_ranon uses the thre
pay attention on that all the strategies will only adopted twStrategies simultaneously. As shown in Fig. 7, the method of
parts (the tracked object and context region part) while tﬁrel_tegratlon.l\f; worse than the Spatlal method mainly because
tracked object size is too small so as not to choose appteprid e decision whether the object or parts are occluded or

parts. To get one relative confident part size of the contd®QVe consistently may be inaccurate. We can see from these
results that overall the median precision and correct tietec

region, we test it in the benchmark dataset. The contexbnegi => . .
is set based on the object size, i.é.js the ratio between ratio for Spatial strategy are better than other methodg;twh

the object size and the size of the context region. DiffereflEmonstrate that the Spatial reweighting framework we sise i
¢ results to different performance are shown in Fig. 4. UsirfgP!€ t© produce gains in accuracy over other approaches.
the sequence Lemming for example, the part visualization in

the tracking process is shown in Fig. 5. D. Evaluation of Prior Label Distribution
) We evaluate the proposed tracker with and without prior
C. Online Update Scheme label distribution in Fig. 8. From Fig. 8, we can see that pprio

1) Update Function:In order to evaluate the performancdabel distribution has led to a significant improvement ie th
of our update strategy, we conduct the experiments to caanpperformance of the tracker.
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E. Evaluation of Temporal Information

We evaluate the proposed tracker with and without thei» =
temporal information in Fig. 9. From Fig. 9, we can see that-j—
the temporal information has led to a significant improvemern

in the performance of the tracker.

F. Comparison of Different Context Part Models

To show the role of different context in object tracking,
we compared the following four kinds of models: appearance

model, internal context part model, external context partieh
and weighted part context tracker (WPCT). Appearance moq;;zl
is only modeling the object appearance. Internal contert pa

0.8

model to the appearance model enhances the robustness of the
tracker and improves the performance respectively. Algiou
they don't have significant improvement in the performance
independently, they jointly contribute the performancéeT
reason is that both of them preserve some locality structure
information and highly complementary each other.

Trellis Singer2

Pixel error

ixel error

Pixel eror

o 0 a0 60 @0 000 200 10 1600 T
Frame #

C w0 a0 w0 &0 £
Frame # Frame #

Fig. 11: Comparisons on the center distance error per frame.

Fine-grained Evaluation

model is only modeling the appearance and relations of theTo evaluate WPCT in more close view, we show six
object and intra-object parts. External context part moaddy examples of the center distance error per frame in Fig. 11
models the appearance and relations of the object and ¢onteith some part-based (e.g., PartTracker (PT) [41], stmectu
parts. WPCT models all the appearance and relations of fheserving tracker (SPOT) [53]), context-based (e.g.t€&dn
object, intra-object parts and context parts. The perfocaaf Tracker (CXT) [23]) or label-based trackers(e.g., MIL [8],
different parts in our model is shown in Fig. 10. From Fig. 1Gtruck [9]).Their source codes or binary codes are proviged
we can see that adding the internal and external context piie authors and the parameters are tuned finely. All algogth
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are compared in terms of the same initial positions in the
first frame in [64]. Fig. 11 shows that our method can handle
illumination, occlusion and rotation well.

As illustrated in Fig. 11, our tracker outperforms the struc
ture SVM based trackers such as Struck [9], PT [41] and
SPOT [53], because most of the sequences for more context
information are used in our tracker. Fig. 11 shows the center
location error per frame with the compared trackers and some
trackers lose the target in several key frames. In gendral, t
robustness of WPCT lies in the context parts with spatial
and temporal compositional structures which are locality-

F'fg o: T’IOtS of overall performance whether adding temborgeserving and discriminatively trained online to accofant
information.

the variations.
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Precision plots of OPE Success plots of OPE TABLE IlI: Time cost distribution of the proposed approach.
' 1 There are four parts for each object in the experiments.
Pl e o Sequence Jogging-1 Sylvester
sosf  fodTzEmT e C 0B —= e Re Image Size 352 x 288 | 320 x 240
sme ) E IS SRR Object Size 25 x 101 | 61 x5l
a 04 e | 2 04 =T AR Holistic Feature Extraction  14ms 12ms
o2 B S PR i \ Part Classifier Update 2ms 1ms
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Location error threshold " Overlap threshold Total Time 149ms 132ms

Fig. 12: Plots of overall performance comparison for ffle

videos in the benchmark [64]. The proposed methods WPCTg shown in Fig. 13, WPCT provides superior results com-
and WPCTScale obtain the top-and topi performance in areq 19 existing methods of 11 attributes, which includes
precision plot (left) and the top-and topd performance in jymination, out-of-plane rotation, motion blur, occiaa, low

success plot (right). resolution and so on, mainly because of the locality-présgr
structure and context information. That is because thevyess
aggressive algorithm may not less effective than KCF in mod-

_ ] eling rotation and deformation variation. Specially, aligh
We compare our method with different state-of-the-art o\ resolution cases are lack of gradient information, our

trackers. The trackers used for comparison are: SPOT [Sghcker can still get a reasonable results since the context
TLD [10], CXT [23], Struck [9]’ SCM [65], KCF [66]. PT region can provide rich complementary information. After
[41] and PCT [29] are shown in Fig. 12. Their source codggiroducing the scale estimation, the proposed tracker WPC

or binary codes are provided by the authors and the parameterscale also gets good performance in most of attributes
are tuned finely. All algorithms are compared in terms Qfown in Fig. 14.

the same initial positions in the first frame in [64]. They
are also provided with the benchmark evaluation [64] except_. . .
KCF. Herpe, KCF uses HOG feature and the gaus[sia]n kerr||?elTlrne compl_exny Analysis )
which gets the best performance in [66]. For handling scale The extraction of HOG features and the computation of
variation, we introduced scale estimation into the progos&® appearance score per object with pictorial structures a
tracker WPCT, denoted as WPCScale. The scale estimationt’® main computational costs to run our tracker. And the
was using nearest neighbor search in multiple scale spa@@imization process for tracking is very fast, i.e., ordes a
based on the estimated object center of WPCT. few milliseconds. The n_um_ber of parts (i.e.,|if|) affects the
Fig. 12 shows precision and success plots which contaff@mputational complexity linearly. To accelerate the apph,
the mean distance and overlap precision over all fhe W& make some attempts to speed up the tracker. Firstly, we
sequences. The values in the legend are the mean preci§i@fpPted fast HOG extraction method using Dollar's toolbox
score and AUC, respectively. Our approaches PCT, wpd#2l, which is almost4 times faster than the |mplemen.tat|on
and WPCTScale both improve the baseline SPOT trackdy Felzenszwallet al._[_51]. Secondly, the model upda‘;e is fast
with a relative reduction in accuracy. Specifically, our pcPecause only a positive sample and a hard negative sample
tracker improves the distance precision rate of the basel@® used for online passive-aggressive algorithm. Thirdly
method SPOT fromi8.7% to 63.0% and WPCT boosts the Minimum spanning tree can reduce the complexity of pictoria
PCT tracker with a gain of1.7%, and then WPCTScale Structures. Usir)g the sgquenchn:_;ging-landSylvesteras an
approximates WPCT. In addition, our PCT, WPCT and Wexample, we give the time cost in Table II.
PCT_Scale trackers improve the success rate of their baseline
methods from34.2% to 41.8% and from41.8% to 47.1%, V. CONCLUSION
and then fromd7.1% to 56.2%, respectively. Struck, which  We presented a unified context framework for simultane-
has shown to obtain the best performance in a recent evatuatusly tracking and learning with spatial and temporal striee
until year2013 [64]. In [66], the performance of KCF is bettercontext inference. The proposed tracker was robust toinerta
than Struck in precision of predicting the object state.v@ho conditions of occlusion, illumination and out-of-view lzerse
in Fig. 12, our trackers are better than the other trackeds aof exploring different context information. The proposea u
achieves a significant gain in precision plots and success.pl date strategy alleviated the drifting problem caused byatgd
Attribute-based Evaluation: There are several factorsin some extent. Additionally, the prior label distributidor
which can affect the performance of a visual tracker. In thtee inference process of the tracker provided a significant
recent benchmark evaluation [64], the sequences are aadotpromotion for the performance of the tracker. Experimemts o
with 11 different attributes, which are named as: occlusioghallenging video sequences showed that the proposed thetho
deformation, illumination variation, fast motion, motidtur, performed better than several state-of-the-art appr@ache
out-of-plane rotation, scale variation, background elytbut-
of-view, low resolution and in-plane rotation. We perform a REFERENCES

comparison with other methods. Fig. 13 and Fig. 14 show €X%1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A seyy CSUR
ample precision plots and success plots of different atei vol. 38, no. 4, p. 13, 2006.

H. Comparison with State-of-the-art Trackers
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