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Learning Representative Deep Features
for Image Set Analysis

Zifeng Wu, Yongzhen Huang, Member, IEEE, and Liang Wang, Senior Member, IEEE

Abstract—This paper proposes to learn features from sets
of labeled raw images. With this method, the problem of
over-fitting can be effectively suppressed, so that deep CNNs can
be trained from scratch with a small number of training data,
i.e., 420 labeled albums with about 30 000 photos. This method
can effectively deal with sets of images, no matter if the sets
bear temporal structures. A typical approach to sequential image
analysis usually leverages motions between adjacent frames, while
the proposed method focuses on capturing the co-occurrences and
frequencies of features. Nevertheless, our method outperforms
previous best performers in terms of album classification, and
achieves comparable or even better performances in terms of
gait based human identification. These results demonstrate its
effectiveness and good adaptivity to different kinds of set data.

Index Terms—Album classification, deep learning, gait
recognition, image set.

I. INTRODUCTION

I NTHE context of computer vision, besides isolated still im-
ages, various kinds of image sets compose the rest body of

raw data. These include videos [1]–[3]1 and collections of im-
ages [4], [5]. They can have temporal structures, e.g., gait se-
quences [6] and albums [4], or not, e.g., faces in videos [7],
photos of objects from multiple viewpoints [5]. Compared to
a single image, a set of them can convey much richer and some-
times higher level semantic information. For example, a video
can better express the shape and appearance of an object than a
still image, since it can record that object in all possible view-
points [5]. And a collection of photos can tell the whole story
of some event, i.e., how it happened, developed and concluded
[4].

Manuscript received March 15, 2015; revised July 02, 2015; accepted Au-
gust 24, 2015. Date of publication September 10, 2015; date of current version
October 20, 2015. This work was supported in part by the National Basic Re-
search Program of China under Grant 2012CB316300, by the National Natural
Science Foundation of China under Grant 61135002 and Grant 61420106015,
by the CCF-Tencent Open Fund, and by the 360 OpenLab Program. The guest
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Guo-Jun Qi.
Z. Wu is with the Australian Centre for Visual Technologies, University of

Adelaide, Adelaide, SA 5005, Australia (e-mail: zifeng.wu@adelaide.edu.au).
Y. Huang and L. Wang are with the National Laboratory of Pattern Recogni-

tion, CAS Center for Excellence in Brain Science and Intelligence Technology,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: yzhuang@nlpr.ia.ac.cn; wangliang@nlpr.ia.ac.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2477681

1“The first international workshop on action recognition with a large number
of classes,” [Online]. Available: http://crcv.ucf.edu/ICCV13-Action-Workshop

Fig. 1. In order to analyze sets of images, we learn deep features which are
directly comparable and can fit into any off-the-shelf classifiers. The photos in
this figure are taken from the personal event classification (PEC) dataset [4].

To deal with general image set data, some approaches resort
to subspace learning to obtain set-level features [8], [9], others
adopt metric learning to evaluate the similarity between pairs of
image sets [10], and some approaches learn structured models
to explore hierarchical concepts [11]. To deal with temporal se-
quential data, many approaches resort to sophisticated models
such as hidden Markov models (HMMs) [12] and conditional
random fields (CRFs) [13].With these graph-basedmodels, they
can model the temporal structure and the transitions between
states in a sequence of images. The limitation is that most of the
above mentioned methods rely on handcrafted low-level fea-
tures, which might not be optimal for a specific task.
Recently, the convolutional neural network (CNN) [14] has

been widely accepted as the most powerful tool for feature
learning from still images [15]. The target of this paper is to
learn deep features from labeled sets of images. In this way,
we can replace the handcrafted features with these on-line
learned features, which can hopefully boost the performances
of approaches to image set analysis, just as they did for those
approaches to image analysis [15]. On the other hand, by
turning image sets into features with a fixed dimension, we
can analysis sets of images more conveniently, for example
as illustrated in Fig. 1, evaluating the similarity between two
albums directly with the Euclidean distance or classify them
with off-the-shelf tools such as support vector machines. In
the course to that goal, we will be faced with at least two
problems. Take the personal event classification (PEC) dataset
[4] for example. First, the number of contained photos can vary
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Fig. 2. Illustration of our approach to feature learning from image sets. The
example is actually a temporal sequence of photos about a wedding event taken
from the personal event classification (PEC) dataset [4]. See the text for details.
Better viewed in color.

across different albums, i.e., from about a dozen to more than
a hundred. Second, the number of training data is limited, i.e.,
420 albums composed of about 30,000 photos. To this end,
we in this paper propose to train deep CNNs from randomly
sampled subsets of images. In spite of the small number of
training data, the method can still effectively train very deep
models from scratch.
CNN composes the basic and kernel parts of all the cham-

pion algorithms in the ImageNet large scale visual recognition
challenge (ILSVRC)2 since 2012, when Krizhevsky et al. won
the first place with the AlexNet [15]. And last year, the ex-
tremely deep GoogLeNet [16] with 22 trainable layers has re-
duced the top-5 classification error rate down to 6.67% on this
challenging dataset with one thousand categories. Besides the
image classification tasks, features learned by CNNs can also
boost the performances of various methods for other image-
based tasks, e.g., CNN features of regions for object detection
[17] and hierarchical features for scene labeling [18]. How-
ever, in the context of image set data analysis, the development
of CNN-based feature learning seems less satisfactory. Some
methods just tune the features learned from still images with
single frames,1 which can not make full use of the characteris-
tics of set data. One recent CNN-based feature learning method
proposed by Simonyan and Zisserman [19] let one CNN learn
from raw frames, and another one learn from multiple optical
flow maps between frames. Score-level fusion was applied so
that the two can be trained separately. As a result, their method
combined the appearances and motions in videos. In this sense,
our method is very different from theirs, which ignores the mo-
tion information in image sets. By equally treating randomly
picked images from each set, our method focuses on the fre-
quencies and co-occurrences of discriminative features.
The first contribution of this paper is the proposed network

architecture as illustrated in Fig. 2, within which the features
of randomly picked images are accumulated (by summation) to
compute set-level representations. The network can be trained

2“ImageNet large scale visual recognition challenge 2012 (ILSVRC 2012),”
[Online]. Available: http://www.image-net.org/challenges/LSVRC/2012/

as a whole, which is different from those approaches applying
afterwards score-level fusion , [19]. Besides, as the second con-
tribution, we verify our method and its variations on two kinds
of image set data, i.e., the personal event classification (PEC)
dataset [4] and the CASIA-B gait database [6]. Particularly,
on the PEC dataset, our method outperforms previous methods
with a large margin.
The next section will uncover more details of the proposed

method. After that, we will apply it to album classification in
Section III and cross-view gait based human identification in
Section IV, before we conclude this paper in Section V.

II. METHOD

A. Overview
The main idea of our method is illustrated in Fig. 1. Given

image sets with category labels, the whole network, including
the convolutional neural network (CNN) for feature extraction
and the multi-layer perceptron (MLP) for set classification, can
be trained in an end-to-end manner with the back-propagation
algorithm. In each round of training or testing:
• randomly pick a given number of images from a set;
• feed each of them respectively into the same CNN which
extracts 4,096-dimensional frame-level features;

• third, accumulate these features to obtain a global repre-
sentation for the set;

• and finally, feed the representation into the MLP for
classification.

At this point, consider to be a number around a dozen,
e.g., eight. Also note that the extracted features can be of any
tractable dimension. We just occasionally use this setting for
both of the two tasks in this paper.
By averaging multiple randomly-picked image-level features

within the network, our method is supposed to be advantageous
in at least three aspects.
• Uses more reliable labels compared with the approaches
considering images separately. Take the PEC dataset [4]
for example, in an album, there might be a number of
photos which almost have nothing to do with the album’s
category label. Fitting models for these photos has no
merits and results in over-fitting. However, photos in
an album, in most cases, can compose a large part of the
whole story of a personal event.

• Works well for relatively small training dataset. In the PEC
dataset, there are about 75 photos in each album on av-
erage. Either using each photo separately or using each
album as a whole leads to a small set of training data.
However, if we pick photos from each album, there will
be a huge number of possible combinations of subsets. It
can help us with combating over-fitting, which is vital for
training deep CNNs.

• Ensures the validity of subsequent sum operations during
training. This is convenience since we can thus sum any
number of frame-level features to obtain the representation
of an image set, and directly use the MLP spontaneously
learned with the CNN to predict the category of that set.
In approaches considering images separately, image-level
features are also summed for each set to obtain a global
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representation [20]. However, the features are not inher-
ently learned for such purpose. Accordingly, they can
rely on subsequently trained shallow classifiers, usu-
ally SVMs, to select discriminative features from the
global representations.

B. Network Details

The whole network is composed of three parts, i.e., the fea-
ture extractor, the accumulator and the classifier, as illustrated
in Fig. 1. We will introduce them respectively below.
The feature extractor, i.e., the CNN in Fig. 1, is shared among

different images. Usually, it is composed of several stages. The
key component of these stages could be any one of the three,
i.e., a fully-connected layer, a locally-connected layer or a con-
volution layer. Usually, there should be a following non-linear
activation function. Besides, optional components can include
a spatial pooling layer and a normalization layer.
A convolution layer can be derived from a fully-connected

layer via two steps of simplifications in order to reduce the
number of parameters. In a fully-connected layer, as the name
tells, its nodes are fully connected to those of its previous layer.
The first simplification is to impose the spatial locality so that
the nodes are only connected to local regions of the previous
layer. This kind of layers are also known as the locally-con-
nected layers. The next simplification is to share the weights
across all spatial locations. Recently, a typical CNN usually is
composed of several convolution and fully-connected layers,
which works soundly in most cases. However, when a layer is
supposed to be spatially sensible and its input layer has a large
number of nodes, it had better be locally-connected for the sake
of less parameters. The classic non-linear activation functions
include the hyperbolic tangent function and the logistic
function . However, Krizhevsky et al. [15]
pointed out that networks with the rectified linear unit (ReLU)
[21] can be trained several times faster due
to ReLU’s non-saturating characteristic. ReLU might not be the
optimal choice for performance, but it is favorable for the sake
of efficiency. The spatial pooling amounts to down-sampling
by preserving only one activity for each local region of a fea-
ture map. The preserved value can either be the maximum or the
average activity within that region. Empirical results show that
max pooling performs better in most cases.
Given the above stated settings, the -th convolution stage’s

activities can be concisely formulated as

(1)

wherein denotes the convolution operation, is the input
given by the previous layer (so is the original input data),

contains a number of filters, and contains a number of
biases shared across different spatial locations. To compute each
feature map in , accordingly, there will be one filter in and
one entry in (the bias). Note that the ReLU is also included
in (1), as well as the spatial max pooling.
Considering that ReLU never saturates in , it is safe

to feed data into networks with no local contrast normalization,
as long as there are some examples producing positive activ-
ities [15]. However, Krizhevsky et al. [15] also reported that

their proposed cross-map local response normalization can aid
generalization. It implements a form of lateral inhibition, intro-
ducing competition among the big activities on adjacent feature
maps.
For an activity at certain spatial location on the -th feature

map, the cross-map normalized activity can be computed as
[15]

(2)

wherein , , and are all configurable parameters.
Once a network gets initialized, its feature maps will be ar-
ranged in certain order. Let there be feature maps, and
the neighbors of the th feature map will be

. Notably, only
the activities at the same spatial location participate in this kind
of normalization.
There are millions of parameters in a deep CNN. Usually, for

a specific task, the given data can not afford to train the model
due to over-fitting. Besides increasing the number of training
data or applying data augmentation, Krizhevsky et al. [15] re-
ported that the dropout technique [22] is often helpful for com-
bating over-fitting. It amounts to dropping nodes with a rate of
50% during training. Dropped nodes will neither contribute to
the forward nor the backward propagation. Accordingly, the ac-
tivities should be multiplied by 0.5 during testing. Dropout has
been explained as an efficient way for combining multiple net-
works [22], which reduces co-adaptations of nodes and forces
networks to learn more robust features. In this paper, we do
not apply dropout in the feature extractor. Instead, we apply
it to the accumulated set-level representations, as illustrated in
Fig. 3 and 5.
The feature extractor in our method are composed of the

above mentioned components. For example in Fig. 2, there
are four convolution stages and one fully-connected layer. It
extracts 4,096-dimensional image-level features from images,
which are then fed into the accumulator.
An accumulator adds up but not concatenates the activations.

This is the reason why it has a 4,096-dimensional output. Sup-
pose that the number of images picked out from each image set
is . The accumulator can be concisely formulated as

(3)

wherein denotes the element-wise sum operation, is the
output of the last layer in the feature extractor for the -th image
picked from a set, and is the global representation of that set.
Together with the CNN for feature extraction, we train a

multi-layer perceptron (MLP) for classification with the Lo-
gistic regression loss. During test, we sample groups of
images from each set, feed them into the network to compute

scores, and finally predict the label with the average score.
Or in formulate, we find

(4)
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wherein is the number of possible categories, and is the
score for the th category and the th sampled group of images.

C. Implementation Details

To combat over-fitting, one can apply data augmentation to
the training data, i.e., transforming the original examples in var-
ious ways, e.g., rescaling, rotating, flipping and cropping. For
the sake of efficiency, we only apply the last two kinds of trans-
forms in this paper. During training, we first randomly pick out
a number of images from each set, then we take out a random
crop from each of the images, and third, we also flip the crop
with a probability of 50%. During testing, we always take the
central crop and never flip it. For either case, we subtract the
mean of all the images in the training set from each of the sam-
pled crops.
Following the suggestion by Krizhevsky et al. [15], we set

the four configurable parameters in (2) as , ,
and .We train the networks using back-propagation

with the logistic regression loss, and update the weights with a
mini-batch size of 128. We initialize the weights of each layer
using a Gaussian distribution with a mean of zero and a standard
deviation of 0.01, and the biases of nodes in all layers with the
constant zero (if not specified). We start with a learning rate of
0.01, and reduce it to 0.001 when the accuracy on the evaluation
set stops improving. For all layers, the momentums for weights
and biases are 0.9, and the weight decay is 0.0005.
We following a simple strategy for boot-strapping in this

paper based on two considerations. On one hand, the random
sampling strategy results in a large number of possible com-
binations of images for each set. It is sometimes intractable
to cover all of them. On the other hand, although the number
of combinations is very large, many of them share notable
overlaps. A deep network can quickly fit a great part of the
combinations, but at the same time leaves a number of hard
samples. It will become more and more hard for the networks
to be fed with these samples, since they only compose a small
proportion of all the combinations. To this end, we keep the
wrongly classified training samples in a pool and sort them
according to their losses in descending order. Within each
mini-batch, we pick at most half of the samples from the pool.
This strategy is supposed to speed up the training process.

III. ALBUM CLASSIFICATION

Album classification amounts to predicting the category of a
group of photos. Or in formulation, suppose there is an album
and a set of possible labels , the cat-

egory of the album is to be predicted. To train models
in a supervised manner, a set of labeled albums are given as

.
To deal with photo collections, many approaches focused on

exploiting the collection structure that is often found in personal
and professional photo archives. To name a few, Cao et al. [23]
reduced the complexity of propagating labels between images
organized within collections, observing that image in the same
collection tend to depict similar scenes. They [24] further ex-
tended this idea into a hierarchical model which split a photo
collection into a sub-sequence of events, composed of images

Fig. 3. Details of the network for feature learning in terms of album
classification.

depicting similar scenes. Mattivi et al. [25] proposed to aggre-
gate the SVM scores of each photo in a collection, and use that
score for classification into eight social classes. As for videos,
Izadinia and Shah [26] exploited known sub-events as an in-
termediate representation of collections for event classification.
They discarded time information in favor of co-occurrence of
sub-events. Instead, Tang et al. [12] treated sub-events as unob-
served latent variables. They associated these sub-events with
explicit durations. Transitions from one sub-event to another
can only occur when the previous one has expired, which re-
quires sub-events and their boundaries to be fully observed. Due
to the sparsely sampled photos in albums, these boundaries are
often missing in the context of album classification. As a re-
sult, Bossard et al. [4] had to adapt that model. Inspired by
discretely observed Markov jump processes, they proposed a
Markov model where transition probabilities are functions of
the temporal gap between images as if it were measure by a
stopwatch.

A. Learning Features From Albums

A typical method for album classification often resorts to so-
phisticated models such as HMMs to exploit the transmissions
between underlying states [4]. However, since the method pro-
posed in this paper focuses on feature learning, we can directly
train networks for album classification. The details of the used
network is illustrated in Fig. 3. During training, we randomly
pick out a number of photos from each album, and feed them
into the network as a single sample. We randomly take out crops
in size from each of the photos. During testing, we
always take the central crop. We anticipate the network to learn
complex object and scene patterns. To this end, the network is
derived from the very deep AlexNet [15]. We remove the first
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TABLE I
IMPACT OF ON CLASSIFICATION ACCURACY (%) EVALUATED WITH OUR VALIDATION SET OF THE PEC DATASET [4]

TABLE II
COMPARISON OF OUR METHOD WITH PREVIOUS ONES ON THE TEST SET OF THE PEC DATASET BY CLASS-WISE AND AVERAGE ACCURACIES (%).
MEANS APPLYING SCORE-LEVEL FUSION ON IMAGES IN EACH SET. A-NET MEANS THAT THE NETWORK IS INITIALIZED WITH PRETRAINED ALEXNET [15]

two fully-connected layers from the network in order to alle-
viate the problem of over-fitting.

B. Experiments
Album classification amounts to assigning category labels to

collections of photos. The most recent dataset to this end is the
personal event classification (PEC) dataset. There are 809 al-
bums in total, composed of more that 61,000 images, belonging
to 14 social events such as boat cruise, graduation, wedding and
birthday.
We in this paper follow the standard protocol proposed by the

authors of this dataset [4]. Specifically, we will keep their spec-
ified 140 albums (ten per class) for test, randomly pick out 84
albums (six per class) for validation and train networks with the
rest albums. And finally, class-wise and average classification
accuracies are reported. Since we can sample different subsets
of photos from an album, the results can vary across different
runs. For this reason, we test the trained models for ten times,
and report the means and standard deviations.
1) Impact of : We first verify the impact of the hyper pa-

rameter on performance, i.e., the number of accumulated im-
ages in each sample. The results on our validation set are listed
in Table I, wherein is the number of views during testing.

Namely, we randomly sample group of photos and average
their scores to predict the album’s label. For the cases with
a small , the problem of over-fitting hinders networks from
learning discriminative features. Although the performance can
be improved by increasing , but it will saturate at a unsatis-
factory level soon. According to the results, the optimal settings
are and . We follow this setting in the rest ex-
periments of this paper.
Note that our method will approximately degrade into a

trivial approach to image set classification. It amounts to
feeding a network with single images and the labels of their sets
during training and applying score-level fusion during testing.
The minor different part is that should be the very number of
images for each set. Results obtained with this strategy on the
test set are given in Table II. Although there is an improvement
smaller than 1%, i.e., from 55.71% to 56.43, the accuracy is
still worse than our best case (63.36%). This result shows the
importance of feeding a network with sets of images.
2) Comparison With Previous Methods: The comparison of

our method with those in the literature is presented in Table II.
On average, our method ( ) outperforms the best
previous performer [4] (55.71%) by more than 7%. Besides, the
recall@2 rate of our method ( ) is higher than the
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Fig. 4. Example GEIs of two subjects (S1-S2) in the CASIA-B gait dataset [6]. Column A: GEIs in the gallery, with view angle . Column B: probes with the
same view angle. Columns C–L: probes with view angle variations. Gait recognition amounts to identifying the most similar gallery GEI for each probe.

previous best result (72.86%) bymore than 4%, and the F1 score
(57.68%) is also better than 56.16. Note that our method does
not make use of any motion information at all. Nevertheless, the
obvious improvement in performance shows the effectiveness
of our learned features.
To initialize the network with the pre-trained 1000-way

AlexNet [15] can further improve the performance, as shown
in Table II. In this case, the training of a network can start
from a much better initial state, which can somehow suppress
over-fitting. As a result, the improvement gained by feeding a
network with sets of images becomes smaller.

IV. GAIT RECOGNITION

Gait recognition amounts to predicting the identity of a probe
sample, given a gallery which is composed of gait samples reg-
istered with identities in advance. Or in formulation, suppose
there is one probe sample and samples in the gallery

, where denotes the identity
of sample . Given the above data, the identity of probe
is to be predicted.
Many of the widely-used gait recognition datasets provide

gait energy images (GEI) [27], which are the average silhou-
ettes along the temporal dimension. For example, some GEIs
of two subjects in the CASIA-B gait dataset [6] are shown in
Fig. 4. There are eleven viewpoint considered in this dataset,
i.e., from to with a step of . In the easiest case,
probe GEIs and those in the gallery are in an identical view-
point. Computing the similarities based on the Euclidean dis-
tance achieved pretty good results [6]. This paper considers
the cross-view cases, which are much harder to deal with [6].
In these cases, probe GEIs and those in the gallery are in dif-
ferent viewpoints. There are many alternatives for GEIs, e.g.,
chrono-gait images [28] and gait flow images [29]. However,
a recent empirical study by Iwama et al. [30] shows that GEI,
despite of its simplicity, is the most stable and effective kind
of features for gait recognition on their proposed dataset with
4,007 subjects.
Cross-view gait recognition methods can be roughly divided

into three categories. The first category is based on 3D model
of human body [31]–[33], while the second category is based
on handcrafted view-invariant features. The methods, most re-
lated to this paper, belong to the third category, which amounts
to learning the projections across different viewpoints. These

methods rely on the training data to cover the views which ap-
pear in the gallery and probe samples. With learned mapping
matrices, gait features in different views can be projected into
certain common subspace for better matching. Compared with
the first two categories of cross-view gait recognition methods,
the third category can be applied for scenarios with no explicit
action by subjects, and can also be directly applied to views
which are significantly different from the side view, e.g., frontal
or back view.
To name a few methods in the third category, Makihara et

al. [34] proposed an SVD-based view transformation model
(VTM) to project gait features from one view into another.
Kusakunniran et al. [35] used truncated SVD to avoid the
oversizing and over-fitting problem of VTMs. After pointing
out the limitations of SVD-based VTMs, they reformulated the
VTM reconstruction problem as a support vector regression
(SVR) problem [36]. They selected local regions of interests
based on local motion relationships, instead of global features
[34], [35], to build VTMs through support vector regression.
They further improved the performance by introducing sparsity
to the regression [37]. Instead of projecting gait features into
one common space, Bashir et al. [38] used canonical correla-
tion analysis (CCA) to project each pair of gait features into
two subspaces with maximal correlation. Kusakunniran et al.
[39] claimed that there may exist some weakly-correlated or
non-correlated information in global gait features across views
and carried out motion co-clustering to partition the global gait
features into multiple groups of segments. They applied CCA
on these segments, instead of using the global gait features as
Bashir et al. did in [38]. Most of the above mentioned methods
trained multiple mapping matrices, one for each pair of view-
points. Recently, Hu et al. [40] proposed to apply a unitary
linear projection, named as view-invariant discriminative pro-
jection (ViDP). The unitary nature of ViDP enabled cross-view
gait recognition to be conducted without knowing the query
gait views. On the other hand, Hu [41] designed a kind of gait
feature named as enhanced Gabor gait (EGG), which encodes
both statistical and structural characteristics with a non-linear
mapping. The regularized local tensor discriminant analysis
(RLTDA) was applied for dimensionality reduction. RLTDA
was supposed to be able to capture the nonlinear manifolds
which are robust against view variations, but it is sensitive to
initialization. For that reason, a number of RLTDA learners
were accordingly fused for obtaining better performance.
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Fig. 5. Details of the network for feature learning in terms of identity
classification.

A. Learning Features From Silhouettes

Being different from the above mentioned methods, our
method in this paper uses features learned from raw silhouettes
instead of GEIs. These features are trained in terms of person
classification on a training dataset. In the next step, we directly
use the Euclidean distance to measure the similarity between
each pair of gait features, which is necessary for the subsequent
identification step. This measure is not supposed to be optimal.
Nevertheless, we here focus on feature learning, and leave
more stronger methods as our future work. For example, we
can train similarity models with pairs of gait features, labeled
as identical when they are from the same person or different
when from two persons. Similar methods have already been
presented in the literature [42], [43].
The used network is illustrated in Fig. 5 in detail. During

training, we randomly pick out a number of raw silhouettes
from each gait sequence, and feed them into the network as a
single sample. The silhouettes are cropped and rescaled into
size in advance. We pad them with zeros into size

, and randomly take out crops in size from
them. During testing, we always take the central crop. Consid-
ering that the local patterns in these binary silhouettes are sim-
pler than those in colored images, we use smaller number of
filters in the first two convolution stages. Considering that the
silhouettes are roughly aligned in advance, we use a locally-con-
nected layer (L4) to compute the frame-level features. In this
way, we can make use of the global structure of gait silhouettes.
Apparently, it is reasonable to compute features for heads and
legs in different manners. Considering that comparison of local
details is vital for gait matching, we make smaller the size of
receptive field, i.e., 94 pixels for the nodes on the L4 layer. For
comparison, the one on the C5 layer in Fig. 3 is 224.

TABLE III
COMPARISON OF OOR METHOD WITH PREVIOUS ONES

ON CASIA-B BY AVERAGE ACCURACIES (%)

B. Experiments
We verify our method with the CASIA-B gait dataset [6].

There are 124 subjects in total, and 110 sequences per subject.
Specifically, there are eleven views ( ) and ten
sequences per subject for each view. Among the ten, six are
taken under normal walking conditions (NM). Four of the six are
in the gallery (NM #1-4) and the rest two are kept as probes (NM
#5-6). Another two are taken when the subjects are in their coats
(CL), kept as probes (CL #1-2), and the remaining two are taken
with bags (BG), also kept as probes (BG #1-2). Example GEIs
extracted from this dataset can be found in Fig. 4. Cross-view
gait recognition on this dataset is challenging, especially when
the cross-view angle is larger than [6], [39].
We apply the non-overlapping test strategy. Specifically, we

train networks with all the gait sequences of the first 74 iden-
tities, and keep those of the remaining 50 identities for test.
The results on the normal walking subset are reported. Namely,
we evaluate our method with NM #5-6 as probes and with NM
#1-4 in the gallery. Unlike many previous works, here the gait
sequences are not split according to gait cycles. Instead, they
are treated as a single image set. So, in total there are about 5k
( ) image sets for training. Also note that the task is
not multi-view but cross-view gait recognition. We do have ac-
cess to all view angles during training the networks. However,
in each test, there will only be the GEIs in one view angle in-
volved in the gallery. We have to iterate the possible probe and
gallery view angles so as to cover all the cross-view combina-
tions (identical view cases are excluded). The reported results
are the average recognition rates obtained by fixing the probe
view angle and varying the gallery view angle.
1) Results and Comparison With Previous Methods: The

comparison of our method with those in the literature is pre-
sented in Table III. The two methods are listed here because
they are the most recent and best performers, and the results
were obtained with the same division of training and testing
data as ours. Our method performs better than previous methods
in four out of the six reported cases. Also note that, our method
directly uses the Euclidean distance of learned gait features to
measure similarities, while ViDP [40] involves discriminative
training of similarity models. Nevertheless, our overall perfor-
mance is better than theirs.
Someone might expect that the view, with the richest gait

information, should be easier than other view angles such as
. One of the causes of this result is the cross-view setting in

our experiment. To explain that, recall the GEIs given in Fig. 4.
Besides the and views, the profile view ( ) is the
most different one from the rest views. The number of samples
fed into our networks are roughly the same for different view
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Fig. 6. Qualitative results obtained on CASIA-B. See the text for details.

angles. As a result, the trained features will lean on the oblique
views, e.g., , , and .
The average activities on Layer C3 is shown in Fig. 6. Two

subjects, i.e., S1 and S2, are involved. The first two rows show
gait features in the gallery set corresponding to different view
angles respectively. The rest rows show the element-wise abso-
lute differences between probe and gallery gait features. For ex-
ample, the third and forth row corresponding to an S1’s probe in
view angle . The third row shows the differences between this
probe and the eleven gallery gait features in the first row. Simi-
larly, the forth row shows the differences between it and the fea-
tures in the second row, and so on for the next four rows. Appar-
ently, it is easier to identify gait features in adjacent ( and )
and partly symmetric ( and , see Fig. 4) views. Note that
this qualitative result also support our previous claimed reason
for the relative low performance when the probe view angle is

. Unlike the other views, there is no symmetric view for .
An equal sampling rate will let our network lean on the other
views.

V. CONCLUSION

In this paper, we have proposed a feature learning method
for image sets, which can effectively handle less large data by
suppressing over-fitting. It focuses on the co-occurrences and
frequencies of discriminative features, and ignores motions be-
tween adjacent frames. Nevertheless, the proposed method has
achieved convincing performances on two kinds of temporal
sequential data, i.e., albums and gait videos. Especially, in the
album classification task, it has outperformed previous methods
with a significant margin.
The learned features are supposed to perform well in those

tasks when the motion information is not that vital, e.g., face
recognition in videos. Besides, even in the motion-related sce-
narios, they can also hopefully enhance classic models, due to
their richer representations to appearances.
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