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ABSTRACT: In this paper we propose an image super-resolution 
algorithm using The Morphological Component Analysis(MCA) 
and wavelet-domain Hidden Markov Tree(HMT) model.The 
MCA is a useful method for signal decomposing, using proper 
basis, we could separate features contained in a signal when 
these features present different morphological aspects. Wavelet-
domain HMT models the dependencies of multiscale wavelet 
coefficients through the state probabilities of wavelet coefficients. 
In this paper, we first decompose an image into texture and 
piecewise smooth (cartoon) parts, then enlarge the cartoon part 
with interpolation, because wavelet-domain HMT accurately 
characterizes the statistics of real-world images, we specify it as 
the prior distribution and then formulate the image super-
resolution problem as a constrained optimization problem to 
acquire the enlarged texture part, finally we get a fine result. 

KEYWORDS: Image Super-resolution; image Decompose; MCA; 
Wavelet-Domain HMT 

I.  INTRODUCTION 
The problem of obtaining a super-resolution image from 

one or several low-resolution images has been studied by 
many researchers in recent years. Generally speaking, a low-
resolution image can be considered as the degraded version 
of the high-resolution image and the degradations are 
characterized by blurring and down-sampling. We know that 
when blurring or down-sampling a signal, its details, or high-
frequency component will be cut down, so essentially the 
task of image super-resolution is to extract the “lost” high-
frequency component of the high-resolution image from one 
or several low-resolution images. In this paper, we will 
introduce a new image super-resolution algorithm; we use 
the MCA to decompose a low-resolution image to its texture 
and piecewise smooth parts, then use the Wavelet-Domain 
HMT model to estimate the texture part of high-resolution 
image. And our experiments proved that this is an effective 
method. 

II. THE MORPHOLOGICAL COMPONENT ANALYSIS 
The task of decomposing signals into their building 

atoms [1 - 3] is of great interest for many applications. In such 
problems a typical assumption is made that the given signal 
is a linear mixture of several source signals of more coherent 
origin. The Morphological Component Analysis (MCA) [4] is 
an effective method which allows us to separate features 
contained in an image when these features present different 
morphological aspects. In this paper, we will decompose an 
image to texture and piece-wise-smooth (cartoon) parts using 
the MCA. 

A. Model Assumption of MCA 
Assume that a signal S is a linear combination of its 

different morphological parts: 
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where each sk represents a different part of the signal to be 
decomposed. 
      In The Morphological Component Analysis, there are 
some assumptions: 

• For every  sk, there will be a “dictionary”  Φk 
When solving 
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It leads to a very sparse solution: most coefficients 
are small, and the relatively few large coefficients 
capture most of the information. 

• For another component Sl (l ≠ k), when using Φk to 
solve the above problem, it leads to a very non-
sparse solution. 

The assumptions suggested that the dictionary Φk is 
distinguishing between the different types of signals to be 
separated. Dictionaries Φk have a fast transformation Tk      
(αk = Tksk ) and reconstruction Rk (sk = Rkαk).  

B. The MCA concept 
The MCA needs to solve an optimization task: 
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Based on the assumptions, it will get a sparse solution, 
where each sparse coefficient αk

opt represents different part of 
the signal. Account of the problem formulated in (3) is non-
convex and hard to solve, the MCA algorithm replaces the 0-
norm with 1-norm, and it will be a solvable optimization 
problem (Linear Programming): 
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Relaxing the constraint in (4), an approximate form will be: 
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Replace the coefficients αk
opt with sk : 
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Add constraints on each individual signal: 

 ∑∑∑
===

+−+=
K

k
kkk

K

k
k

K

k
kkss

opt
k

opt ssSsTArgss
k 1

2

211
1}{1 )(min}{

1

ςγλ ，    (7) 

where �k implements constraints on component sk. By 
solving problem (7), we can get every different component 
sk of the signal S. 

III. WAVELET-DOMAIN HMT 
It is well known that wavelet coefficients are statistically 

dependent due to two properties of wavelet transform [5]: 
• Clustering: If a wavelet coefficient is large/small, the 

adjacent coefficients are likely to be large/small. 
• Persistence: Large/small coefficients tend to 

propagate across the scales. 
The wavelet domain hidden markov tree model (HMT) 

proposed by Crouse et al [5] captures this statistical 
dependence. Each coefficient is modeled as a mixture with a 
state variable. The state of a coefficient is only determined 
by its parent state. Thus coefficients across scale yield 
markov chain model. It also assumes that each coefficient in 
the same scale is Gaussian distributed when conditioned on 
its state models the marginal distribution of each coefficient 
is a Gaussian mixture.  

     In this paper we will improve the HMT model to 
reconstruct the texture part of the High- resolution image. 

A. The  Discrete Wavelet Transform 
The wavelet transform is an atomic decomposition that 

represents a one-dimensional (1-D) signal z(t) in terms of 
shifted and dilated versions of a prototype bandpass wavelet 
function �(t) , and shifted versions of a lowpass scaling 
function φ(t)[6, 7]. For special choices of the wavelet and 
scaling functions, the atoms: 
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form an orthonormal basis, and we have the signal 
representation: 
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Where ∫ ∗= dtttzw kjkj )()( ,, ϕ , ∫ ∗= dtttzu kjk )()( ,0
φ . 

In this representation, j indexes the scale or resolution of 
analysis—smaller j corresponds to higher resolution analysis. 
j0 indicates the coarsest scale or lowest resolution of analysis. 
k indexes the spatial location of analysis. For a wavelet φ (t) 
centered at time zero and frequency f0, the wavelet 
coefficient wj, k  measures the signal content around time 2jk 
and frequency 2-jf0. The scaling coefficient measures the 
local mean around time2j

0k. 
For 2-D signal f (x, y), the wavelet transform is: 

∑∑∑∑
−∞=

+=
B

j

j nm

B
nmj

B
nmj

nm

LL
nmjnm yxwyxuyxf

0

0
,

,,,,
,

,,, ),(),(),( ϕφ ,   (10) 

where 
dxdyyxyxfw

dxdyyxyxfu

B
nmj

B
nmj

LL
nmjnm

),(),(

),(),(

,,,,

,,, 0

∗

∗

∫∫
∫∫
=

=

ϕ

φ
. 

{ ZnmjB
nmj

LL
j nm

∈,,,, ,,,,0
ϕφ } is the basis of 2-D wavelet 

transform, { }HHHLLHBZj ,,,0 ∈∈ .LL, LH, HL, 
HH correspond to the approximation coefficients and details 
coefficients (horizontal, vertical, and diagonal, respectively). 

The 2-D wavelet transform leads to a natural quad-tree 
organization of the wavelet coefficients in each sub band 
(Fig. 1): 

 
Figure 1.  The quad-tree organization of the wavelet coefficients 

B. Wavelet-Domain HMT 
The HMT model associates a hidden state (white circle) 

with each wavelet coefficient (black circle) (Fig. 2):  
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Figure 2.  The Wavelet-Domain HMT 

The dependencies between the wavelet coefficients are 
modeled as dependencies between the hidden states: 

• The HMT models the marginal distribution of each 
real DWT coefficient as a Gaussian mixture. To each 
coefficient wi, we associate a discrete hidden state Si   
that takes on values m with probability mass 
function ps,i (m) (pmf). Conditioned on Si  = m, wi is 
Gaussian with mean μi,m and variance σi,m, Thus, its 
overall marginal probability density function(pdf) is 
given by: 
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• To match the Persistence property of large and small 
coefficients, the HMT applies a Markov chain 
dependency structure to the hidden states across 
scale. The state transition probabilities between the 
connected states model the persistence of large/small 
coefficient magnitudes across scale. Using ρ(i) to 
denote the index of the parent of node i, the 
parameter 

( )rSmp iSS
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gives the probability that a child coefficient wi has 
hidden state m when its parent  ρ(i)  has state γ. 

Group these parameters into a vector, the HMT model 
can be describe as: 
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The HMT can be trained to capture the wavelet-domain 
features of the image of interest using the iterative 

expectation-maximization (EM) algorithm [5]. For a given set 
of training data, the trained model )( θiW wf

i
 approximates 

the joint probability density function (pdf) of the wavelet 
coefficients. 

IV. AGROITHM DESCRIPTION 
We first decompose an image to texture and piece-wise-

smooth (cartoon) parts using the MCA. In this step, we use 
the DWT for the texture - denoted D,  the curvelet transform 
for the cartoon part, denote C. Returning to the separation 
process as posed earlier, we have two unknowns: sD and sC. 
The optimization problem to be solved is: 
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where sD is the texture part and sC is the piecewise smooth 
part.  

We enlarged the cartoon part of the low-resolution image 
with cubic spline interpolation for the cartoon part of the 
High-resolution image. 

For the texture part, we found that although it just a 
component of the image, not the wavelet coefficients, but it 
also has a Generalize Gaussian Distribution and has 
Persistence property cross scales, so we used the HMT 
model to estimate the texture part of the High- resolution 
image. 

A. Problem formulation 
We first formulate the high-to-low image formation 

process: 

                        η+= DCSuLo ,                     (15) 

where Su is the High- resolution image, Lo is the Low- 
resolution image, η is the noise in the low-resolution image, 
D corresponds to the Down-sample process and C 
corresponds to the blurring process. 

We take a Bayesian approach to this problem: 

          )Pr(maxarg LoSuSu Su=
∧

.                 (16) 

The posterior probability: 

)Pr(
)Pr()Pr(

)|Pr(
Lo
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where Pr(Lo) is the probability of we get the Low-
resolution image, it is irrelevant to Su, so we can simplify 
(16): 

    )Pr()Pr(maxarg SuSuLoSu Su=
∧

. 

Pr (Su|Lo) is the conditional probability, determined by the 
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distribution of the noise η. Assume that η is an independent 
and identically distributed white noise, and then the 
conditional probability will be 

       2
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M
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Based on the Wavelet-Domain HMT, the prior model of 
the wavelet coefficients can be formulated as: 
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In this paper, we need estimate the texture part of the High-
resolution image, so replace WSu with SuT: 
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From equation (16), (17) and (19), we can get: 
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As earlier mentioned in this paper, we already have an 
estimation of the cartoon part of the High-resolution image. 
So we can replace Su with SuT + SuD in (20), where SuD is the 
cartoon part,  SuT  is the texture part. Then we get: 
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or a simple mode: 
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where )( ,
,

mSSuf iiTSSu iT

=  is a Gaussian function, it makes the 
optimization problem too complicated to be solved. In 
Zhao`s estimate algorithm [8], they considered a special case, 
if ps,i(m) = 1 , then: 
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If m = 1 denote the coefficient is “small”, then σ2
i,1 << σ2

i,2, 
so: 
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 acts as a penalty function, 

if ps,i(1) = 1 , the coefficient is “suppressed”; ps,i(2) = 1 , the 
coefficient is “encouraged”. So it can be simplified to: 
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Then equation (21) will be: 
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Solve this optimization problem, we can get the estimation 
of the texture part, then finally the estimated high-resolution 
image is: 

∧
Su = 

∧

TSu +
∧

SSu . 

B. Solving problem 
Note that, because SuT is coupled with ps,i(m), so the 

optimization problem needs alternate: After getting an SuT, 
an Upward-Downward algorithm is needed to update ps,i(m), 
the iteration ended when ps,i(m) changes very slightly.  

We solve this problem as follows: 
Step 1: decompose the low- resolution image Lo into its 

texture part LoT  and cartoon part LoS, enlarge 
LoS  with cubic spline interpolation as SuS; 

Step 2: set counter k = 0, initialize the posterior state 
probabilities pk

s,i(1) = 1, 1 ≤ i  ≤ N; 
Step 3:  solve problem (24) and obtain the solution Suk

T  
using conjugate-gradient method; 

Step 4:  compute pk+1
s,i(m) = p(si = m| Suk

T, θ)with 
Upward-Downward algorithm; 

Step 5:  if ε<−∑
=

+
N

i

k
s

k
s ii

pp
1

1 , go to step 6, else set   

k = k + 1and go to step 3; 
Step 6:  get the high-resolution image Su = k

TSu + SSu . 

V. EXPERIMENTS 
In our experiments, we used three standard images: Lena, 

Bridge and Baboon with 512×512 pixels. 
We used the fuzzy kernel  
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to blur the high-resolution image (512×512 pixels), and then 
proceeded a down-sample step to get a low- resolution image 
(256×256 pixels). The HMT model trained from the texture 
parts of the low- resolution image in each scales with Xiao`s 
estimate algorithm [9]. And we used SSIM [10] to assess the 
quality of estimated high-resolution image. 

The experimental results are shown in the following 
figures: 
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A. Lena 

 
Figure 3.  High-resolution image with cubic spline interpolation (512x512 

pixels). 

 

Figure 4.  High-resolution image with cubic spline interpolation (512x512 
pixels). 

B. Bridge 

 
Figure 5.   High-resolution image with cubic spline interpolation (512x512 

pixels). 

 

Figure 6.  High-resolution image with the MCA-HMT algorithm  
(512x512 pixels). 

268268



C. Baboon 

 
Figure 7.  High-resolution image with cubic spline interpolation (512x512 

pixels). 

 
Figure 8.  High-resolution image with the MCA-HMT algorithm  

(512x512 pixels). 

 

 

 

TABLE I.  EXPERIMENTAL RESULTS (SSIM) 

Image Lena Bridge Baboon 
the MCA-HMT algorithm 0.9824 0.9598 0.9269 
cubic spline interpolation 0.9637 0.9372 0.9200 

We found that, with the increase of the textures in an 
image, the SSIM of the estimated high-resolution image 
appears a distinct decrease: i.e. the SSIM of Lena is 0.9824, 
and the SSIM of Baboon is 0.9269. However, although 
Baboon has a low SSIM, its visual effect is fine. 

VI. CONCLUSIONS 
In this paper, we decomposed an image into two parts 

and used different method for the estimation of each part, 
the experiment shows that this algorithm is very effective; 
maybe we could decompose an image into more parts, and 
by using proper estimate method we could acquire an 
exciting result. This will be confirmed in our future works. 
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