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a b s t r a c t

In this paper, we develop a novel data-driven multivariate nonlinear controller design method for multi-
input–multi-output (MIMO) nonlinear systems via virtual reference feedback tuning (VRFT) and neural
networks. To the best of authors' knowledge, it is the first time to introduce VRFT to MIMO nonlinear
systems in theory. Unlike the standard VRFT for linear systems, we restate the model reference control
problem with time-domain model in the absence of transfer functions and simplify the objective
function of VRFT without a linear filter. Then, we prove that the objective function of VRFT reaches the
minimum at the same point as the optimization problem of model reference control and give the
relationship between the bounds of the two optimization problems of model reference control and VRFT.
A three-layer neural network is used to implement the developed method. Finally, two simulations are
conducted to verify the validity of our method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, a suitable controller is designed by the mathe-
matical model of the plant which is identified from the input and
output data. However, with the rapid development of science and
technology, the industrial process and production equipment
become more and more complex, which makes establishing
accurate mathematical models costly and even unattainable.
Imprecise models will bring about the model error into the
controller, which implies that the system cannot reach the
expected goal. Fortunately, with the development of information
technology, especially the accurate sensor technology and data
storage technology, huge amounts of data are recorded and stored
in the daily production. To make full use of data and solve the
direct control design problem, data-driven control is proposed and
gets the attention of more and more researchers.

Compared with model-based control, data-driven control
designs the controller directly without mathematical models.
Progress has been made to show the advantages of data-driven
control over traditional model-based controls [1–3]. In the past
few decades, various data-driven methods have been proposed
under some system hypotheses in different environments. Tuning
the controller online by estimating the gradient of the goal

function is an effective idea of the data-driven control. For
instance, simultaneous perturbation stochastic approximation
(SPSA) introduced by Spall estimates the gradient by stochastic
approximation [4,5] and model free adaptive control (MFAC)
proposed by Hou replaces the gradient with pseudo-partial
derivative [6–8]. The idea of iterations also has good applications
in data-driven method. For instance, iterative learning control
(ILC) [9–14] suits for the systems when the off-line data can be
obtained repeatedly or periodically and iterative feedback tuning
(IFT) developed by Hjalmarsson [15–17] is based on an iterative
gradient descent approach. Additionally, in the field of optimal
control, adaptive dynamic programming (ADP) [18–21] is a sig-
nificant and hot topic. Many data-driven and model-free methods
based on ADP have been established [22–32]. Different from the
above methods, virtual reference feedback tuning (VRFT), which is
originally proposed by Guardabassi and Savaresi [33], provides a
global solution to a model reference control problem with one-
shot off-line data. VRFT has the advantages of less calculation than
iterative methods, global optimal solution compared to local
optimal solutions of gradient methods and just one-shot off-line
data with no need of detected signal. Until now, VRFT has been
developed for single-input single-output (SISO) linear systems
[34,35], multi-input multi-output (MIMO) linear systems [36,37],
and SISO nonlinear systems [38,39].

In the aspect of applications, more and more data-driven
control methods are designed to solve practical problems in recent
years. In [40], a data-driven approach was designed to control
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batch processes with applications to a gravimetric blender. Marcel
et al. proposed a robust data-driven control for solving synchro-
nization problem [41]. An iterative data-driven tuning method of
controllers was developed for nonlinear systems with applications
to angular position control of an aerodynamic system [42]. A data-
driven self-tuning control was designed by iterative learning
control to optimize the control parameters of turbocharged
engines [43]. In [44], Chi et al. presented a unified data-driven
design framework of optimality-based generalized iterative learn-
ing control. VRFT was also applied to nonlinear systems by neural
controllers [45] and MIMO linear systems [46,37].

However, as a well-known data-driven method, there are very
few results of VRFT for MIMO nonlinear systems in both theory
and applications. Different from SISO nonlinear systems and linear
systems, MIMO nonlinear systems are much more complex, and it
is a much tougher task to demonstrate the validity of VRFT in this
case. Nevertheless, data-driven control aims to solve the control
problem of complex and highly nonlinear plant, and the theory of
linear systems and SISO systems is not sufficient. Therefore, it is of
great importance to investigate VRFT for MIMO nonlinear systems.
To the best of our knowledge, our work is the first to present the
theoretical analysis of VRFT for MIMO nonlinear systems.

This paper studies the problem of model reference controller
design of general MIMO nonlinear systems by using VRFT and
proves the validity of the established method. First, to avoid the
difficulty of solving nonlinear transfer function, we recall the
optimization problem of model reference control with time-
domain model. Second, we prove that the time-domain model

optimization problems of VRFT and the model reference control
have the same solution. We also obtain the relationship of the
bounds of the two optimization problems. Finally, we provide the
implementation of VRFT in MIMO nonlinear systems by neural
networks.

The rest of this paper is organized as follows. Section 2 gives
the basic assumptions of the system and presents the optimization
problem of model reference control in MIMO nonlinear systems.
Section 3 describes the VRFT approach in MIMO nonlinear systems
and proves the equivalence of the optimization problems of model
reference control and VRFT. Furthermore, the relationship
between the bounds of the two problems is also discussed in this
section. Section 4 introduces a three-layer neural network to
approximate the controller with the aid of VRFT. Section 5
illustrates the simulation results in noiseless and noisy environ-
ments which show the effectiveness of our method, respectively.
Section 6 gives the conclusion.

2. Optimization problem of model reference control

The control system is shown in Fig. 1. u is the control input and
y is the output of the plant. yn is the plant output corrupted by
noise n and r is the reference signal. It is a classical closed-loop
control system where the controller C processes the error signal e
so as to generate the control input u to the plant P. The plant P
and the controller C are nonlinear and multivariate. We assume
that there is a reference modelMwhich describes the relationship
between the reference input r and the desired output yd. Our goal
is to design the controller C to make the performance of the
closed-loop control system as close as possible to M, which means
that the error em between the output of control system and
reference model with the same reference input is as small as
possible.

For linear systems, the transfer function model is used to
describe the problem of model reference control [33,36]. However,
it is well known that the transfer function is not suitable for theFig. 1. Model reference control.
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Fig. 2. Responses of the system with reference to unit step signal in noiseless environment. (a) Reference input r and desired output yd. (b) Desired output yd and actual
output y. (c) Control signal u1 and u2. (d) Error of output e1 and e2.
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analysis of nonlinear systems. In [38], the authors restated the
problem of model reference control in SISO nonlinear systems, but
it is difficult to extend this method to MIMO nonlinear systems.
Hence, in this section, we redefine the problem of model reference
control in MIMO nonlinear systems and make the basic assump-
tions of the system as follows.

First, the plant P is a discrete-time MIMO nonlinear system,
which is described by

yðkÞ ¼ pðuðk�1Þ;…;uðk�npu Þ; yðk�1Þ;…; yðk�npy ÞÞ; ð1Þ

where uðkÞAU �Rm is the input of the plant, yðkÞAY �Rn is the
output of the plant. U and Y are bounded closed convex sets. npy
and npu are the orders of output y and input u in the plant,
respectively. To simplify the equation, we let

ICpðk�1Þ ¼ fuðk�2Þ;…;uðk�npu Þ;
yðk�1Þ;…; yðk�npy Þg:

Eq. (1) can be rewritten as

yðkÞ ¼ pðuðk�1Þ; ICpðk�1ÞÞ: ð2Þ
We assume that the plant satisfies the following conditions:

(1) Function pð�Þ is continuous with all variables.
(2) System (1) is controllable and bounded input bounded output

stable.
(3) The initial condition is known and denoted by

ICpð0Þ ¼ fuð�1Þ;…;uð1�npu Þ; yð0Þ;…; yð1�npy Þg:

(4) pð�Þ is invertible with respect to u(k), i.e., ∂pð�Þ=∂uðkÞa0, which
means that for any yðkÞARn, there is a unique uðkÞARm

satisfying (1) with any fixed initial condition.

Remark 1. The controllability is a basic assumption of the system
and necessary for controller design. However, it is difficult to analyze
controllability and observability by data-based methods. Some
researchers presented several data-based methods to analyze the
controllability and stability of unknown systems [47,48]. The initial

condition is usually assigned to zero. Actually, the initial condition
has little effect when the running time of the plant is sufficiently
long. The reference input r is sufficiently excited. The continuity
condition is the basic assumption of the plant and additional
conditions will be given for analyzing the properties of VRFT in the
sequel. The invertibility is certainly true for linear systems and also
for a large class of nonlinear systems. It is necessary for the
implementation of VRFT which will be discussed in the sequel.

Second, the controller is assumed to be a nonlinear function as
follows:

uðkÞ ¼ cðeðkÞ;…; eðk�nce Þ;uðk�1Þ;…;uðk�ncu ÞÞ; ð3Þ
where uðkÞARm is the control signal and eðkÞ ¼ rðkÞ�yðkÞ is the
error signal. ncu and nce are the orders of control u and error e in
the controller, respectively. For simplification of discussion, we let

ICcðkÞ ¼ feðk�1Þ;…; eðk�nce Þ;uðk�1Þ;…;uðk�ncu Þg;
then Eq. (3) can be rewritten as

uðkÞ ¼ cðeðkÞ; ICcðkÞÞ: ð4Þ
We assume that the function cð�Þ is continuous with all variables
and the initial condition is known and is denoted by

ICcð0Þ ¼ feð�1Þ;…; eð1�ncy Þ;uð�1Þ;…;uð1�ncu Þg:
As eðkÞ ¼ rðkÞ�yðkÞ and r(k) is known in advance, the initial
condition is rewritten as

ICcð0Þ ¼ fyð�1Þ;…; yð1�ncy Þ;uð�1Þ;…;uð1�ncu Þg:
It is obvious that the variables appeared in both ICcð0Þ and ICpð0Þ
should be the same.

According to (2) and (4), the closed-loop control system can be
represented as

yðkÞ ¼ pðuðk�1Þ; ICpðk�1ÞÞ
¼ pðcðeðk�1Þ; ICcðk�1ÞÞ; ICpðk�1ÞÞ: ð5Þ

We choose a group of nonlinear functions with fixed structure and
undetermined parameters as the candidate controllers

uθðkÞ ¼ cðeðkÞ; ICcðkÞ;θÞ; ð6Þ
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Fig. 3. Responses of the systemwith reference to damping sine and cosine signals in noiseless environment. (a) Reference input r and desired output yd. (b) Desired output yd
and actual output y. (c) Control signal u1 and u2. (d) Error of output e1 and e2.
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where θARnθ is the undetermined coefficient and nθ is the degree
of freedom. For convenience, the controller is simplified as

uθðkÞ ¼ cθðeðkÞ; ICcðkÞÞ: ð7Þ
The candidate controller set is denoted by fcθð�Þ;θARnθ g. Accord-
ing to (2) and (7),

yðkÞ ¼ pðuθðk�1Þ; ICpðk�1ÞÞ
¼ pðcθðeðk�1Þ; ICcðk�1ÞÞ; ICpðk�1ÞÞ: ð8Þ
The reference model is a mapping from r to yd as follows:

ydðkÞ ¼mðrðk�1Þ;…; rðk�nmr Þ; ydðk�1Þ;…; ydðk�nmy ÞÞ; ð9Þ
where ydðkÞARn is the desired output signal and rðkÞARn is the
reference signal. nmr and nmy are the orders of reference signal r
and the output y in the reference model, respectively. Let

ICmðk�1Þ ¼ frðk�2Þ;…; rðk�nmr Þ;
ydðk�1Þ;…; ydðk�nmy Þg;

then (9) can be rewritten as

ydðkÞ ¼mðrðk�1Þ; ICmðk�1ÞÞ: ð10Þ
We assume that the function mð�Þ is continuous with all variables
and the initial condition is known which is denoted by

ICmð0Þ ¼ frð�1Þ;…; rð1�nmy Þ; ydð0Þ;…; ydð1�nmr Þg
For the implementation of VRFT, we assume that the function mð�Þ
is invertible with respect to rðk�1Þ.

The reference model is the desired performance of the system
under ideal conditions and depends on the actual demand. The
reference model has an important effect on the performance of the
controller designed by VRFT. However, there are no effective
methods to acquire an ideal reference model, which is designed
just by experience. The reference model can be linear or nonlinear,
and it is hard to obtain such a nonlinear model to achieve the
system's demand. In most cases, the reference model is set to be a
linear system given as follows:

ydðkÞ ¼ A1rðk�1Þþ⋯þAnmr
rðk�nmr Þ

�B1ydðk�1Þ�⋯�Bnmy
ydðk�nmy Þ: ð11Þ

It is obvious that this linear system is invertible with respect to
rðk�1Þ when A1 is nonsingular.

In view of the observations above, the model reference control
problem shown in Fig. 1 is to find a nonlinear functional from Y to
U satisfying the following optimization problem:

min
cð�Þ

JMRðcÞ ¼
XN
k ¼ 1

JyðkÞ�mðrðk�1Þ; ICmðk�1ÞÞJ2

s:t: yðkÞ ¼ pðcðeðk�1Þ; ICcðk�1ÞÞ; ICpðk�1ÞÞ
eðk�1Þ ¼ rðk�1Þ�yðk�1Þ
k¼ 1;2;…;N

ICð0Þ ¼ ICpð0Þ [ ICcð0Þ [ ICmð0Þ: ð12Þ
The solution of (12) is a nonlinear function, which is difficult to
obtain. We usually choose a candidate controller set fcθð�Þ;θARnθ g
at first, then the problem (12) can be converted into

min
θ

JMRðθÞ ¼
XN
k ¼ 1

JyθðkÞ�mðrðk�1Þ; ICmðk�1ÞÞJ2

s:t: yθðkÞ ¼ pðcθðeðk�1Þ; ICcðk�1ÞÞ; ICpðk�1ÞÞ
eðk�1Þ ¼ rðk�1Þ�yθðk�1Þ
k¼ 1;2;…;N

ICð0Þ ¼ ICpð0Þ [ ICcð0Þ [ ICmð0Þ: ð13Þ

Remark 2. Although the optimization problem (13) is defined by a
certain trajectory, this trajectory is required to make y(k) and u(k)
fully explore the domains of definitions Y and U . To meet this
requirement, the trajectory must be long enough and the input
must be sufficiently excited. If the plant p is known, we can
directly solve the nonlinear optimization problem by gradient
descent algorithm to obtain the optimal solution θn. However,
we cannot acquire the precise mathematical model of the plant.
Thus we will introduce the data-driven method to solve the
optimization problem (13) in the next section.
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Fig. 4. Responses of the systemwith reference to unit step signal in noisy environment. (a) Reference input r and desired output yd. (b) Desired output yd and actual output y.
(c) Control signal u1 and u2. (d) Error of output e1 and e2.
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3. Data-driven control design of MIMO nonlinear systems via
VRFT

Notations: In this section, ~� denotes measured values of the
variables, e.g., ~u and ~y are the measured values of the input and
output of the plant, respectively. �̂ denotes estimated values of the
variables, e.g., û, ŷ and θ̂ are the estimated values of the input,
output and parameters of the controller, respectively. J�J denotes
Euclidean norm.

We assume that there is a sequence of input/output data
generated by the plant as

~uðkÞ; k¼ 0;1;…;N�1; ~yðkÞ; k¼ 1;2;…;N: ð14Þ
If the plant is noiseless, f ~uðkÞ; ~yðkÞg is equivalent to fuðkÞ; yðkÞg. In
this section, we have the following assumption.

Assumption 1.

(a) The plant is noiseless.
(b) The initial condition is known.
(c) The sampling time N is long enough and the control sequence

is sufficiently excited.
(d) ~uðkÞ and ~yðkÞ are bounded.

The reference model M is given in advance. Due to the
assumption of invertibility, we can get ~rðkÞ; k¼ 0;1;…;N�1 from
~rðk�1Þ ¼m�1ð ~yðkÞ; ~ICmðk�1ÞÞ with the initial condition ~ICmð0Þ
which is usually zero. ~rðkÞ is called virtual reference signal, because
it is computed by the inverse of reference model and is not the
desired reference trajectory that is used as the reference of the
system. However, ~rðkÞ coincides with the reference model mð�Þ so
as to design the controller to adjust to mð�Þ. If fcθð�Þ;θARnθ g is
sufficiently rich, ~rðkÞ is constructed by ~yðkÞ and m�1ð�Þ is suffi-
ciently excited, the optimal controller cθn ð�Þ designed by ~rðkÞ is also
suitable for other desired reference trajectories.

Theorem 1. If pð�Þ and mð�Þ satisfy Assumption 1, for arbitrary initial
conditions ICð0Þ and reference trajectory r(k) in the domain of
definition, there is an optimal controller cnð�Þ such that the closed-

loop system is equivalent to the selected reference model mð�Þ, i.e.,
JMRðcnÞ ¼ 0.

Proof. For arbitrary initial conditions ICð0Þ and reference trajec-
tory r(k), according to the reference model mð�Þ, we can obtain

ydðkÞ ¼mðrðk�1Þ; ICmðk�1ÞÞ: ð15Þ
As pð�Þ is invertible, its inverse is

uðk�1Þ ¼ p�1ðyðkÞ; ICpðk�1ÞÞ: ð16Þ
According to (16) and the desired output trajectory yd(k),

unðk�1Þ ¼ p�1ðydðkÞ; ICpðk�1ÞÞ: ð17Þ
Then we let eðkÞ ¼ rðkÞ�ydðkÞ and construct the mapping cnð�Þ from
Rn to Rm, such that

cnðeðkÞ; ICcðkÞÞ ¼ unðkÞ; k¼ 0;1;…;N�1:

It is easy to verify JMRðcnÞ ¼ 0. □

Theorem 1 shows that the invertibility of pð�Þ ensures the
existence of the optimal controller. The invertibility of mð�Þ is not
used in this theorem, as it is not the necessary condition of the
existence of optimal controller. However, we make the reference
model invertible, as it is indispensable in the implementation
of VRFT.

In view of SISO nonlinear systems [38], the optimization
problem (13) can be simplified as

min JðθÞ ¼ Jyθ�M½r�J2
s:t: yθ ¼ P½Cθ½r�Dyθ��; ð18Þ

where M : r-y is the reference model and D is the delay matrix
defined as

D¼

0 0 ⋯ 0 0
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

26666664

37777775: ð19Þ

C½�� and P½�� are derived by cð�Þ and pð�Þ, respectively. The exact
definitions of C½�� and P½�� can refer to [38]. The objective function
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Fig. 5. Responses of the system with reference to damping sine and cosine signals in noisy environment. (a) Reference input r and desired output yd. (b) Desired output yd
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of the VRFT is

min JVRFT ¼ JF½Cθ ½~e���F½ ~u�J2; ð20Þ
where ~e ¼ ~r�D ~y. F is a linear time-varying filter

F ¼ ðI�MDÞ∂P
∂u

����
~u
: ð21Þ

In [38], the authors have proven that when the filter F is defined
by (21), the optimization problem (20) is a second order approx-
imation to the optimization problem (18). However, the method of
designing a linear filter is difficult to apply to MIMO nonlinear
systems as the estimation of the derivative of plant is hard to
obtain. Rough estimation cannot ensure the second order approx-
imation. More importantly, the estimation of the derivative is
based on system identification, which makes the method not a
pure data-driven method. Hence, we remove the filter F in MIMO
nonlinear systems and redefine the objective function of the VRFT
as

min JVRFTðθÞ ¼
XN�1

k ¼ 0

Jcθð ~eðkÞÞ� ~uðkÞJ2: ð22Þ

From (22), we can find that the core idea of VRFT method is to
design a controller which produces ~u when fed by ~e. The
performance function of VRFT stands for the error between the
designed controller and the desired controller, while the perfor-
mance function of model reference control is the error between
the actual output and the desired output. In what follows, we will
demonstrate that when cnAfcθg, the solution of problem (22) is
equivalent to that of problem (13). Moreover, when
cn =2fcθ;θARnθ g, the solution of problem (22) can be an effective
estimation of the solution of problem (13) which can make the
objective value of problem (13) sufficiently small.

Theorem 2. If there exists θnARnθ such that

JMRðθnÞ ¼
XN
k ¼ 1

Jyθn ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ2 ¼ 0; ð23Þ

then we have

JVRFTðθnÞ ¼
XN�1

k ¼ 0

Jcθð ~e j ðkÞ; ~ICc ðkÞÞ� ~uðkÞJ2 ¼ 0; ð24Þ

and vice versa.

Proof. (i) By the assumption that

XN
k ¼ 1

Jyθn ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ2 ¼ 0;

we can acquire, for k¼ 1;2;…;N,

Jyθn ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ ¼ 0:

Noticing that ~yðkÞ ¼mð~rðk�1Þ; ~ICmðk�1ÞÞ, we have

yθn ðkÞ ¼ ~yðkÞ; k¼ 1;2;…;N: ð25Þ
By (8), we can derive, for k¼ 1;2;…;N,

yθn ðkÞ ¼ pðcθn ð~rðk�1Þ�yθn ðk�1Þ; ~ICc ðk�1ÞÞ; ~ICp ðk�1ÞÞ;
and

~yðkÞ ¼ pð ~uðk�1Þ; ~ICp ðk�1ÞÞ:
By the invertibility of pð�Þ, we can obtain, for k¼ 1;2;…;N,

cθn ð~rðk�1Þ�yθn ðk�1Þ; ~ICc ðk�1ÞÞ ¼ ~uðk�1Þ: ð26Þ
In addition, with (25), we have

~rðk�1Þ�yθn ðk�1Þ ¼ ~rðk�1Þ� ~yðk�1Þ ¼ ~eðk�1Þ: ð27Þ

Substituting (27) into (26), we can get, for k¼ 1;2;…;N,

cθn ð~eðk�1Þ; ~ICc ðk�1ÞÞ ¼ ~uðk�1Þ:
Hence, we can conclude

JVRFTðθnÞ ¼
XN�1

k ¼ 0

Jcθn ð ~eðkÞ; ~ICc ðkÞÞ� ~uðkÞJ2 ¼ 0:

(ii) If there exists θn such that JVRFTðθnÞ ¼ 0, i.e.,XN�1

k ¼ 0

Jcθn ð ~eðkÞ; ~ICc ðkÞÞ� ~uðkÞJ2 ¼ 0;

we have

cθn ð~eðkÞ; ~ICc ðkÞÞ ¼ ~uðkÞ:
When the initial condition ~ICp ð0Þ is fixed, we can derive, for
k¼ 0;1;…;N�1,

pðcθn ð ~eðkÞ; ~ICc ðkÞÞ; ~ICp ðkÞÞ ¼ pð ~uðkÞ; ~ICp ðkÞÞ: ð28Þ
On the right hand side of (28), it implies

pð ~uðkÞ; ~ICp ðkÞÞ ¼ ~yðkþ1Þ
¼mð~rðkÞ; ~ICmðkÞÞ: ð29Þ

On the left hand side of (28), for k¼0,

pðcθn ð ~eð0Þ; ~ICc ð0ÞÞ; ~ICp ð0ÞÞ
¼ pðcθn ð~rð0Þ�yð0Þ; ~ICc ð0ÞÞ; ~ICp ð0ÞÞ
¼ yθn ð1Þ;

and for k¼ 1;2;…;N�1,

pðcθn ð ~eðkÞ; ~ICc ðkÞÞ; ~ICp ðkÞÞ
¼ pðcθn ð~rðkÞ�yðkÞ; ~ICc ðkÞÞ; ~ICp ðkÞÞ
¼ yθn ðkþ1Þ:

Then, we can derive

yθn ðkþ1Þ�mð~rðkÞ; ~ICmðkÞÞ ¼ 0:

Therefore, we can concludeXN
k ¼ 1

Jyθn ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ2 ¼ 0:

The equivalence of (23) and (24) is shown.□

Theorem 2 shows that when the set of candidate controllers is
sufficiently rich, the optimization problem (13) is equivalent to
(22).

Next, we will prove that when the result of optimization
problem (22) is not zero but bounded, the problem (13) is also
bounded. First, we will prove that it is true when the order of the
system is one. The system (1) is reduced to

yðkÞ ¼ pðuðk�1Þ; yðk�1ÞÞ; ð30Þ
The controller is simplified as

uθðkÞ ¼ cθðeðkÞ;uðk�1ÞÞ; ð31Þ
and the reference model is

ydðkÞ ¼mðrðk�1Þ; yðk�1ÞÞ: ð32Þ
Then, we have the following theorem.

Theorem 3. Assume that for a given reference model mð�Þ and
arbitrary initial condition yð0Þ, there exist θ̂ARnθ and a positive
number ϵ40, such that

JVRFTðθ̂Þ ¼
XN
k ¼ 1

Jcθ̂ ð ~eðkÞ; ~uðk�1ÞÞ� ~uðkÞJ2oϵ2 ð33Þ
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and cθ̂ ð�Þ is continuously differentiable with respect to all variables in
the domain of definition. Assume that the derivative of pð�Þ satisfies
∂p
∂u

ðuðkÞ; yðkÞÞ
���� ����oMpu ;

∂p
∂y

ðuðkÞ; yðkÞÞ
���� ����oMpy ; ð34Þ

and the derivative of cθ̂ ð�Þ satisfies
∂cθ̂
∂u

ðeðkÞ;uðk�1ÞÞ
���� ����oMcu ;

∂cθ̂
∂e

ðeðkÞ;uðk�1ÞÞ
���� ����oMce : ð35Þ

Then, there exists a positive number M, such that

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ�mð~rðk�1Þ; ~yðk�1ÞÞJ2oMϵ2: ð36Þ

Proof. From (33), we can derive

Jcθ̂ ð ~eðkÞ; ~uðk�1ÞÞ� ~uðkÞJoϵ: ð37Þ

By the inverse function of mð�Þ and the measured trajectory ~uðkÞ
and ~yðkÞ, the virtual reference signal is

~rðkÞ ¼m�1ð ~yðkþ1Þ; ~yðkÞÞ: ð38Þ
For each k, the error of output is

ΔyðkÞ ¼ yθ̂ ðkÞ�mð~rðk�1Þ; ~yðk�1ÞÞ
¼ pðcθ̂ ðêðk�1Þ; ûðk�2ÞÞ; ŷðk�1ÞÞ� ~yðkÞ
¼ pðcθ̂ ð~rðk�1Þ�yθ̂ ðk�1Þ; ûðk�2ÞÞ; ŷðk�1ÞÞ
�pð ~uðk�1Þ; ~yðk�1ÞÞ: ð39Þ

Let ûðk�1Þ ¼ cθ̂ ð~rðk�1Þ�yθ̂ ðk�1Þ; ûðk�2ÞÞ. By the mean value
theorem, there is a real number γ, 0oγo1, such that

ΔyðkÞ ¼ ∂p
∂u

ðûγðk�1Þ; ŷγðk�1ÞÞðûðk�1Þ� ~uðk�1ÞÞ

þ∂p
∂y

ðûγðk�1Þ; ŷγðk�1ÞÞðŷðk�1Þ� ~yðk�1ÞÞ; ð40Þ

where ûγðkÞ ¼ γûðkÞþð1�γÞ ~uðkÞ and ŷγðkÞ ¼ γŷðkÞþð1�γÞ ~yðkÞ.
Let Δuðk�1Þ ¼ ûðk�1Þ� ~uðk�1Þ and take the norm on both

sides of (40). Then, we can obtain

JΔyðkÞJr ∂p
∂u

ðûγðk�1Þ; ŷγðk�1ÞÞ
���� ����JΔuðk�1ÞJ

þ ∂p
∂y

ðûγðk�1Þ; ŷγðk�1ÞÞ
���� ����JΔyðk�1ÞJ

rMpu JΔuðk�1ÞJþMpy JΔyðk�1ÞJ : ð41Þ

For each k, the error of control input is

ΔuðkÞ ¼ ûðkÞ� ~uðkÞ
¼ cθ̂ ðêðkÞ; ûðk�1ÞÞ� ~uðkÞ
¼ cθ̂ ðêðkÞ; ûðk�1ÞÞ�cθ̂ ð ~eðkÞ; ~uðk�1ÞÞ
þcθ̂ ð ~eðkÞ; ~uðk�1ÞÞ� ~uðkÞ: ð42Þ

By the mean value theorem, there is a real number α, 0oαo1,
such that

ΔuðkÞ ¼ ∂cθ̂
∂e

ðêαðkÞ; ûαðk�1ÞÞð�ΔyðkÞÞ

þ∂cθ̂
∂u

ðêαðkÞ; ûαðk�1ÞÞΔuðk�1Þ
þcθ̂ ð ~eðkÞ; ~uðk�1ÞÞ� ~uðkÞ; ð43Þ

where êαðkÞ ¼ αêðkÞþð1�αÞ~eðkÞ, ûαðk�1Þ ¼ αûðk�1Þþð1�αÞ ~u
ðk�1Þ and ΔyðkÞ ¼ ŷðkÞ� ~yðkÞ ¼ ~eðkÞ� êðkÞ. Taking norm on both
sides of (43), we obtain

JΔuðkÞJr ∂cθ̂
∂e

ðêαðkÞ; ûαðk�1ÞÞ
���� ����JΔyðkÞJ

þ ∂cθ̂
∂u

ðêαðkÞ; ûαðk�1ÞÞ
���� ����JΔuðk�1ÞJ

þ Jcθ̂ ð ~eðkÞ; ~uðk�1ÞÞ� ~uðkÞJ
rMce JΔyðkÞJþMcu JΔuðk�1ÞJþϵ: ð44Þ

According to (41) and (44), we have

JΔyðkþ1ÞJrMpu JΔuðkÞJþMpy JΔyðkÞJ
rMpu ðMce JΔyðkÞJþMcu JΔuðk�1ÞJþϵÞ
þMpy JΔyðkÞJ
r ðMpuMce þMpy ÞJΔyðkÞJ
þMpuMcu JΔuðk�1ÞJþMpuϵ: ð45Þ

Substituting (44) and (45), we can obtain

JΔyðkþ1ÞJþ JΔuðkÞJ
r ðMpuMce þMpy þMce ÞJΔyðkÞJ
þðMpuMcu þMcu ÞJΔuðk�1ÞJ
þðMpu þ1Þϵ: ð46Þ

Adding ϵ to both sides of inequality (46), we have

JΔyðkþ1ÞJþ JΔuðkÞJþϵ
r ðMpuMce þMpy þMce ÞJΔyðkÞJ
þðMpuMcu þMcu ÞJΔuðk�1ÞJþðMpu þ2Þϵ

rM0ðJΔyðkÞJþ JΔuðk�1ÞJþϵÞ; ð47Þ
where

M09maxfMpuMce þMpy þMce ;MpuMcu þMcu ;Mpu þ2g: ð48Þ

Therefore, we have

JΔyðkþ1ÞJþ JΔuðkÞJþϵrMk
0ðJΔyð1ÞJþ JΔuð0ÞJþϵÞ: ð49Þ

As the initial values are the same, i.e., ŷð0Þ ¼ ~yð0Þ and
ûð�1Þ ¼ ~uð�1Þ, we have Δyð0Þ ¼ 0 and Δuð�1Þ ¼ 0. Considering
(44) and (45), we obtain

JΔuð0ÞJrϵ; ð50Þ
and

JΔyð1ÞJrMpuϵ: ð51Þ
Hence, we can find

JΔyð1ÞJþ JΔuð0ÞJþϵrM1ϵ; ð52Þ
where M1 ¼Mpu þ2.

Combining (52) with (49), we can acquire

JΔyðkþ1ÞJþ JΔuðkÞJrMk
0ðJΔyð1ÞJþ JΔuð0ÞJþϵÞ�ϵ

r ðMk
0M1�1Þϵ: ð53Þ

Then, JΔyðkÞJr ðMk�1
0 M1�1Þϵ. Hence, we can derive

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ�mð~rðk�1Þ; yðk�1ÞÞJ2

¼
XN
k ¼ 1

JΔyðkÞJ2

r
XN
k ¼ 1

ðMk�1
0 M1�1Þ2ϵ2: ð54Þ

Let M¼ PN
k ¼ 1 ðMk�1

0 M1�1Þ2. Thus we can conclude

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ�mð~rðk�1Þ; yðk�1ÞÞJ2

oMϵ2; ð55Þ
which completes the proof of the theorem.□

Remark 3. Theorem 3 shows that when JVRFT is bounded, JMR is
also bounded. M is a constant which is determined by the plant
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pð�Þ and the candidate controller set fcθð�Þ;θARnθ g. In practice, as
the plant is unknown, JMR is unavailable. However, we can obtain
JVRFT by input and output data. Theorem 3 ensures that when JVRFT
converges to zero, JMR converges to zero. Moreover, Mϵ2 is just an
upper bound which may be far greater than JMR. However, in
practice, JMR will be close to JVRFT in most situations.

Theorem 4. Assume that the plant, the controller and the reference
model are defined by (2), (7) and (10), respectively. For arbitrary
initial condition ICð0Þ, there exist θ̂ARnθ and a positive number
ϵ40, such thatXN�1

k ¼ 0

Jcθ̂ ð ~eðkÞ; ~ICc ðkÞÞ� ~uðkÞJ2oϵ2: ð56Þ

pð�Þ and cθ̂ ð�Þ are continuously differentiable with respect to all
variables in the domain of definition. Assume that the derivative of
pð�Þ satisfies

∂p
∂uðk�1Þ

���� ����oMpu
1 ;…;

∂p
∂uðk�npu Þ

���� ����oMpu
npu

;

∂p
∂yðk�1Þ

���� ����oM
py
1 ;…;

∂p
∂yðk�npy Þ

�����
�����oM

py
npy

; ð57Þ

and the derivative of cθ̂ ð�Þ satisfies
∂cθ̂

∂uðk�1Þ

���� ����oMcu
1 ;…;

∂cθ̂
∂uðk�ncu Þ

���� ����oMcu
ncu

;

∂cθ̂
∂eðkÞ

���� ����oMce
0 ;…;

∂cθ̂
∂eðk�nce Þ

���� ����oMce
nce

: ð58Þ

Then there exists a positive number M , such that

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ� ~yðkÞJ2oMϵ2: ð59Þ

Proof. From (56), we can obtain

Jcθ̂ ð ~eðkÞ; ~ICc ðkÞÞ� ~uðkÞJoϵ: ð60Þ

By the invertibility of mð�Þ defined by (10) and the measured
trajectory ~uðkÞ and ~yðkÞ, the virtual reference signal is

~rðk�1Þ ¼m�1ð ~yðkÞ; ~ICmðk�1ÞÞ: ð61Þ
For each k, the error of output is

ΔyðkÞ ¼ pðcθ̂ ðêðk�1Þ; cICc ðk�1ÞÞ; cICp ðk�1ÞÞ� ~yðkÞ
¼ pðcθ̂ ðêðk�1Þ; cICc ðk�1ÞÞ; cICp ðk�1ÞÞ
�pð ~uðk�1Þ; ~ICp ðk�1ÞÞ: ð62Þ

Let ûðkÞ ¼ cθ̂ ð~rðkÞ�yθ̂ ðkÞ; cICc ðk�1ÞÞ. By the mean value theorem,
there is a real number γ, 0oγo1, which makes the following
equality holds:

ΔyðkÞ ¼ ∂p
∂uðk�1Þðûγðk�1Þ; cICγc ðk�1ÞÞΔuðk�1Þ

þ ∂p
∂uðk�ncu Þ

ðûγðk�1Þ; cICγc ðk�1ÞÞΔuðk�ncu Þ

þ ∂p
∂yðk�1Þðûγðk�1Þ; cICγc ðk�1ÞÞΔyðk�1Þ

þ ∂p
∂yðk�npy Þ

ðûγðk�1Þ; cICγc ðk�1ÞÞΔyðk�npy Þ; ð63Þ

where ûγðkÞ ¼ γûðkÞþð1�γÞ ~uðkÞ, ŷγðkÞ ¼ γŷðkÞþð1�γÞ ~yðkÞ and
Δuðk�1Þ ¼ ûðk�1Þ� ~uðk�1Þ. Taking the norm on both sides of
(63), we obtain

JΔyðkÞJrMpu
1 JΔuðk�1ÞJþ⋯þMpu

npu
JΔuðk�npu ÞJ

þM
py
1 JΔyðk�1ÞJþ⋯þM

py
npy

JΔyðk�npy ÞJ
rMpu ðJΔuðk�1ÞJþ⋯þ JΔuðk�npu ÞJ Þ

þMpy ðJΔyðk�1ÞJþ⋯þ JΔyðk�npy ÞJ Þ; ð64Þ

where Mpu ¼maxfMpu
1 ;…;Mpu

npu
g and Mpy ¼maxfMpy

1 ;…;M
py
npy

g. Let
δyðkÞ ¼maxfJΔyðkÞJ ;…; JΔyð0ÞJg and
δuðkÞ ¼maxfJΔuðkÞJ ;…; JΔuð0ÞJg. We can derive

δyðkÞrnpuM
puδuðkÞþnpyM

pyδyðkÞ: ð65Þ

For each k, the error of control input is

ΔuðkÞ ¼ ûðkÞ� ~uðkÞ
¼ cθ̂ ðêðkÞ; cICc ðk�1ÞÞ� ~uðkÞ
¼ ðcθ̂ ðêðkÞ; cICc ðk�1ÞÞ�cθ̂ ð ~eðkÞ; ~ICc ðk�1ÞÞÞ
þðcθ̂ ð~eðkÞ; ~ICc ðk�1ÞÞ� ~uðkÞÞ: ð66Þ

By the mean value theorem, there is a real number α, 0oαo1,
which makes the following equality holds:

ΔuðkÞ ¼ ∂cθ̂
∂eðkÞðêαðkÞ;

dICαc ðk�1ÞÞð�ΔyðkÞÞþ⋯

þ ∂cθ̂
∂eðk�nce Þ

ðêαðkÞ;dICαc ðk�1ÞÞð�Δyðk�nce ÞÞ

þ ∂cθ̂
∂uðk�1ÞðêαðkÞ;

dICαc ðk�1ÞÞΔuðk�1Þþ⋯

þ ∂cθ̂
∂uðk�ncu Þ

ðêαðkÞ;dICαc ðk�1ÞÞΔuðk�ncu Þ

þðcθ̂ ð~eðkÞ; ~ICc ðk�1ÞÞ� ~uðkÞÞ: ð67Þ

where êαðkÞ ¼ αêðkÞþð1�αÞ ~eðkÞ, ûαðk�1Þ ¼ αûðk�1Þþð1�αÞ ~u
ðk�1Þ and ΔyðkÞ ¼ ŷðkÞ� ~yðkÞ ¼ ~eðkÞ� êðkÞ. Taking norm on both
sides of (67), we obtain

JΔuðkÞJrMce
0 JΔyðkÞJþ⋯þMce

nce
JΔyðk�nce ÞJ

þMcu
1 JΔuðk�1ÞJþMcu

ncu
JΔuðk�ncu ÞJþϵ

rMce ðJΔyðkÞJþ⋯þ JΔyðk�nce ÞJ Þ
þMcu ðJΔuðk�1ÞJþ⋯þ JΔuðk�nce ÞJ Þþϵ; ð68Þ

whereMcu ¼maxfMcu
1 ;…;Mcu

ncu
g andMce ¼maxfMce

0 ;…;Mce
nce

g. Then,
we can derive

δuðkÞrncuM
cuδuðk�1ÞþnceM

ceδyðkÞþϵ: ð69Þ
By (65) and (69), we have

δyðkþ1ÞrnpuM
puδuðkÞþnpyM

pyδyðkÞ
rnpuM

pu ðnceM
ceδyðkÞþncuM

cuδuðk�1ÞþϵÞ
þnpyM

pyδyðkÞ
r ðnpunceM

puMce þnpyM
py ÞδyðkÞ

þnpuM
puncuM

cuδuðk�1ÞþnpuM
puϵ: ð70Þ

By (69) and (70), we obtain

δyðkþ1ÞþδuðkÞþϵ
r ðnpunceM

puMce þnpuM
py þncuM

cu ÞδyðkÞ
þðnpuM

puMcu þncuM
cu Þδuðk�1Þ

þðnpuM
pu þ2Þϵ

rM0ðδyðkÞþδuðk�1ÞþϵÞ; ð71Þ
where M0 ¼maxfnpunce MpuMce þnpuM

py þncuM
cu ;npu MpuMcu þ

ncuM
cu ;npuM

pu þ2g. From (71), we have

δyðkþ1ÞþδuðkÞþϵrM
k
0ðδyð1Þþδuð0ÞþϵÞ: ð72Þ

As the initial values are the same, i.e., δyð0Þ ¼ 0 and δuð�1Þ ¼ 0,
considering (69) and (70), we obtain

δuð0Þrϵ; ð73Þ
and

δyð1ÞrnpuM
puϵ: ð74Þ
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Thus, we can find

δyð1Þþδuð0ÞþϵrM1ϵ; ð75Þ

where M1 ¼ npuM
pu þ2. Combining with (72), we can acquire

δyðkþ1ÞþδuðkÞrM
k
0ðδyð1Þþδuð0ÞþϵÞ�ϵ

r ðMk
0M1�1Þϵ: ð76Þ

Then, δyðkÞr ðMk�1
0 M1�1Þϵ. Hence, we can derive

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ2

¼
XN
k ¼ 1

JΔyðkÞJ2

r
XN
k ¼ 1

δyðkÞ2

r
XN
k ¼ 1

ðMk�1
0 M1�1Þ2ϵ2: ð77Þ

Let M ¼ PN
k ¼ 1 ðM

k�1
0 M1�1Þ2. Therefore, we can conclude

JMRðθ̂Þ ¼
XN
k ¼ 1

Jyθ̂ ðkÞ�mð~rðk�1Þ; ~ICmðk�1ÞÞJ2

oMϵ2; ð78Þ

which completes the proof.□

Similar to Theorem 3, Theorem 4 shows the relationship
between the bounds of the optimization problems (13) and (22)
for general nonlinear systems. When cn =2fcθð�Þ;θARnθ g, we can
still obtain θ̂ by solving the problem (22) to make the objective
value of problem (13) as small as possible. Furthermore, when the
problem (22) converges to zero, problem (13) also converges to
zero, which demonstrates the validity of Theorem 2.

Remark 4. From problem (13), we can see that the problem of
VRFT for MIMO nonlinear systems is very different from linear
systems [33,36] and much more complex than SISO nonlinear
systems [38]. Hence, Theorems 3 and 4 provide a totally new idea
which is different from the previous work on VRFT. Our work
demonstrates theoretically the validity of VRFT in nonlinear MIMO
case for the first time.

4. Neural network implementation of VRFT

In this section, a three-layer neural network is used to approx-
imate the controller cð�Þ. The number of hidden layer neurons is
denoted by l, the weight matrix between the input layer and the
hidden layer is denoted by VARl�n and the weight matrix
between the hidden layer and the output layer is denoted by
WARm�l. Then the output of three-layer neural network is
represented as

ûðkÞ ¼ ĉðxk;V ;WÞ ¼WσðVxkÞ ð79Þ
where xk ¼ ½eTðkÞ;…; eTðk�nce Þ;uTðk�1Þ;…;uTðk�ncu Þ�T is the
input of the neural network, n ¼ nðnce þ1Þþmncu is the dimension
of xk, σðVxkÞARl and ½σðzÞ�i ¼ ðezi �e� zi Þ=ðezi þe� zi Þ, i¼ 1;2;…; l, are
the activation functions. Let X ¼ ½x1; x2;…; xN � and U ¼ ½uð1Þ;uð2Þ
;…;uðNÞ�. For convenience of computing, only the hidden-output
weight W is undetermined, while the input-hidden weight V is
initialized randomly and fixed. Then, we can use the least square
method to train neural network.

In the following, the neural network expression is simplified by
ĉðxk;WÞ ¼WσðVxkÞ ¼WσV ðxkÞ. The objective function can be

rewritten as

ĴVRFTðWÞ ¼
XN
k ¼ 1

J ĉð ~xk;WÞ� ~uðkÞJ2: ð80Þ

Our goal is to select W to make the performance function
minimized, i.e.,

Wn ¼ arg min
W

XN
k ¼ 1

J ĉð ~xk;WÞ� ~uðkÞJ2
( )

: ð81Þ

Let ~X ¼ ½ ~x1; ~x2;…; ~xN� and ~U ¼ ½ ~uð1Þ; ~uð2Þ;…; ~uðNÞ�. Y is defined as
follows:

Y ¼ σV ð ~X Þ ¼ σðV ~X Þ: ð82Þ
So Wn can be calculated by

Wn ¼ ~UYTðYYTÞ�1: ð83Þ
The above equation is true only when the data matrix Y is full row
rank. Fortunately, this condition is satisfied in most cases as the
number of data N is sufficiently large. Even if Y is singular, the
generalized inverse can be introduced to calculate

Wn ¼ ~UYTðYYTÞþ ð84Þ
where ðYYTÞþ stands for the generalized inverse of YYT.

5. Simulation

In this section, we will verify the effectiveness of the developed
method for MIMO nonlinear systems with different reference
signals under noiseless and noisy environment, respectively.

5.1. Noiseless environment

Consider the given discrete-time MIMO nonlinear system:

yðkþ1Þ ¼ 10 tanhð0:1AyðkÞÞþtanhðBuðkÞÞ; ð85Þ
where yðkÞAR2, uðkÞAR2, and

A¼ 0:88 0:123
0:123 0:88

� �
; B¼ 1 1

0 1

� �
: ð86Þ

This system extends the SISO nonlinear system introduced by
[38] into MIMO case. The reference model is a linear transfer
function as follows:

yðkÞ ¼
0:2

s�0:8 0

0 0:4
s�0:6

" #
rðkÞ; ð87Þ

which can be represented by

yðkþ1Þ ¼ 0:8 0
0 0:6

� �
yðkÞþ 0:2 0

0 0:4

� �
rðkÞ: ð88Þ

The controller neural network is chosen as a three-layer neural
network with the structure of 6–20–2. The input
x¼ ½eðkÞT; eðk�1ÞT;uðk�1ÞT�T and the output u¼ uðkÞ. The weight
matrix from input layer to hidden layer is assigned randomly in
½�1;1� and the weight matrix from hidden layer to output layer is
undetermined. We choose N¼10 000 groups of input–output data
fuðkÞ; yðkÞg, where u(k) is assigned from �1 to 1. Then we can
determine the weight matrix from hidden layer to output layer by
VRFT algorithm to obtain the controller. Finally, we can test the
performance of the designed controller by different reference
input signals.

When the reference signal is chosen as a unit step response and
the initial output of the system is ½0;0�T, the performance of the
designed controller is illustrated in Fig. 2. When the reference
signal is chosen as damping sine and cosine curve and the initial
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output of the system is ½0;0�T, the performance of the designed
controller is illustrated in Fig. 3.

From Figs. 2 and 3, we can see that the designed controller has
a good performance with the reference signal of step response and
damping sine–cosine signal. Actually, it also works well with the
reference signal as ramp signal, sine–cosine signal and other
familiar signals. This result verifies the effectiveness of VRFT and
that the controller designed by the virtual reference signal is also
suitable for other desired reference signals.

5.2. Noisy environment

Consider the following discrete-time MIMO nonlinear system:

yðkþ1Þ ¼ 10 tanhð0:1AyðkÞÞþtanhðBuðkÞÞþν ð89Þ

where yðkÞAR2, uðkÞAR2, A and B are defined by (86) and ν is the
white noise with expectation 0 and variance 0.01. The reference
model is also defined by (88).

The structure of the neural network is the same as the one in
the noiseless environment. We choose N¼10 000 groups of input–
output data fuðkÞ; yðkÞg generated by system (89). Then we deter-
mine the weight matrix from hidden layer to output layer by VRFT
algorithm to obtain the controller and test the performance of the
designed controller by different reference input signals.

When the reference signal is chosen as a unit step signal and
the initial output of the system is ½0;0�T, the performance of the
designed controller is illustrated in Fig. 4. When the reference
signal is chosen as damping sine and cosine curve and the initial
output of the system is ½0;0�T, the performance of the designed
controller is illustrated in Fig. 5.

From Figs. 4 and 5, we can see that when the system contains
white noise, the developed method can also design a controller
which has the similar performance with the situation of noiseless.
This result shows that our method can deal with noise and obtain
the optimal controller in noisy environment.

6. Conclusion

In this paper, we developed a data-driven controller design
method for MIMO nonlinear systems by VRFT. We presented the
optimization problems of model reference control and VRFT in
MIMO nonlinear systems and proved the equivalence of them
under ideal conditions. For the first time, we provided the
relationship between the bounds of optimization problems of
model reference control and VRFT. We introduced neural network
as a parameterized controller trained by the least square method
in the implementation of VRFT and the simulation results demon-
strate the validity of the developed method. As shown in
Theorems 3 and 4, the derivative of the plant has an influence
on the bound of optimization problem of model reference control.
In the future, we will try to introduce a linear or nonlinear filter to
reduce the influence of the derivative and improve the control
performance.
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