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Abstract—Piezoelectric actuators (PEAs) have been
widely used in nanotechnology due to their characteristics
of fast response, large mass ratio, and high stiffness.
However, hysteresis, which is an inherent nonlinear prop-
erty of PEAs, greatly deteriorates the control performance
of PEAs. In this paper, a nonlinear model predictive control
(NMPC) approach is proposed for the displacement track-
ing problem of PEAs. First, a “nonlinear autoregressive–
moving-average with exogenous inputs” (NARMAX) model
of PEAs is implemented by multilayer neural networks;
second, the tracking control problem is converted into
an optimization problem by the principle of NMPC, and
then, it is solved by the Levenberg–Marquardt algorithm.
The most distinguished feature of the proposed approach
is that the inversion model of hysteresis is no longer a
necessity, which avoids the inversion imprecision problem
encountered in the widely used inversion-based control
algorithms. To verify the effectiveness of the proposed
modeling and control methods, experiments are made
on a commercial PEA product (P-753.1CD, Physik Instru-
mente), and comparisons with some existing controllers
and a commercial proportional–integral–derivative con-
troller are conducted. Experimental results show that the
proposed scheme has satisfactory modeling and control
performance.

Index Terms—Neuralnetworks,nonlinearautoregressive–
moving-average with exogenous inputs (NARMAX), piezo-
electric actuator (PEA), predictive control.

I. INTRODUCTION

NANOTECHNOLOGY has become an important tech-
nique in modern manufacturing and process industries

during the past decade. Due to its great performance in precise
positioning, piezoelectric actuators (PEAs) have been widely
used in nanopositioning applications such as computer com-
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ponents [1] and scanning tunneling microscopes [2]. However,
hysteresis, which is the dominant nonlinear characteristic in the
dynamics of PEAs, can greatly influence the control perfor-
mance in practical applications. Hysteresis is a kind of memory
phenomenon that can be usually found in ferromagnetic ma-
terials and piezoelectric ceramics. Because of the existence of
hysteresis, the displacement of PEAs depends not only on cur-
rent control inputs but also on historical inputs. In addition, the
frequency of an input signal can also influence the dynamical
response of PEAs (i.e., the rate-dependent property).

The modeling of hysteresis is an indispensable part in im-
proving the control performance of PEAs. Several models have
been proposed to describe the hysteresis effect, which can be
generally classified into two folds, i.e., physics-based models
and phenomenon-based models [3]. The physics-based models
have a clear physical interpretation. However, they suffer from a
complicated structure and a huge computation cost. By contrast,
the phenomenon-based models are obtained from experimen-
tal data and have relatively simple mathematical descriptions,
which become popular in real-world applications.

Here, we briefly review some typical models of hystere-
sis. Physics-based model: In a Preisach model, hysteresis is
described by combining an infinite number of Preisach hys-
teresis operators (each operator has two main parameters to
tune) [4]. The difficulty in using a Preisach model lies in
dealing with its integral representation. In a Prandtl–Ishlinskii
model and its modified models, hysteresis is interpreted by
a different operator, i.e., “backlash” [5], [6]. Another widely
used model is the Maxwell resistive capacitor model, where
hysteresis is modeled by a finite number of elastoslide elements
[7]. One common limitation of the aforementioned physics-
based models is that they can only represent the hysteresis
behavior of PEAs under a fixed-frequency input signal (the so-
called rate-independent model). Phenomenon-based model:
The general idea is to use system identification approaches
to represent the hysteresis in PEAs. For example, in [8], a
linear autoregressive–moving-average (ARMA) approach was
employed to model the hysteresis. In [9], a neural-network-
based nonlinear model was proposed for hysteresis. An intel-
ligent hysteresis model based on a least square support vector
machine was developed in [10], and it was also used for the
compensation of the hysteresis behavior. In [11], a recurrent
fuzzy model was studied to capture the behaviors of PEAs.
It should be noted that, by combining a phenomenon-based
hysteresis model and some lower order filters, the combined
model can have adaptability with the variations of the input’s

0278-0046 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



7718 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 12, DECEMBER 2015

frequency, which represents the rate-dependent property. Fol-
lowing this idea, the model structure that is composed of a
hysteresis submodel and a dynamic submodel (a lower order
filter) is commonly adopted in the modeling of PEAs. Under
this structure, the hysteresis submodel is independent of the
changing rate of the input voltage, and the rate-dependent prop-
erty is reflected by the dynamic submodel [3]. Therefore, most
of the phenomenon-based models belong to the rate-dependent
model.

In addition to the modeling of PEAs, how to design effective
model-based control algorithms for PEAs is also a research
focus in literature. Inversion-based feedforward control is the
most popular method, where a high-gain problem in feedback
methods is no longer a bottleneck [12]. In this method, the
inversion of the hysteresis submodel is obtained first. Then, this
inversion is used to compensate for the hysteresis nonlinearity.
Once the hysteresis submodel is compensated, the only thing
left is designing the feedback controller for the dynamic sub-
model. For instance, a proportional–integral–derivative (PID)
controller combined with an inverse Preisach hysteresis model
was proposed to control a PEA [13]. With the inverse Preisach
model, a proportional–derivative controller based on the root
locus method was introduced into the tracking control of
a piezoceramic actuator [14]. In [15], a closest match al-
gorithm for getting the inversion model of hysteresis was
used in the open-loop tracking control. However, the track-
ing performance of the inversion-based method is highly de-
pendent on the precision of the inversion of the hysteresis
submodel.

It should be noted that the calculation of the inversion of the
hysteresis submodel is not an easy task. The challenge of such
methods is the modeling complexity. Meanwhile, the online
computation of the inverse hysteresis submodel is an extra
burden for the real-time tracking control of PEAs. The inversion
calculation methods can be classified into model-based and
algorithm-based methods. First, a model-based method is to
identify the inversions of some intermediate functions and to
use these intermediate functions’ inversions to approximate
hysteresis models [14]. For instance, the inverse Preisach model
does not have an analytical solution, and only a model-based
inversion approximation approach can be used. Although an
inverse Prandtl–Ishlinskii model can be calculated analytically,
the large computation time is still unacceptable [16]. In ad-
dition, some existing hysteresis models may not be invertible
at all. Second, an algorithm-based method is also used in
the identification of inverse hysteresis models [17], [18]. The
algorithm-based method usually introduces iterative algorithms
to identify inverse hysteresis models. The main limitation of
this method is also the large computation cost and the low
convergence rate [3].

To deal with the imprecision of inversion models, robust con-
trol ideas are introduced into the compensation of hysteresis.
For example, an H∞ controller was designed for the tracking
control of PEAs in [19]. However, robust control is a relatively
conservative method, which causes difficulties in real-world
applications. In recent years, some advanced feedback control
methods have been introduced in the field of control of PEAs.
In [20], a nonlinear PID controller was used for a compliant

nanopositioning stage, and an extended state observer was
developed to improve the performance of the PID controller.
In [21], a digital sliding-mode controller was introduced in
the tracking control of a piezo-driven micropositioning system.
This scheme has a rapid implementation because it is based on
a linear input–output model of the micropositioning system. In
[22], both a least square support vector machine and a rele-
vance vector machine were used to formulate rate-dependent
hysteresis models, and these models are then combined
with a PID controller, resulting in a model-based feedback
controller.

The model predictive control (MPC) method is widely used
in industrial applications [23], [24], and it shows great perfor-
mance and robustness in practice [25]. However, it is rarely
applied in the tracking control of PEAs. In [26], an inversion-
based MPC method with an integral of the error state vari-
able was proposed for the displacement tracking of PEAs.
However, the MPC approach is only used to deal with the
dynamic submodel. The hysteresis is described by the Duhem-
based model and then compensated by its inversion. Therefore,
the controller proposed in [26] still belongs to the inversion-
based control category. The imprecision of an inverse hysteresis
model dramatically degrades the control performance of PEAs
as well. In [27], the MPC method was used in the control of
a shape-memory-alloy-based manipulator, which also has the
inherent hysteresis nonlinearity.

In this paper, a neural-network-based inversion-free con-
troller is proposed for the displacement tracking control of
PEAs. First, a PEA is modeled by cascading a hysteresis
submodel and a dynamic submodel. By the results in [28]–[30],
this architecture can lead to a rate-dependent model of PEAs.
Two “nonlinear ARMA with exogenous inputs” (NARMAX)
models are designed to represent the hysteresis submodel and
the dynamic submodel, respectively. Both NARMAX models
are implemented by multilayer feedforward neural networks.
Second, a nonlinear MPC (NMPC) approach is proposed to
deal with the displacement tracking problem. The NMPC
method can avoid the calculation of the inversion of hys-
teresis models, which saves the computation resources and is
suitable for online control. Following the MPC principle, the
tracking control problem is transformed into an optimization
problem, where the difference between the desired displace-
ment and the model’s predicted displacement is minimized.
The Levenberg–Marquardt (LM) algorithm is then introduced
to solve the corresponding optimization problem. Finally, to
verify the effectiveness of the proposed modeling and con-
trol algorithms, experiments were conducted on a commer-
cial PEA product (P-753.1CD, Physik Instrumente, Karlsruhe,
Germany). By the experimental results and corresponding com-
parisons, the tracking performance of the proposed controller is
satisfactory.

The rest of this paper is organized as follows. Section II
discusses the neural-network-based NARMAX model of PEAs;
Section III gives the idea of using NMPC to deal with the
displacement tracking problem of PEAs. Experimental verifica-
tions and some comparisons are conducted in Section IV, and
Section V concludes this paper with final remarks and gives the
future work.
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Fig. 1. Schematic of the model of PEAs.

II. NARMAX-BASED MODEL OF PEAS: MULTILAYER

FEEDFORWARD NEURAL NETWORK APPROACH

Since the behavior of PEAs is dependent on a control input’s
frequency (the rate-dependent property), a PEA is modeled
by cascading a hysteresis submodel and a dynamic submodel,
which is shown in Fig. 1. This structure is usually adopted
in the modeling of PEAs. Input voltage u acts on the hys-
teresis submodel, and the output of the hysteresis submodel
is an equivalent mechanical force, which is represented by
f . Subsequently, f acts on the dynamic submodel and then
produces the actual displacement y of PEAs. How to identify
these two submodels is to be given in the following sections,
which is based on the NARMAX idea and the neural network
approximation.

NARMAX is a very effective way for nonlinear system
identification. It has a great ability of predicting the future
output of systems that have complicated nonlinear dynamical
characteristics [31]. Hence, two submodels of PEAs can be
fitted by NARMAX models. The generic representation of a
NARMAX model is given as follows [32]:

y(t) = g [y(t− 1), . . . , y(t− r), u(t− 1), . . . , u(t− s)] (1)

where y(t) and u(t) represent the output and input of the NAR-
MAX model, respectively; and integers r and s are the corre-
sponding maximum orders for y(t) and u(t), respectively. How
to determine the interconnection among y(t− 1), . . . , y(t−
r), u(t− 1), . . . , u(t− s) (i.e., determine nonlinear function
g(·)) is a challenging job.

Due to their universal approximation ability, neural networks
such as a backpropagation neural network and a radial-basis-
function neural network have been widely applied in the field
of function approximation. This paper adopts a multilayer feed-
forward neural network to implement the NARMAX represen-
tations of the hysteresis submodel and the dynamic submodel
as follows:

f(t) = ghys [f(t−1), . . . , f(t−na), u(t−1), . . . , u(t−nb)]

y(t) = gdyn [y(t−1), . . . , y (t−n′
a), f(t−1), . . . , f (t−n′

b)] .
(2)

The multilayer feedforward neural networks are used to
approximate the unknown nonlinear mappings ghys(·) and
gdyn(·).

A. Hysteresis Submodel of PEAs

The hysteresis nonlinearity of PEAs depends not only on
current inputs but also on historical inputs. The structure of
the multilayer feedforward neural network is shown in Fig. 2.
Specifically, this neural network has three layers, i.e., the input

Fig. 2. Neural network structure for the hysteresis submodel.

layer, the hidden layer, and the output layer. A tangent sigmoid
function is chosen as the activation function of the neurons in
the hidden layer, whereas a linear unit mapping function is the
activation function of the neurons in the input and output layers.
The input–output relationship of this neural network can be
therefore written as follows:

f(t) =

q∑
j=1

wo
jσ

(
p∑

i=1

wh
jizi(t) + wh

j0

)
+ wo

0 (3)

where p = na + nb and q are the numbers of neurons in the
input and hidden layers, respectively. zi(t)(i = 1, . . . , p) are
the inputs of this neural network. According to the structure
of the NARMAX model (2), {z1(t), . . . , zi(t)} are {f(t− 1),
. . . , f(t− na), u(t), . . . , u(t− nb)}. σ(·) denotes the hyper-
bolic tangent activation function, and

σ(x) =
e2x − 1

e2x + 1
. (4)

For convenience, (3) can be rewritten in a compact form as
follows:

f(t) = W oσ
(
WhZ(t)

)
(5)

where Wh ∈ �q×(p+1) and W o ∈ �1×(q+1) are the weight
matrices of the hidden layer and the output layer, respectively,
Z = [1, z1(t), z2(t), . . . , zp(t)]

T ∈ �p+1, and σ(WhZ(t)) =
[1, σ(Wh

r1Z), σ(Wh
r2Z), . . . , σ(Wh

rqZ)]T ∈ �q+1 (Wh
ri repre-

sents the ith row of matrix Wh).
It is notable that the rate dependence in the PEAs comes

from the input voltage with different frequencies. Under the
model structure in Fig. 1, the rate dependence is captured
by the dynamic submodel [2]. For this reason, the dynamic
submodel can be seen as a unit mapping when the frequency
of the input voltage is fixed. Hence, the output of the hysteresis
submodel, i.e., f(t), can be replaced by the real displacement
measurement of the PEAs in the model identification process
when the excited signal is of a fixed frequency.
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Fig. 3. Neural network structure for the dynamic submodel.

B. Dynamic Submodel of PEAs

The dynamic submodel of PEAs is usually treated as a linear
low-order model [8], [29]. However, by some reports in [33],
the dynamic behavior of PEAs is not strictly linear. To improve
the accuracy of the dynamic submodel, a multilayer feedfor-
ward neural network is introduced to interpret the dynamic
submodel, whose structure is shown in Fig. 3. The input–output
relationship of this neural network can be written as follows:

y(t) =

q′∑
j=1

vojσ

⎛
⎝ p′∑

i=1

vhjixi(t) + vhj0

⎞
⎠+ vo0

=V oσ
(
V hX(t)

)
(6)

where the weight matrices and the parameters have the
same meanings as those in the hysteresis submodel. V h ∈
�q′×(p′+1), and V o ∈ �1×(q′+1); X = [1, x1(t), x2(t), . . . ,
xp′ (t)]T ∈ �p′+1, and σ(V hX) = [1, σ(V h

r1
X), σ(V h

r2
X), . . . ,

σ(V h
rq′

X)]
T ∈ �q′+1.

C. Identification of Hysteresis and Dynamic Submodels

As aforementioned, two different multilayer feedforward
neural networks are used to approximate the hysteresis and
dynamic submodels, respectively. The main challenge in the
identification is to obtain optimal weight matrices. To this
end, experiments are first conducted on the PEA to collect
some input–output data pairs. Then, the weight matrices are
determined in a supervised training fashion.

The hysteresis submodel should be first identified because
the identification of the dynamic submodel needs the output
data of the hysteresis submodel. An excited signal with a
fixed frequency is applied on the PEA. Due to the frequency
of the excited signal being fixed, the displacement of the
PEAs is equal to the output of the hysteresis submodel. Let
the measured data set for training be S = {(u(t), dh(t))|t =
1, . . . , N}, where dh(t) is the displacement of the PEAs, u(t)
is the fixed-frequency input signal, and N denotes the num-
ber of sampled data pairs. Let W = [W o,Wh

r1
, . . . ,Wh

rq
]
T ∈

�(q×(p+1)+1×(q+1))×1 be the weight vector for training; then,
the optimal W can minimize the mean-square-error criterion as
follows:

J(W ) =
1

2N
(Dh − F )T (Dh − F ) (7)

where Dh=[dh(1), dh(2), . . . , dh(N)]T , and F =[f(1), f(2),
. . . , f(N)]T . The optimization problem defined by (7) is a
nonlinear least square problem, and it can be solved in the
following iterative way:

W (i+1) = W (i) + λ(i)μ(i) (8)

where integer i stands for the index of iteration, λ(i) is the step
size to control the convergence rate, and μ(i) is the ith search
direction, which is calculated by training algorithms to make
sure that the value of (7) can be descended in each iteration.

In literature, many training algorithms can give a solution to
(8). In this paper, the LM training method is employed to train
the neural networks due to its rapid convergence and robustness
properties [34]. Marquardt gave the following update rule [36]
for solving (8):{

W (i+1) = W (i) + μ(i)(
R
(
W (i)

)
+ λ(i)I

)
μ(i) = −G

(
W (i)

) (9)

where G(W (i)) = ∂J/∂W is the gradient matrix of (7) with
respect to W . It is well known that the calculation of the
inversion of the Hessian matrix of (7) is very expensive [35].
For this reason, R(W (i)), which is the so-called Guass–Newton
Hessian matrix, is used to replace the real Hessian matrix. The
calculation of R(W (i)) can be found in [35]. λ(i) should be
adjusted in each iteration [36]. Hence, we introduce a modified
step in the LM algorithm, which is summarized in Algorithm 1.

Algorithm 1 Training Method of Multilayer Feedforward
Neural Networks for the Hysteresis Submodel and the Dy-
namic Submodel

1: Choose initial values for W (0) and λ(0), and set error
tolerance ε > 0;

2: Calculate [R(W (i)) + λ(i)I]μ(i) = −G(W (i)) to deter-
mine search direction μ(i);

3: Calculate r(i)=(J(W (i))−J(W (i)+ μ(i)))/(J(W (i))−
L(i)(W (i)+μ(i))), where L(i)(W (i)+μ(i))=J(W (i))+

μ(i)T G(W (i)) + (1/2)μ(i)TR(W (i))μ(i)T ;
4: If r(i) < 0.25, set λ(i) = 2λ(i);
5: If r(i) > 0.75, set λ(i) = 1/2λ(i);
6: If J(W (i) + μ(i)) < J(W (i)), then set W (i+1) = W (i) +

μi, λ(i+1) = λ(i), and i = i+ 1;
7: If |J(W (i) + μ(i))− J(W (i))| > ε, go to 2; otherwise, the

algorithm stops.

After obtaining the hysteresis submodel, the dynamic sub-
model can be identified as well. Since the dynamic sub-
model describes the rate dependence of the PEAs, the excited
signal for its identification is of varied frequencies. In the
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Fig. 4. Schematic of the NMPC method.

identification process, the excited signal is applied on the PEA,
and then, the output data of the hysteresis submodel and the real
displacement measurement of the PEAs are collected as train-
ing data pairs S = {(f(t), dd(t))|t = 1, . . . , N}, where f(t)
is the virtual mechanical force generated from the hysteresis
submodel, and dd(t) is the real displacement of the PEAs under
the input voltage of varied frequencies.

Let V = [V o, V h
r1
, . . . , V h

rq′
]
T ∈ �(q′×(p′+1)+1×(q′+1))×1;

the optimization problem is

min
V

J(V ) =
1

2N

N∑
i=1

(dd(i)− y(i))2 . (10)

Then, Algorithm 1 can also be employed to solve the optimiza-
tion problem defined by (10).

III. NMPC-BASED DISPLACEMENT TRACKING

CONTROL OF PEAS

Inversion-based control schemes are widely used in the
controller design of PEAs. However, obtaining the model’s
inversion requires huge computation resources. Therefore, an
inversion-free controller design method may be a better choice
for displacement tracking control. However, this kind of ap-
proach is rarely reported in literature. Inspired by this idea,
an inversion-free control scheme, i.e., NMPC, is used for the
displacement tracking control of PEAs.

To suppress the unknown disturbances in real-time applica-
tions, the proposed NMPC method is designed in a finite hori-
zon of prediction, and the basic control schematic is illustrated
in Fig. 4. The reference signal is the desired trajectory of the
PEAs. The proposed NARMAX model is used as a predictor of
the PEA’s displacement.

The purpose of tracking control is to minimize the distance
between the desired trajectory and the predicted displacement
of the PEAs. Meanwhile, the changing rate of the controller’s
output is another factor of interest. To summarize, the control
objective can be written to minimize the following criterion:

J (U(t)) =
[
R(t)− Ŷ (t)

]T [
R(t)− Ŷ (t)

]
+ ρUT (t)U(t)

=ETE(t) + ρUT (t)U(t) (11)

where R(t)=[r(t+N1), . . . , r(t+N2)]
T , Ŷ (t)=[ŷ(t+N1),

. . . , ŷ(t+N2)]
T , E(t)=[e(t+N1), . . . , e(t+N2)]

T , U(t) =
[Δu(t), . . . ,Δu(t+Nu− 1)]T , Δu(t) = u(t)− u(t− 1), and
e(t) = r(t) − ŷ(t). ŷ(t) is the predicted displacement of the

PEAs by the NARMAX model proposed in Section II. Integer
N1 > 0 denotes the minimum prediction horizon, and integer
N2 > N1 is the maximum prediction horizon; Nu denotes the
control horizon, and r(t) denotes the reference signal of the
PEAs. To avoid the excessive change in u(t), a penalty term
ρUT (t)U(t) is added in the objective function, and ρ > 0 is
the penalty parameter. Before realizing the control scheme,
the predicted displacements of the PEAs, i.e., Ŷ (t), should be
obtained first.

Provided the measured (current and historical) displacements
of the PEAs and the NMPC controller’s outputs, the predicted
displacement of the PEAs can be calculated by the proposed
NARMAX as follows:

ŷ(t+ k) =V oσ
(
V hX(t+ k)

)
=V oσ

(
V h [1, y(t+ k − 1), . . . , y (t+ k − n′

a) ,

f(t+ k), . . . , f (t+ k − n′
b)]

T
)

=V oσ
(
V h [1, y(t+ k − 1), . . . , y (t+ k − n′

a) ,

W oσ
(
WhZ(t+ k)

)
, . . . ,

W oσ
(
WhZ (t+ k − n′

b)
)]T)

(12)

where k ∈ {N1, . . . , N2} is the predicted step index. After
obtaining the predicted displacements, the control scheme of
the NMPC method can be achieved. Notice that criterion (11)
is an optimization problem that can be also solved by the
LM algorithm used in Section II-C. However, there is a slight
difference compared with the solution to (11). The Hessian
matrix of the objective function can be analytically obtained
as follows:

H
[
U (i)

]
=

∂2J(U)

∂U2

=
∂

∂U

(
∂Y T

∂U
E(t)

)
+ 2ρ

∂Û (T )

∂U

∂Û

∂U
. (13)

Then, we use the real Hessian matrix instead of Guass–Newton
Hessian matrix R(W (i)) in the LM algorithm. It can be seen
that the second term in (13) is positive semidefinite, whereas
the positive definiteness of the first term in (13) cannot be
guaranteed. Therefore, we take a modified step in the LM algo-
rithm that is summarized in Algorithm 2. Meanwhile, penalty
parameter ρ can be chosen to be relatively large to ensure the
positive definiteness of [H(U (i)) + λ(i)I].

Algorithm 2 Calculate the NMPC Controller’s Output

1: Initialize ρ > 0, λ(0), and the maximum iteration, and set
tolerance ε > 0;

2: Try Cholesky factorization on [H(U (i)) + λ(i)I], and if
the factorization fails (the matrix is not positive definite),
set λ(i) = 4λ(i) and go to 2;

3: Calculate [H(U (i)) + λ(i)I]μ(i) = −G(U (i)) to deter-
mine search direction μ(i);
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Fig. 5. Experimental setup.

4: Calculate J(U (i)+λ(i)) and r(i)=(2J(U (i))− 2J(U (i)+
μ(i)))/(λ(i)(μ(i))Tμ(i) − (μ(i))TG[U (i)]);

5: If r(i) < 0.25, set λ(i) = 2λ(i);
6: If r(i) > 0.75, set λ(i) = 1/2λ(i);
7: If J(U (i) + μT ) < J(U (i)), then set U (i+1) = U (i) + μi,

λ(i+1) = λ(i), and i = i+ 1;
8: If |J(U (i) + μ(i))− J(U (i))| < ε or the maximum itera-

tion number is met, stop the algorithm; otherwise, go to 3.

Algorithm 2 may cost a long time to run over. However, in a
real-time application, it must be accomplished in an allowable
period. Due to this requirement, a parameter, i.e., the maximum
iteration number, is introduced in Algorithm 2.

It should be noted that many other methods can be used
to solve the optimization problem generated by the NMPC
method. For example, a recurrent neural network is a promising
weapon that is featured by its parallel computation nature
[37]–[39]. In future work, some efforts are to be made toward
solving the NMPC of PEAs by recurrent neural networks.

IV. EXPERIMENTS AND DISCUSSION

To verify the effectiveness of the proposed modeling and
control algorithms, experiments are conducted on a commer-
cial PEA product (P-753.1CD, Physik Instrumente). We set
the range of the input voltage from −10 to 90 V to avoid
possible excess of the PEA’s driver. The PEA can perform a
high-precision horizontal movement up to 15 μm. A built-in
capacitive displacement sensor is provided for measurement.
To implement the connection between the host computer and
the PEA, both of them were wired to an input–output data
acquisition board (PCI-1716, Advantech, Beijing, China). The
sampling time in the following experiments is 0.05 ms. By
means of Real-Time Windows Target, the proposed modeling
and control algorithms are programmed in the SIMULINK
environment. The experimental setup is shown in Fig. 5.

A. Model Verification and Comparison

The hysteresis submodel should be identified first. Because
the hysteresis nonlinearity dominates the performance of PEAs
under a low-frequency input voltage [8], an excited sinusoid
voltage signal whose frequency is 1 Hz is used to excite the
PEA. By considering the whole moving range of the PEAs,
the input voltage is set to be 40 sin(2πt− 0.5π) + 50. With the
measured displacements and the excited signal, weight matrices

TABLE I
MODELING PERFORMANCE OF THE HYSTERESIS SUBMODEL: THE

RMS ERROR AND THE MAXIMUM (MAX) ERROR

TABLE II
MODELING PERFORMANCE OF THE DYNAMIC SUBMODEL:

THE RMS ERROR AND THE MAXIMUM (MAX) ERROR

Wh and W o can be trained by the algorithm proposed in
Section II. The number of hidden-layer neurons in the multi-
layer feedforward neural network for the hysteresis submodel
is determined in a trial-and-error manner, and this number is set
to be five in this specific application. To determine the values of
integers na and nb, a comparison experiment of the hysteresis
submodel’s modeling performance is given in Table I. The
hysteresis property means that the current displacement of the
PEAs is relevant with its historical displacements. Therefore,
when na = 0 (the hysteresis nonlinearity is only affected
by the current input voltage), the modeling performance of
the hysteresis submodel is not acceptable (the RMS error is
0.5656 μm greater than that of the other cases). Furthermore,
the models with na ∈ {3, 4, 5} have almost the same model
matching. However, with the increase in na, the computational
burden becomes heavier. Therefore, na is finally chosen to be
three. Furthermore, nb = 2 is determined in a similar way.

To identify the dynamic submodel, a mixed sinusoid voltage
signal with varied amplitudes and frequencies is applied to
the PEA. The excited signal f for the input of the dynamic
submodel can be gathered through the obtained hysteresis
submodel, and the output of the dynamic submodel is the
real displacement of the PEAs. By Algorithm 1, the weight
matrices (V h and V o) of the dynamic submodel are trained
as well. The hidden layer of the neural network includes five
neurons, and the influences of the selections of n′

a and n′
b on

the dynamic submodel are shown in Table II. If n′
a = 0, the

modeling error is obviously greater than that of the model with
n′
a = 2. Furthermore, with the increase in the excited signal’s

frequency, the model with n′
a = 2 has the most satisfactory

model matching (the RMS error is only 0.0355 μm for the
200-Hz excited signal). Hence, we set n′

a = 2 and n′
b = 1.

To compare the modeling performance between the proposed
model and the other models in literature, two comparison
experiments are conducted.

1) Comparison Between Proposed Neural-Network-
Based Dynamic Submodel and Linear Dynamic Sub-
model: To compare the proposed neural-network-based
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Fig. 6. Comparison experimental results with the low-frequency input
voltage.

dynamic submodel with the linear dynamic submodel in lit-
erature, a linear ARMA with exogenous inputs (ARMAX)-
based model is identified as well. The training data set is the
same as the data set used in the identification of the nonlinear
dynamic submodel. The LM algorithm is used to identify the
linear dynamic submodel in an offline manner. The obtained
linear model can be written in the following form of a discrete
transfer function:

G(Z) =
0.4931z − 0.2931

z2 − 1.504z + 0.7041
.

The hysteresis submodel is cascaded with the neural-
network-based dynamic submodel and the linear dynamic sub-
model, resulting in the proposed model and the model with
linear dynamics, respectively. As shown in Fig. 6, two sinusoid
signals with different frequencies (1 and 10 Hz, respectively)
act on the proposed model, the model with the linear dynamic
submodel, and the real PEA. In this low-frequency setup, the
fitting performance of the proposed model and that of the model
with the linear dynamics are almost the same. These results
suggest that both models have a good ability of matching the
real behavior of PEAs with the low-frequency input voltage.
However, the results with the input voltage of high frequencies
(50, 100, and 200 Hz) are much different, which are given in
Fig. 7. For the 200-Hz excited sinusoid signal, the modeling
error is between −0.1830 and 0.1394 μm. By contrast, with
the linear dynamic submodel, the modeling error is between
−0.4537 and 0.4294 μm. From the experimental results, with
the increase in the input frequency, the proposed nonlinear

Fig. 7. Comparison experimental results with the high-frequency input
voltage.

dynamic submodel has better modeling performance than the
linear model.

2) Comparison Between Proposed Model and Duhem-
Based Model: To compare with the physics-based model, the
Duhem-based model is employed to compare with the proposed
NARMAX-based model. The comparison results are given in
Table III. For the excited sinusoid signal with 200 Hz, the
RMS error of the proposed model is 0.1013 μm less than that
of the Duhem-based model. In addition, the MAX error is
0.0268 μm less than the Duhem-based model. Therefore, the
proposed method has better modeling performance than the
Duhem-based model.

B. Verification of NMPC Algorithm

The proposed NMPC method is used for the displacement
tracking control of the PEAs. To verify the performance of the
NMPC method under reference signals with different frequen-
cies, some mixed sinusoid waves with different frequencies are
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TABLE III
MODELING PERFORMANCE COMPARISON BETWEEN THE PROPOSED

MODEL AND THE DUHEM-BASED METHOD: THE RMS
ERROR AND THE MAXIMUM (MAX) ERROR

Fig. 8. Tracking performance of PEAs under the step reference with
different ρ.

used as the desired tracking trajectories. By the obtained PEA’s
model, the NMPC method has been programmed in a real-time
controller.

The maximum iteration number in Algorithm 2 is an impor-
tant parameter for the NMPC method. The control performance
could be improved with the increase in the maximum iteration
number. However, it will take a longer time for the calculation
of Algorithm 2 if the maximum iteration number is too large.
There is a tradeoff between the control performance and the
efficiency, and the maximum iteration number is chosen to be
five in this paper. Moreover, N1, N2, and ρ in Algorithm 2 are
set to be 1, 7, and 50, respectively.

The step responses of the PEA with different ρ are given
in Fig. 8. With the increase in ρ, the overshoot of the PEA is
reduced. Meanwhile, the rising time becomes slightly longer
because the large penalty parameter ρ results in a relatively
small control effort.

Next, the tracking experiments under the sinusoid trajectories
of different frequencies (1, 5, 10, and 50 Hz) are made. As
shown in Figs. 9 and 10, the real displacements of the PEAs
can track the reference trajectories well. This is because the
errors caused by the inversion calculation can be avoided
since the proposed NMPC method is an inversion-free method.
Meanwhile, the NMPC method is based on the feedback struc-
ture so that the unknown disturbance can be rejected. By taking
these advantages, the tracking errors can be reduced into a
satisfactory range by the proposed NMPC method.

Fig. 11 gives the result of tracking the mixed reference signal
that is composed of three sinusoid waves. For the reference
that has different amplitudes and varied frequencies from 5 to
10 Hz, the range of the tracking errors is between −0.03 and
0.02 μm in the steady-state phase. The rising time of the control
system is also acceptable. For the reference with 10–50 Hz, the

Fig. 9. Tracking performance of the PEAs under 1- and 5-Hz
references.

Fig. 10. Tracking performance of the PEAs under 10- and 50-Hz
references.

Fig. 11. Tracking performance of the PEAs under a mixed-frequency
reference. (Left) 5–10 Hz. (Right) 10–50 Hz.

tracking errors can be still reduced to a small neighborhood of
the origin.

In addition, we find that the tracking performance of the
proposed NMPC method could be improved when the sampling
time of the PEAs is decreased. However, the decrease in the
sampling time is a great challenge for the hardware because the
proposed algorithm may not be implemented in a very short
sampling period. Therefore, there is also a tradeoff between the
performance and the implementation.

To further study the control performance of the proposed
NMPC method, two comparison experiments are conducted on
the PEA.

1) Comparison Between Proposed Method and Com-
mercial PID Controller: The commercial PID controller is
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TABLE IV
TRACKING PERFORMANCE COMPARISON BETWEEN THE PROPOSED

METHOD AND THE COMMERCIAL PID CONTROLLER (WITHOUT
LOADS): THE RMS ERROR AND THE MAXIMUM (MAX) ERROR

provided by Physik Instrumente, and it is embedded in the
PEA’s hardware. The tracking reference is defined as r(t) =
4 sin(2πft− (π/2)) + 4. The RMS tracking error and the
MAX tracking error of both controllers are given in Table IV.
For the 50-Hz reference, the RMS tracking error is 2.3528 μm
less than that of the commercial PID controller. In addition,
the MAX error of the proposed method has very few changes
with the increase in the excited signals’ frequencies. This
implies that the proposed method can deal with the rate-
dependent property of the PEAs. By contrast, the MAX error
of the commercial PID controller has an apparent increase
under different references. When the frequency of the reference
signal increases up to 100 Hz, the tracking performance of
the proposed method relatively degrades. This deterioration is
possibly caused by the precision of the neural-network-based
PEA model. In Table III, it can be seen that the modeling error
increases as the frequency of the reference signal increases
up to 100 Hz. However, even in the high-frequency case,
the proposed algorithm still outperforms the commercial PID
algorithm.

The aforementioned experiment is made when the PEA has
no load. The following comparison experiments are made with
the consideration of external loads. The model of the PEAs
is identified in the no-load situation. Moreover, the 10- and
50-Hz sinusoid signals are chosen as the tracking references.
The comparison results are given in Table V. The NMPC
method has satisfactory tracking performance with different
loads on the PEA. In addition, compared with the commercial
PID controller, better tracking performance can be found. In
the best case (the 10-Hz sinusoid reference), the RMS error of
the NMPC method is 0.5889 μm less than that of the commer-
cial PID controller. Moreover, the MAX error of the NMPC
method is obviously smaller. When the reference’s frequency
is increased, the commercial PID controller has deteriorated
tracking performance (the RMS error is increased by at least
1.8088 μm). By contrast, the NMPC method still has good
tracking performance (the RMS error is only increased by about
0.0467 μm). These results imply that the NMPC method could
deal with the external loads on the PEA. In addition, it can
be seen that the MAX error at f = 50 Hz without loads is
bigger than the error at the same frequency with loads. This
phenomenon is mainly caused by the noise of the PEA’s built-

TABLE V
TRACKING PERFORMANCE COMPARISON BETWEEN THE PROPOSED

METHOD AND THE COMMERCIAL PID CONTROLLER (WITH DIFFERENT
LOADS): THE RMS ERROR AND THE MAXIMUM (MAX) ERROR

TABLE VI
COMPARISON BETWEEN THE NMPC METHOD AND

THE METHOD IN [26]

in displacement sensor. Through several experimental tests, we
find that the noise’s amplitude is around 2 nm. Meanwhile,
in Tables IV and V, the maximum difference between the
MAX error at f = 50 Hz without loads and the MAX error at
f = 50Hz with loads is only 0.8 nm, which is within the noise’s
amplitude.

2) Comparison With Method Proposed in [26]: The
experimental results are listed in Table VI. The tracking ref-
erence is defined as r(t) = 5 sin(2πft− (π/2)) + 5. It can be
seen that the NMPC method has better tracking performance
than the method in [26]. In the best case, the RMS error is
0.1099 μm less than the error of the method in [26].

V. CONCLUSION AND FUTURE WORK

PEAs are widely used in nanotechnology. The modeling and
control of PEAs have drawn great attention in the literature.
In particular, the displacement tracking control of PEAs is of
great significance in practical applications. In this paper, an
NMPC controller, which is an inversion-free method, has been
proposed to solve the tracking control problem of PEAs. As the
predictor of a PEA’s displacement, the PEA’s dynamical model
is constructed by multilayer feedforward neural networks and
identified by the LM algorithm. By the principle of MPC, the
tracking control problem is transformed into an optimization
problem. Compared with inversion-based control schemes, the
NMPC method can directly use a nonlinear neural-network-
based model and obtain a proper control action by solving the
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corresponding optimization problems. To verify the effective-
ness of the proposed modeling and control methods, experi-
ments are conducted on a commercial PEA product through
the SIMULINK program. Experimental results show that the
proposed NARMAX model could fit the PEA’s dynamical
behavior well under excited signals with different frequencies
and amplitudes. Furthermore, the proposed NMPC controller
has better tracking performance than the existing method in [25]
and the commercial PID controller.

Although a cascaded model structure is widely used in the
control of PEAs, it has to identify two submodels to approxi-
mate the rate-dependent hysteresis behavior. If we can use just
one intelligent unit (e.g., neural networks and fuzzy systems) to
model the rate-dependent hysteresis, the computational burden
of the identification can be reduced significantly. In addition,
the method proposed in this paper requires solving a com-
plicated nonlinear programming problem, and the MPC law
does not have an analytical form. Some preliminary attempts
toward obtaining an explicit MPC controller have been made
in [40]–[42]. In the future, more studies are to be conducted
to further improve the performance of the MPC-based control
scheme.
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