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Abstract 

In this paper, a new method for solving the perspective-n-point (PnP) problem is developed. 

With an auxiliary point, the linear method for the special case of four coplanar points is extended 

to find the coarse solutions for the general P3P problem. A recursive least square algorithm with 

a forgetting factor is introduced to find all the accurate solutions for the P3P problem. Then the 

algorithm is extended to the general PnP problem. The solution stability issues are investigated 

for the P3P, P4P and P5P problem respectively. Furthermore, a pattern is designed to ensure 

unique solution for the PnP problem. Experiments are performed to verify the effectiveness of the 

proposed method.  

Keywords: Perspective-n-point problem, pattern design, three-dimensional sensing, pose estimat- 

ion, visual positioning, recursive least square, solution distribution, solution stability. 

1 Introduction 

The Perspective-n-Point (PnP) problem was presented by Fischler and Bolles [1]. They 

defined it as to find the lengths of the line segments joining the center of perspective (CP) to each 
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of the control points according to the relative positions of n control points and the angle to every 

pair of control points from the perspective point. This problem is also known as position and 

pose estimation with given points, which is to determine the position and orientation of the 

camera with respect to a scene object from n correspondent points [2].  

As pointed out by Hu and Wu [3], there are some differences between the two definitions. 

The definition in [2] is stricter than that in [1]. If the transformation matrix is determined, the 

lengths of the line segments joining CP to each of the control points can also be obtained. 

Therefore, the definition in [2] is more popular for visual control. In this paper, we will adopt this 

definition to deal with the PnP problem. 

The PnP problem is very important to many applications [4] such as automated cartography, 

robotics and automation, computer vision, computer animation [5], and photogrammetry [6]. It 

has been attracting researchers’ attentions in the computer vision community. As fewer points 

provide more flexible in applications, many researchers have put their efforts into resolving the 

P4P and P3P problem.  

In [2] an analytic solution method for the P4P problem was provided, which converted the 

problem into solving a biquadratic polynomial equation with one unknown variable. Although 

the equation can be solved with iterative method, the efficiency is low. Holt and Netravali [7] 

proposed a method to find the solution of transformation matrix for the P4P problem, in which 

three views were employed. However, the problem of multiple solutions was not addressed. 

Abidi and Chandra [8] presented an algorithm for pose estimation based on six lines and four 

points of a tetrahedral object. Quan and Lan [9] developed a linear method to solve the P4P and 

P5P problem. Hu and Wu [3] proved that there are 4 solutions at most for the P4P problem based 

on Horaud’s definition, and 5 solutions at most based on the definition in [1]. Therefore, the 
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method in [9] is not complete because it can only provide one solution.  

The major methods in direct solutions to the P3P problem were reviewed in [10]. All 

methods involved high order nonlinear equations, which might result in unstable solutions. The 

authors analyzed the stability of previous methods and presented an analytical method to produce 

stable solutions. Wolfe and Mathis [11] discussed the multiple-solution issue for the P3P 

problem, and gave a geometric explanation of the camera triangle configurations that cause one, 

two, three, or four solutions. Alter [12] presented an approach to compute 3-D pose from 3 points 

using weak perspective method, which is based on the distances between the matched model and 

image points. DeMenthon and Davis [13] investigated the approximate solutions of the P3P 

problem. Comparison with the weak perspective method, para-perspective and ortho-perspective 

approximations produce lower errors for off-center image features. Juang [14] provided a method 

to deal with the P3P problem using biquadratic polynomial equation without sinusoidal function, 

i.e. no more use of the cosines law in order to improve computing accuracy. Moriya and Takeda 

[15] reported an application example of P3P algorithm used in an active visual system to estimate 

the relative rotation of cameras. In the system, there were two cameras whose translation was 

fixed and known. Two views with known translation were available. This kind of configuration 

simplified the P3P problem. However, it is just a special case for the P3P problem. Gao and Chen 

[16] decomposed the equation system for the P3P problem into triangle sets and developed 

geometric criteria for the solution classification and the number of solutions. They also gave the 

criteria for the P3P problem to have one, two, three, and four solutions based on algebraic 

approach that converted the P3P problem into a nonlinear equation and two linear inequalities. 

Nister [17] took the P3P problem as finding the intersections between a ruled quartic surface and 

a circle, and derived an eighth order polynomial equation whose roots correspond to the 
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solutions. 

Up to now, almost all of the methods for finding the solutions of the P3P problem involve 

solving high order nonlinear equations. There is no effective algorithm that can be extended to all 

PnP problem such as n=3, 4, 5. Another problem is that the existence of multiple solutions in 

visual positioning based on PnP has limited the applications of most of the solution methods. 

This work attempts to develop a general linear method for finding all the solutions for the 

PnP problem. We design a pattern to ensure the uniqueness of the solution for the PnP problem. 

The rest of the paper is arranged as follows. Section 2 describes the frame assignments of the 

visual system and the camera model. In Section 3, the linear method to solve the coplanar P4P 

problem is discussed. A new method to solve the P3P problem is developed in Section 4. With an 

auxiliary point, the linear method for the special case of four coplanar points is extended to find 

the coarse solutions for the general P3P problem. Then a recursive least square algorithm with a 

forgetting factor is introduced to find all the accurate solutions for the general P3P problem. The 

solution distributions are also investigated. The algorithm is extended to the general PnP problem 

in Section 5. The solution stability for the P3P, P4P and P5P problem are studied. In Section 6, a 

pattern to ensure a unique solution for the PnP problem is designed. The experiments are 

presented in Section 7 to verify the effectiveness of the proposed method. Finally, the paper is 

concluded in Section 8. 

2 System model 

2.1 Coordinates frame assignments 

Assume that there are three points whose positions are known in the world frame. The 

coordinates of a point Pi are denoted as Pi=[xwi, ywi, zwi] in the world frame. The point, whose 
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horizontal coordinate on the image captured by the camera is smallest, is chosen as the origin of 

the reference frame. The vector from the origin to the point with the largest horizontal coordinate 

on the image is assigned to X-axis direction of the reference frame, i.e. the Xr axis. From the 

remaining point to the vector, a line perpendicular to the vector can be drawn, with an 

intersection point between this line and the vector. The direction from the intersection point to the 

remaining point is assigned to the Yr axis of the reference frame. The Zr axis is determined with 

the right hand rule according to the Xr and Yr axes. Without losing generality, we assume that the 

origin of the reference frame is point P1, and Xr is the direction from point P1 to P2, as shown in 

Fig.1. In addition, the camera frame is assigned as follows. Its origin is assumed to be at the 

optical centre of the camera. Its Z-axis, i.e. Zr, is from the camera to the scene along its optical 

axis. Its X-axis is selected as the horizontal direction of its imaging plane from left to right, and 

Y-axis as the vertical direction of its imaging plane from top to bottom. 
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Fig.1 The world frame and the camera frame 

 

 

 

 

 

 

 

2.2 The camera model 

The pinhole model is adopted to describe the camera, assuming negligible lens distortion. 

The four parameters intrinsic model of a camera can be given as 
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where [u, v] are the coordinates of a point in an image, [u0, v0] denote the image coordinates of 

the camera’s principal point, [xc, yc, zc] are the coordinates of a point in the camera frame, Min is 

the intrinsic parameter matrix, and [kx, ky] are the magnification coefficients from the imaging 

plane coordinates to the image coordinates. 

Assume that the camera frame is denoted as C, and the world frame as W. The transformation 

from C to W is known as the extrinsic parameters for the camera. 
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where [xw, yw, zw] are the coordinates of a point in the world frame, and cMw is the extrinsic 

parameter matrix of the camera, i.e. the transformation from C to W. In cMw, 
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that of the Y-axis,  is that of the Z-axis for the frame W expressed in 

the frame C, and  is the position vector. 
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3 The linear method for four points on a plane 

Assume that there are four points P1 to P4 on the plane XrOrYr. The reference frame is shown 

in Fig.1. The coordinates of the points are denoted as Pri=[xri, yri, 0] in the reference frame, which 

can be calculated according to their positions in the world frame. 

From equation (1), the coordinates of a point in the camera frame satisfy the following 
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equation: 
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Applying Pri to equation (2), then 
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Applying equation (4) to equation (3), we have 
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where 
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For n known points, we have n groups of equation set (5), i.e. 2n equations. These equations 

can be rewritten as 

02211 =+ HAHA                                (7) 

where A1 is a 2n×3 matrix, A2 is a 2n×6 matrix, 
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H1 is just the vector cnr and is a unit vector. With the constraint 11 =H , the solutions of H1 
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and H2 can be obtained with linear method [18]. Then the extrinsic parameters matrix cMr, i.e. the 

transformation from the camera to reference frame, is obtained, in which the third column can be 

given by the cross product of the first and second column. 

For four known points on a plane, A1 is an 8×3 matrix, and A2 is an 8×6 matrix. The solutions 

of H1 and H2 can be uniquely determined. More details about this can be found in the Appendix. 

A sufficient condition for the linear solution method of four points on a plane is given as 

Theorem 1. 

Theorem 1: For four coplanar points, iff 

(1) their positions are known in the world frame,  

(2) and any three points among them are non-collinear, 

then the distances from each point to the camera perspective center can be computed using a 

linear method with one view of a camera with known intrinsic parameters. 

In addition, the extrinsic parameters of the camera in the world frame can be calculated via 

w
r

r
c

w
c MMM =                                  (8) 

where rMw is the transformation from the world to reference frame, i.e. the position and pose of 

the world frame expressed in the reference frame; cMr is the transformation from the camera to 

reference frame. 

4 The recursive linear method for the P3P problem 

4.1 The recursive linear method 

As we know, it is not sufficient to use three known points to solve the extrinsic parameters 

from equation (7) with a linear method. Here, an auxiliary point with the average positions of the 

three points is introduced as the fourth known point. Because it is an invisible point, its image 
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coordinates can not be directly found in the image. The average image coordinates of the three 

points are assigned to it instead. The four points satisfy the conditions of Theorem 1. Therefore, 

the extrinsic parameters matrix cMr can be computed with the linear method in Section 3, which 

will be taken as initial values in following method. The results would introduce errors due to the 

inaccuracy of the image coordinates of the auxiliary point.  

Equation (9) is deduced from the inner product constraint in the rotation matrix of cMr. For 

any of the three known points, equation (9) should be satisfied. 
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According to equation (5) and (9), the parameters matrixes are defined as given in (10) to 

(12). 
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where k is a factor to reduce the errors in pose via enhancing the role of pose errors. 

The initial value PN for the Recursive Least Square (RLS) method is evaluated via formula 

(13). The four points including the three known points and the auxiliary point are employed to 

calculate PN. The extrinsic parameters computed with the four points are also introduced as the 

initial values in the calculation of PN through matrix ϕi. 
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The RLS method with a forgetting factor is introduced to calculate the accurate extrinsic 

parameters. This is described via the following 
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where ρ is the forgetting factor. 

With formulas (10), (12), (15), (16) and (17), Θ is recursively calculated according to the 

position and image coordinates of each of the three known points until convergence is reached. 

After the accurate Θ is obtained, the parameters are calculated in formula (18). 
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To improve the performance, a forgetting factor ρ is designed as a varying factor as given in 

(19) during the iterations. With the varying forgetting factor, the influence of the auxiliary point 

will quickly diminish, whereas the roles of the known points will remain. 
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Furthermore, an error function as given in (20) was designed to monitor the recursive process. 

Once the absolute value of Err is less than a given threshold, the recursive process will be 

stopped. 
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Here Err is the error index,  are the estimated image coordinates of point P[ ii vu ˆ,ˆ ] i according to 

the calculated extrinsic parameters of the camera and the position of the point, [ui, vi] are the 

measured image coordinates. 

Here some case studies were conducted. The iteration in all simulations converged at several 

steps. The error curve of a case study with the method above is given in Fig.2. It can be seen that 

the recursive process converged very fast. The recursive algorithm was tried 20 times. The 

process converged at the fourth recursion. This indicates that the algorithm promises good 

performance for on-line computation. The RLS can be converged in several steps because the 

initial values are close to the real solutions and the forgetting factor enhances the roles of known 

points. 

 

Fig.2 The error curve in RLS 
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4.2 Solution distribution 

To investigate the solution distribution for the P3P problem, we evaluated the auxiliary point 

with the image coordinates of different image points in an area. The image point with the average 

image coordinates of the three known points was taken as the center of the area. The size of the 

area was assigned as 10×10 pixels. The solutions were computed with the method described in 

Section 3. An error function as given in formula (20) was employed to assess the solutions. 

If the error Err is zero, then a solution is found. Therefore, the distribution of the error Err 

indicates the distribution of solutions. Since only the error distribution was investigated, the RLS 

method was not used in this simulation. With different relative relations between the world frame 

and the camera frame, there were one, two, three or four solutions found for the P3P problem. 

Fig.3 shows the error distribution for the P3P problem with two solutions. Fig.3 (a) and (b) show 

the same distribution, but in different scales. Fig.3 (a) is shown in the normal scale. Fig.3 (b) only 

shows the errors less than 10-3. It can be seen from Fig.3 that the error function is smooth and 

there are two global minimum points corresponding to the two solutions. In addition, the 

solutions are distributed in a small area. 

 

(a) Errors shown in normal (b) Errors less than 10-3

Fig.3 The solution error distribution with two solutions 
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4.3 The multiple-solution problem 

Previous researchers have proved that there exist multiple solutions for the PnP problem. For 

example, Wolfe and his collaborators [11] provided the geometric explanations of one, two, three, 

and four solutions for the P3P problem. In our method proposed above, it seems that only one 

solution is obtained. However, the initial values of PN and ΘN can be generated with different 

image offsets in a limited range, which are added to the image coordinates of the auxiliary point. 

For example, a circle or square can be drawn with 2 pixels radius at the auxiliary point as its 

center. The image offsets can then be selected from the edge of a circle or square. Since the error 

distribution is a smooth curved surface with several global minimum points corresponding to the 

solutions, all solutions can be found out using the RLS method in Section 4.1 with different 

initial values of PN and ΘN.  

Combining the camera’s intrinsic parameters with the positions of the three given points in 

the world frame, their coordinates in the camera frame were computed with the methods above 

while the image offsets were selected from the edge of a square. The techniques have been tested 

on random sets of points with image errors incorporated, the complete solutions can be found 

correctly. As a comparison, the same case was tested with the analytic method provided in [14]. 

The results turned out to be exactly the same as ours.  

4.4 The solution stability 

The solution stability of the method proposed was investigated for the P3P, P4P and P5P 

problem. In the simulations, the factor k was set to 10000 to enhance the role of pose errors in the 

process of the RLS. If the difference in the error Err between two iteration steps was less than 

10-6, then the recursive process was stopped. The number of recursive steps was limited to 40. 

The noise added to the image coordinates was random noise with a uniform distribution on the 
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interval (0.0, N) where N is the noise level. The position errors were relative errors calculated 

from the actual and measured distances between the optical center of the camera and the origin of 

the world frame. The orientation errors were given in degrees showing the angles between the 

actual and measured directions of the axes of the world frame. 

Fig.4 gives the position and orientation errors of the solutions for the P3P problem with our 

method with noise disturbance. Fig.4 (a) shows the relative position errors in percentage for 

different noise levels, and Fig.4 (b) gives the error curves of the axes’ direction angle of the 

world frame expressed in the camera frame. It can be seen that the methods exhibit good stability 

against noise disturbance. 

 

 

 

 

 

 

 

 Fig.4 The solution errors for the P3P problem with noise 

(a) Position errors with noise (b) Direction errors with noise 

5 The recursive linear method for the PnP problem 

Considering the general case that there are more than three known points, the method 

proposed in Section 4.1 can be extended to the Perspective-n-Point (PnP) problem. Any three 

points that are non-collinear can be selected to compute the rough extrinsic parameters. 

Combining an auxiliary point as described in Section 4.1, H1 and H2 can be solved from formula 

(7). Then the RLS method is given as follows. 
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where , , , , , k is a factor to 

reduce the errors in pose through enhancing the role of pose errors. 
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The accurate value of Θ can be calculated using the RLS method with a forgetting factor as 

described in Section 4.1 according to the position and image coordinates of each known point.  

Similar to the method of dealing with the multiple-solution for the P3P problem, the initial 

values of PN and ΘN can be generated with different image coordinates of the auxiliary point, by 

adding an image offset in a limited range to the average image coordinates of the three known 

points. Then all solutions can be computed. 

A set of known points and specified camera pose with two solutions were designed for case 

study to verify the proposed method. Although the results based on P3P, P4P and P5P were 

different in the simulations, they can be categorized into two groups corresponding to the two 

solutions. The results in each group were very close. This means that the general linear method 

proposed in this paper possesses the ability to find all solutions with high precision. 

The stability for PnP problem with the above methods is investigated. The results show that 

the errors caused by random noise for the P3P and P4P problem are almost at the same level, 

regardless whether the points are coplanar or not for the P4P problem. The errors for the P5P 

problem are apparently smaller than those for the P3P or P4P problem. It means that the 
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positioning results based on P5P are more robust than those for P3P or P4P with the same 

disturbance of random noise. In addition, the simulations show that the coplanar P4P has the best 

real-time performance among all the PnP problems.  

6 Pattern design for unique solution 

For n points, if the image coordinates of each point were the same in the two views of a 

camera, there would be two solutions in visual positioning based on PnP. To find the lower bound 

of the number of arbitrary points which can form unique solution, it is necessary to investigate 

the point distribution whose image coordinates in the two views are the same. 

 

 

 

 

 

 

 

 

 

(b) The image coordinates in two views (a) The space points owning same image 
coordinates in two views 

Fig.5 The space points owning same image coordinates in two views and their image coordinates

Assume that the two views and the setup of the camera are given. For the same image 

coordinate in the two views, the corresponding space point can be calculated with stereo vision. 

For each view, a view line is formed between the optical center of the camera and the imaging 

point. If the two view lines intersect, then the space point has the same image coordinates in the 

two views. Fig.5 (a) shows the space points with the same image coordinates in the two views. 

Fig.5 (b) gives their image coordinates in the two views. We can find from Fig.5 that there are 
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many points having the same image coordinates in the two views. In other words, no matter how 

many points there are, it is possible that there exist multiple solutions in the PnP problem.  

To ensure unique solution for the PnP problem, additional constraints for the known space 

points are necessary. Generally, co-planarity is a simple and effective constraint. In Fig.5 (a), a 

section with z in the range [-0.1, 0.1] mm was extracted, which contains six points belonging to 

three groups. The points are shown in Fig.6 (a), and their image coordinates in the two views are 

displayed in Fig.6 (b). From Fig.6, a conclusion can be drawn that three points are not sufficient 

to ensure unique solution for the PnP problem.  

 

 

 

 

 

 

 

 

(a) The points in a section (b) Their image coordinates 

Fig.6 The points in a section and their image coordinates in two views 

Now, let us check the image coordinates of the centroid of the triangle formed by the three 

points. The image coordinates are [239, 200] and [242, 198] in the views as given. Obviously, the 

image coordinates of the triangle centroid are different although the coordinates of the three 

known points in the two views are the same. These four points constitute the smallest set, which 

can ensure the unique solution for the PnP problem. Generally, four coplanar points also provide 

one solution in most cases. 

Based on the above analysis, a sufficient condition of the solution uniqueness for the PnP 
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problem is given as Theorem 2. Its proof can be drawn from the discussions above and those in 

the Appendix. 

Theorem 2: For four coplanar points, in which one is inside the triangle formed by other three, 

the solution for the PnP problem is unique. 

In a word, a four point pattern, in which one point is the centroid of the triangle formed by 

other three, is recommended for visual positioning based on PnP. This can provide unique 

solution, which is very important for robotics in model based visual control. Besides the four 

points in the pattern, more additional points are helpful for improving the positioning accuracy 

and robustness against noise. 

7 Positioning Experiment 

An experiment was designed to verify the effectiveness of the proposed pattern and methods. 

A calibrated camera was fixed on the end-effector of an industrial robot. The experiment scene is 

given in Fig.7 (a). The intrinsic parameters of the camera were given in formula (24). The pattern 

was given in Fig.7 (b). The coordinates of the four points in the triangle pattern were as shown in 

(25). The other points, such as ones in the rectangle, were used for verification of the proposed 

method. The image size was 768×576 in pixels. The unit of position was mm.  

 

Fig.7 Experiment with the proposed pattern 

(b) A frame of image captured (a) Experiment scene 

Camera 

Pattern 
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An image was captured and the imaging points of corners of the triangle and rectangle were 

extracted. The imaging points in the triangle pattern were employed to calculate the extrinsic 

parameters matrix cMr via the methods described in Section 3 and 5. With the change of the 

position and pose of the end-effector, new images of the pattern were captured and cMr were 

recalculated. Combining the new result of cMr with the first one, the positions of the corner 

points in the reference frame could be obtained with stereovision. Then the lengths of lines 

formed by any group of two points were calculated, which are listed in Table 1. It can be seen 

that the measured results are very close to the actual ones. This indicates that the positioning 

results, i.e. the extrinsic parameters matrix cMr, via the proposed methods with the pattern have 

satisfactory accuracy.  

 

Table 1 The visual measurement results based on the positioning method with the proposed pattern 

Number of lines formed by 
any group of two points 1 2 3 4 5 6 7 8 

133.1 126.2 66.8 91.6 133.4 96.7 133.2 96. 0 
Measured length (mm) 

136.5 128.1 69.4 92.2 137.8 95. 2 134.6 99.9 

Actual length (mm) 133.4 121.3 66.0 90.1 133.4 93.6 133.4 93.6 
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8 Conclusions 

In this paper, a general recursive linear method for solving the PnP problem is developed. A 

point with the average coordinates of three known points is taken as an auxiliary point. With the 

four coplanar points including the auxiliary one, the coarse solutions for the general P3P problem 

can be computed with a linear method. Taking them as the initial values, the recursive least 

square algorithm with a varying forgetting factor is introduced to find all the accurate solutions 

for the general P3P problem. In the process of recursion, only the known points are taken into 

account. The method is extended to solve the general PnP problem. The RLS can converge in 

several steps because the initial values are close to the real solutions and the forgetting factor 

enhances the roles of known points. 

Case studies were performed for the P3P, P4P and P5P problem. The case for the P3P 

problem was tested against an analytic method too and the results with both methods turned out 

to be exactly the same. As a distinct feature of our method, a cost function can be used to monitor 

the solution process. The multiple-solution problem is discussed for the PnP problem. The 

solution distribution is investigated, and the graphic explanations of the solution in image space 

are presented. The solution stability of the method is investigated for the P3P, P4P and P5P 

problem. A pattern to ensure unique solution for the PnP problem is proposed. This pattern 

consists of four coplanar points, in which one point is the centroid of the triangle formed by other 

three. The simulation results show that the positioning results based on P5P are more robust than 

those based on P3P or P4P in the presence of random noise disturbance. In addition, the 

experiments confirmed that the visual positioning based on PnP using the proposed pattern has a 

unique solution and it promises good real-time performance. The effectiveness of proposed 

method is also verified by the experiments. 
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Appendix 

cprz is non-zero. Dividing equation (5) by cprz, then 
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For four points known on a plane, equation (A1) is rewritten as 

DHC =′                                    (A2) 

where C is a 2n×8 matrix, D is a 2n×1 matrix, 
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Without loss of generality, assume that the coordinates of four known points are Pr1=[0, 0, 0], 

Pr2=[xr2, 0, 0], Pr3=[xr3, yr3, 0] and Pr4=[xr4, yr4, 0] in the reference frame. Submitting Pr1 to Pr4 to 

matrix C, then the determinant is computed as 
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The value of det(C) is the product of five terms such as xr2
2, yr3, yr4, (xr4yr3-xr3yr4) and 

[(x1c2-x1c4)(y1c3-y1c4)- (x1c3- x1c4)(y1c2-y1c4)]. xr2≠0 since Pr1 and Pr2 are different points. For the 

second term, yr3=0 means that Pr1, Pr2 and Pr3 are collinear. For the third term, yr4=0 means that 

Pr1, Pr2 and Pr4 are collinear. The fourth term (xr4yr3-xr3yr4)=0 indicates that Pr1, Pr3 and Pr4 are 

collinear. The fifth term [(x1c2-x1c4)(y1c3-y1c4)- (x1c3- x1c4)(y1c2-y1c4)]=0 only if Pr2, Pr3 and Pr4 are 

collinear. 

It can be found from (A3) that det(C) is nonzero if any three points are not linearly correlated. 

In this case, rank(C)=8. There are eight independent equations for eight linear independent 

variables in (7). Hence, H1 and H2 can be solved. 
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