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 Abstract –In this paper, a real-time machine vision system is 
designed for an industrial robot to grasp from an assembly line a 
class of machine parts which are similar in the general shape but 
different in details. In order to get real-time performance, the 
system is implemented on an embedded image card with an 
FPGA (Field Programming Gate Array) accelerating the 
computation. The method can be divided into two stages. First, 
the holes and edges of the machine parts are detected from each 
frame with the FPGA. Then a DSP (Digital Signal Processor) 
chip on the image card performs the rest of the computation by 
identifying the location and type of each of the machine parts in 
the image based on the information of all the holes and edges. A 
rotationally adaptive edge-based template matching technique is 
used in our method, which not only reduces the amount of 
computation but also provides robustness against illumination 
changes. Experiments demonstate that the machine parts can be 
located accurately under arbitrary in-plane rotations and can be 
classified correctly according to the details in their shapes. Our 
system can run with an industrial camera at a resolution of 
640×480 and a speed of 50 fps (frames per second) or higher. 

 

Index Terms - Machine Vision; Object Recognition; FPGA; 
Embedded System; Industrial Robot 

 

I. INTRODUCTION 

Highly automated manufacturing is one of the most 
important goals in modern industry [1][2]. Many researchers 
have worked in this field and various results and methods have 
been presented [3][4]. Since most of current robots on 
production lines are simply repeating a series of preset 
motions, the majority of past work focuses on how a robot can 
automatically handle a job without a vision system.  

In order to enable industrial robots to perform more 
complex tasks, however, visual servoing systems are 
necessary. Unfortunately, as computer vision is a developing 
area far from mature, it is still a challenge to detect, locate and 
identify objects from images. In addition, most computer 
vision algorithms are very time consuming, making it even 
harder to develop a vision system that can provide real-time 
information for the control of a mechanical arm. 

Nevertheless, efforts are still being made. A very popular 

approach to detecting and recognizing objects is to establish 
correspondences between visual features in the input image 
and those in a database image [5-8]. Arguably as the most 
representative one of such methods, Scale Invariant Feature 
Transform (SIFT) [7] detects extreme values in the scale space 
to get potential interest points and generates a 128-
dimensional descriptor for each interest point. Histogram of 
Oriented Gradients (HOG) [8] is another successful algorithm 
of this type, which captures the local distributions of image 
gradients computed on a regular grid. However, the drastic 
appearance change of a shiny object makes it intractable to 
find the corresponding visual features between images of the 
same objects in different poses. What is more, visual feature 
matching only works well for objects containing rich locally 
textures which industrial machine parts rarely have (see Fig.1). 

Another conventional way to detect and classify objects is 
template matching, which uses the whole template as a global 
feature. In this type of approach, various object images are 
captured and stored in a database. An object can be detected 
from the input image by finding a correct match in the 
database. C Hong employed Dominant Orientation Templates 
and constructed a DOT similarity map to achieve a robust 
performance [9]. S Hinterstoisser designed a method to handle 
textureless objects under small image transformations [10]. 
Generally speaking, this type of approach is simple and 
straightforward, but it has two drawbacks: long computation 
time and sensitivity to local appearance changes caused by 
occlusions, reflections, shadowings or small changes in pose. 

In this paper, a hardware computation based machine 
vision system is designed and applied to the detection and 
classification of machine parts on an assembly line which 
requires real-time visual feedback to the robot arm. By using 



an FPGA (Field Programmable Gate Array), all the holes in 
the machine parts and all the edges in the image are detected 
in real time from each frame. On this basis, a rotationally 
adaptive edge-based template matching algorithm is 
implemented with a DSP (Digital Signal Processor) to identify 
the position and type of each machine part in the image. 
Thanks to the parallel hardware computation in the FPGA and 
the robustness of our edge information based algorithm, our 
system can detect and classify every machine part in the input 
image reliably at a high processing rate. 

The rest of the paper is organized as follows. Section II 
presents the hardware components of an industrial robot 
grasping system. Section III describes the algorithms 
implemented on the FPGA and the DSP, while Section IV 
explains how to optimize the method to keep a constant 
processing rate. In Section V, two experiments are carried out 
to test the feasibility and speed of the algorithm and the 
grasping system. Conclusions are given in Section VI. 

II. HARDWARE COMPONENTS OF THE SYSTEM 

Fig. 2 shows the overview of the system. In the following 
paragraphs, we introduce the hardware components of the 
system. 

A. ABB Industrial Robot 

The ABB 120 robot is a small sized multipurpose 
industrial robot which weighs 25 kg and can handle a payload 
of 3 kg (4 kg with vertical wrist) with a reach of 580 mm. Its 
accuracy or repeatability is 0.01 mm. In our experiments we 
use it for grasping the machine parts and transfer them to the 
right places according to their types. In order to get a large and 
safe working space, the ABB robot is hanged upside down. 

B. Intelligent Image Card 

The intelligent image acquisition and processing card (see 
Fig. 3) is the core of our machine vision system. The PCB 
(Printed Circuit Board) is designed by Dr. Wenhao He. The 
FPGA on the card is Altera Cyclone III EP3C40F484, while 
the DSP on the card is TI’s TMS320DM642. In addition, there 
are two 512K×16bits SRAMs (Static Random Access 
Memory) on the card used as data buffers. The total power 

consumption of the FPGA and the DSP is less than 3 W. 

The input image can either come from a digital camera 
through a gigabit Ethernet port or come from an analog 
camera through a PAL video input port.  

C. Transporter 

The transporter is placed under the camera and the robot. It 
is controlled by a microcontroller which is connected to a 
computer through a serial port. When the system begins to 
work, the objects (machine parts) are moved by the transporter 
to emulate the conveyor belt of an assembly line. 

Before doing the experiments, there is a need to obtain a 
number of parameters, including the camera’s intrinsic 
parameters, the transporter’s speed and the spatial relationship 
between the camera and the robot. 

III. BASIC APPROACH 

In this section, we describe our hardware oriented 
algorithms for machine part detection and classification. First, 
the offline algorithm for obtaining the edge-based templates of 
the machine parts is explained. After that, the online algorithm 
is described in details in which the FPGA undertakes the pre-
processing operations while the DSP locates each machine 
part in the image and classifies them using the templates. 

A. Obtaining Templates 

By invoking the FPGA to get an edge image of each 
machine part, the DSP obtains the templates in which the 
width of the edges is just one pixel, as shown in Fig.4. The 
two circles in each template image correspond to the two holes 
in the machine part.  

After storing a template image as well as the positions of 
the two circles’ center points, a polar coordinate system can be 
established in which the axis starts from the left circle’s center 
point and points to the right circle’s center point. Every edge 
pixel can be expressed in this polar coordinate system. 
However, we have found from experiments that the edge 
pixels far from the origin of this polar coordinate system have 
large errors when expressed in polar coordinates, which will 
have a negative impact on the following classification 
procedure. To address this problem, we divide the edge pixels 
into three groups based on the distances from the edge pixel to 

 Fig. 2 Overview of the system 

 
Fig. 3 The intelligent image board 



the two circles’ center points, as shown in Fig. 5. On this basis, 
we establish a polar coordinate for each of the three groups 
with the respective origins at the center of the left circle, the 
center of the right circle and the point in the middle. In this 
way, the radii of the pixels in each coordinate system are 
much smaller and the accuracy of the template is therefore 
boosted. 

B. Pre-processing the Image 

This step is realized in the FPGA with two parallel 
pipelines. The first pipeline detects edges from each frame, 
while the second one detects the holes in every machine part. 

In the first pipeline, the FPGA applies a 5×5 Gaussian 
filter to the gray image to remove random noise, and then 
computes the gradient at each pixel’s position. After that, local 
oriented maxima of the gradients are detected and those above 
a given threshold are selected as edge points. In fact, this is 
exactly the hardware implementation of the well-known 
Canny edge detector, and all the resulting edges are as thin as 
one pixel. In order to control the output, a register is 
implemented in the FPGA with its value modifiable by the 
DSP. According to the value of the register, the edge image 
can either be output to the SRAM directly or be fed into the 
next stage of the pipeline where a 3×3 morphological dilation 
is implemented. In fact, the thin edge images are used for 
obtaining the templates of the machine parts in the offline 
algorithm, while the thick edge images generated by the 3×3 
dilation module are used for locating and classifying the 
machine parts in the online algorithm. Fig.6 shows an example 
of the thick edge images. 

In the second pipeline, the original gray image is 
thresholded into a binary image in which a disk-shaped 
detector is applied with a scanning window. As shown in Fig. 
7, the disk-shaped detector is a kind of binary template which 
is intended for the detection of the holes in the machine parts. 
The criterion for detection is  

(pixel( ) template( )) _
row column

P P circle threshold        (1) 

where pixel(P) represents the binary pixel value at location P, 
and ( )E  is a function that returns 1 if E is true, 0 otherwise. 
The value of this function at each pixel position is summed up 
in the square scanning window. If the result is larger than a 
given threshold, a hole is detected and the FPGA treats the 
center pixel of the square as the center point of the hole. 

C. Merging Detection Results to Get Unique Center Points 

In fact, for each hole the FPGA can get positive detection 
results at several positions which are not far away from one 
another, for we set the circle_threshold in equation (1) to 90% 
of the total area of the square. So the next step is to merge the 
detection results to get a unique center point for each hole. 
This step is performed by the DSP. First, the detected 
positions are divided into several groups with the distance 
between any two members in a group smaller than 5 pixels. 
After that, the average position of the members within each 
group is calculated and is regarded as the final center point of 
each hole. 

D. Locating Objects 

One characteristic of our machine parts is that each of 
them has two holes with a standard distance. To locate an 
object (machine part), the correct pair of holes must be found. 
This step is also performed by the DSP. First, all the holes 

Fig. 4 Single pixel edge templates of four objects 

Fig. 5 Three groups of pixels in the template  
Fig. 7 The disk-shaped hole detector 

Fig. 6 A thick edge image 



detected by the FPGA are stored in a list. Then these holes are 
grouped into candidate pairs according to the standard 
distance. After that, each candidate pair is verified by 
checking the existence of the two parallel lines which is also a 
characteristic of our machine parts. The finally passed pairs of 
holes indicate the machine parts detected in the image. They 
are stored in another list and passed on to the next processing 
stage which classifies them according to the details in their 
shapes.  

E. Classifying 

The templates obtained with the offline algorithm (Section 
III-A) are used here for the classifying purpose. For each 
located object (machine part) in the image, the templates are 
used one by one to get the matching result. For a given 
template, the matching process is as follows. 

First, the correspondences between the two holes in the 
located object and the two holes in the template are 
established. Since the object may not be symmetrical, the two 
possible ways of corresponding should both be tried. 

On this basis, the correspondences between the edge pixels 
in the object and the edge pixels in the template are checked. 
As the pixels in each template are divided into three groups 
(Fig. 5), they are processed under the three respective polar 
coordinate systems during this process. Correspondingly, the 
pixels on the located object are also divided into three groups. 
For each group, the number of edge pixels that can find 
matches on the template is recorded. We represent them with 
S1, S2 and S3. Meanwhile, for each pixel group on the object, 
the number of edge pixels that cannot find matches on the 
template is also recorded. We represent them with F1, F2, and 
F3. Obviously, a high probability of matching between the 
object and the template requires that S1, S2 and S3 are large 
while F1, F2, and F3 are small. Therefore, we can define the 
criteria with the following inequation groups 
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where S10, S20, S30, F10, F20 and F30 are six thresholds obtained 
with experiments. Inequation groups (2)(3)(4) are conditions 
corresponding to the three pixel groups on the object. As long 
as two of the inequation groups are satisfied, the template is 
considered as a candidate. This can ensure the detection rate 
even under bad illumination conditions while maintaining a 
high accuracy. In most cases, there is only one candidate 
template. However, if there are more than one candidate 
templates by chance, the one with the highest rate of matched 
pixels is selected as the matching result. This criterion is 

 max ,  1, 2,3i

i i

S
i

S F
     

          (5) 

 

IV. FASTER METHOD 

Actually, detecting and classifying all the objects in every 
frame is a waste of computation. As the objects move 
relatively slowly compared with the frame rate of the camera, 
there is no need to reclassify the objects that have already 
been recognized in last frame, and even the detection process 
can be simplified based on the results of last frame. Therefore, 
we optimize the method to further accelerate the processing 
speed. 

In the new algorithm, a list containing the information of 
the objects in the image is maintained. Each entry in the list 
records the information of one object, including the object’s 
type, the positions of the center points of the two holes, and a 
flag variable indicating if the positions of the holes have been 
updated in this frame. An example of such a list is shown in 
Table I. 

The FPGA keeps detecting the candidate positions of 
every hole in each frame, and the DSP merges the candidate 
positions to get an unambiguous center point for each hole, as 
described in Section III-B and C. After that, the positions of 
the holes are compared with those in the list. Since the speed 
of our camera is 50 fps or higher, the time between two 
sequential frames is no more than 20 ms. In such a short time, 
the objects (machine parts) only move slightly on the 
conveyor belt of the assembly line. Therefore, most of the 
holes in the image can be matched to a corresponding one in 
the last frame with only a slight displacement. On this basis, 
the positions of the holes in every entry of the list are updated 
in each frame. If a hole in the image cannot find a match in the 
list, it is a new one in the image, and therefore we create a new 
entry in the list. On the other hand, if a hole in a certain entry 
of the list is not matched with a hole in the image, it means 
that the object has moved out of the image, and therefore we 
delete the entry from the list. 

Using this optimized method, all the machine parts can be 
located and tracked with minimum computation. On this basis, 
the DSP can focus on one object per frame, comparing it with 
every template to determine its type. For example, if the image 
contains 10 objects, all of their types can be determined after 
10 frames, while the image card can keep a constant 
processing rate as high as 77 frames per second. 
 

TABLE I 
AN EXAMPLE OF THE LIST CONTAINING THE OBJECTS’ INFORMATION 
No. Object 

class 
Circle center 
point-1 

Circle center 
point-2 

Refreshed 
flag 

…     
8 2 (86,124) (292,125) false 
9 5 (71,253) (277,256) false 
10 1 (142,77) (144,283) true 
11 3 (67,140) (272,140) true 
…     

 



V. EXPERIMENTS AND RESULTS 

In order to test the performance of our method and system, 
two experiments are conducted. The first experiment aims to 
test the feasibility and speed of the machine vision system in 
which the image card needs to detect and classify objects in 
different situations. The second experiment is designed for the 
industrial robot to grasp the objects according to the 
information provided by the embedded image card. 

A. Feasibility and Speed of the Machine Vision System 

Fig. 8 shows the detection and classification results. The 
objects appear with different rotation angles at various 
locations in the image. During the experiment, only a tiny 
number of recognitions have failed. The failed instances 
usually happen when the object is near the image boundary. 
This is because the boundary effect will result in a 
deformation in the shape of the object and cause a false 
template matching score. To resolve this problem, applying 
constraints on the object’s location in the image is a good idea. 

Table II shows the processing rate before and after 
optimizing the method. “Number of objects” in the table refers 
to how many objects appear in the image at the same time. 
The results demonstrate that after optimizing, the processing 
rate keeps at a constant value. The more objects appear in the 
image, the stronger the optimizing effect is. When no new 
object appears in the image, the processing time decreases to 
only 5 ms. In this case, the image card only needs to update 
the postitions of the holes which have moved slightly in each 
frame. 

B. Grasping Experiment 

The grasping system is shown in Fig. 9. The hardware 
components have been introduced in Section II. The computer 
controls the image card, the transporter and the robot, so there 
are three threads running in the control system. The first 
thread communicates with the image card to receive the 
recognition results continuously and store the information of 
all the objects in the computer. The second thread controls the 
transporter to reciprocate all the time, while the last thread 
reads the objects’ information, transforms the objects’ 
positions from the camera coordinate system to the robot 
coordinate system and controls the robot to grasp the objects 
one by one. 

 
TABLE II 

THE DETECTING RATE OF THE METHOD 
Number of 
objects 

Before optimizing After  optimizing 
Time 
(ms) 

Rate 
(f/s) 

Time 
(ms) 

Rate 
(f/s) 

1 13 77 14 77 
2 28 36 14 77 
3 41 24 14 77 
4 65 15 14 77 

VI. CONCLUSIONS 

In this paper, we have presented a machine vision system 
which can detect and classify a class of machine parts in real 
time and provide the information for an industrial robot to 
grasp them. An FPGA plays a key role in accelerating the 
vision algorithm by detecting the holes in the machine parts as 
well as generating an edge image from each frame. A DSP, 
which is a kind of microprocessor, receives the intermediate 
results from the FPGA and implements a rotationally invariant 
template matching algorithm to get the final recognition 
results. To further accelerate the vision system, the algorithm 
in the DSP is optimized to reuse the detection and 
classification results in the next frame. Experiments have 
demonstrated the effectiveness of our system and methods. 

Fig. 8 Detection and classification of machine parts. The 
red circles indicate the locations of the holes in the machine 
parts while the blue lines are the verified parallel lines 
mentioned in Section III-D. The number in the middle of each 
object represents its type. (Top: four types of machine parts 
are detected separately; Bottom: detecting the four objects 
simultaneously) 



Our future work will aim at improving the method to 
handle more complex cases, such as how to deal with the 
deformed edges when the objects rotate in a 3D space.  
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Fig. 9 The grasping system 


