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a b s t r a c t

This paper is concerned with the approximate solution of Hamilton–Jacobi–Isaacs (HJI) equa-

tion for constrained-input nonlinear continuous-time systems with unknown dynamics. We

develop a novel online adaptive dynamic programming-based algorithm to learn the solution

of the HJI equation. The present algorithm is implemented via an identifier-critic architecture,

which consists of two neural networks (NNs): an identifier NN is applied to estimate the un-

known system dynamics and a critic NN is constructed to obtain the approximate solution of

the HJI equation. An advantage of the proposed architecture is that the identifier NN and the

critic NN are tuned simultaneously. With introducing two additional terms, namely, the stabi-

lizing term and the robustifying term to update the critic NN, the initial stabilizing control is

no longer required. Meanwhile, the developed critic tuning rule not only ensures convergence

of the critic to the optimal saddle point but also guarantees stability of the closed-loop system.

Moreover, the uniform ultimate boundedness of the weights of the identifier NN and the critic

NN are proved by using Lyapunov’s direct method. Finally, to illustrate the effectiveness and

applicability of the developed approach, two simulation examples are provided.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Over the past several decades, H∞ optimal control problems for nonlinear systems have attracted intensive attention. Many

remarkable results have been obtained in this filed [3–5,10,30,31], especially the results reported in [4,31]. In [4], Basar and

Bernhard showed that the H∞ optimal control problem is equivalent to the minimax optimization problem, which is termed as

two-player zero-sum games where the controller is a minimizing player and the exogenous disturbance is a maximizing one.

In [31], by using the theory of dissipative systems, van der Schaft transformed the H∞ optimal control problem to the L2-gain

optimal control problem. Nevertheless, the bottleneck for applying theories of the H∞ optimal control in practice still exists. This

is mainly because the solutions of two-player zero-sum games and L2-gain optimal control problems are often required to solve

the Hamilton–Jacobi–Isaacs (HJI) equations. It is well-known that Hamilton–Jacobi–Isaacs (HJI) equations for nonlinear systems

are actually nonlinear first-order partial differential equations (PDEs), which are difficult or impossible to solve by analytical

approaches.
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Since accurate solutions of HJI equations are intractable to obtain, an increasing number of researchers pay their attentions to

deriving approximate solutions of this kind of equations. In the past few years, adaptive dynamic programming (ADP) methods

have been successfully used to solve HJI equations. The ADP approach was first introduced by Werbos [36]. After that, various ADP

methods were proposed (see surveys [15,35]). A distinct feature of the ADP approach is that it employs neural networks (NNs)

to derive the approximate optimal control forward in time. Due to this feature, the curse of dimensionality can be avoided while

applying ADP approaches to solve the Hamilton–Jacobi–Bellman/HJI equations [27]. In light of this advantage, ADP methods have

been extensively utilized to solve HJI equations.

For discrete-time nonlinear systems, Mehraeen et al. [20] presented an offline ADP-based iterative approach to solve the HJI

equation for zero-sum two-player games. By using the proposed method and Taylor series expansion, a sufficient condition for

the convergence to the saddle point is obtained. After that, Liu et al. [16] developed a greedy iterative ADP algorithm to solve the

HJI equations associated with zero-sum two-player games. Based on the algorithm, three NNs referred to as action NN, critic NN

and disturbance NN can approximate the optimal control, the optimal value and the worst disturbance, respectively. Later, Zhang

et al. [45] proposed an online ADP-based algorithm to learn the solution of the HJI equation for a class of H∞ control problems.

By the algorithm given in [45], the prior knowledge of the nonlinear system is not required.

For continuous-time (CT) nonlinear systems, the HJI equations are often approximately solved by using reinforcement learn-

ing (RL), which is considered as a special case of ADP approaches by Werbos [37]. Abu-Khalaf et al. [2] introduced an offline

RL-based algorithm to give the approximate solution of the HJI equation for constrained-input nonlinear systems. After that, Luo

et al. [19] proposed an off-policy RL method to solve the HJI equation of H∞ control problems. Differing from [2], the algorithm

given in [19] generated the system data by arbitrary policies rather than evaluating policies. Recently, Vamvoudakis and Lewis

[33] introduced an online RL-based algorithm to solve the HJI equation for two-player zero-sum games. By using the algorithm,

the actor, critic and disturbance NNs were tuned simultaneously. Distinct from the above online RL-based algorithm, Dierks and

Jagannathan [7] developed a single online approximator-based scheme to solve the HJI equation. Based on the algorithm, only a

single critic NN is employed to learn the solution of the HJI equation and the initial stabilizing control is not required. It should be

mentioned that, prior knowledge of system dynamics is required to be available in [7,33]. After that, Luo and Wu [38] presented

a simultaneous policy update algorithm to solve the HJI equation arising in nonlinear H∞ control problems. By the proposed

algorithm, the internal dynamics of nonlinear system is not required. Later, Liu et al. [17] employed the simultaneous policy up-

date algorithm to obtain the approximate solution of the HJI equation for multi-player nonzero-sums with completely unknown

dynamics. More recently, Johnson et al.[12] developed a projection algorithm to give the approximate solution of the coupled HJI

equations for uncertain nonlinear CT systems.

To the best of authors’ knowledge, there are still no ADP-based algorithms proposed to solve the HJI equation for constrained-

input nonlinear CT systems with unknown dynamics. In this paper, we develop a novel online ADP-based algorithm to learn

the solution of the HJI equation for unknown constrained-input nonlinear CT systems. The present algorithm is implemented

via an identifier-critic architecture, which consists of two neural networks (NNs): an identifier NN is utilized to estimate the

unknown system dynamics and a critic NN is constructed to obtain the approximate solution of the HJI equation. An advantage

of the present architecture is that the identifier NN and the critic NN are tuned simultaneously. With introducing two additional

terms, namely, the stabilizing term and the robustifying term to update the critic NN, no initial stabilizing control is required.

Meanwhile, the developed critic tuning rule not only ensures convergence of the critic to the optimal saddle point but also

guarantees stability of the closed-loop system. In addition, Lyapunov’s direct method is utilized to demonstrate the uniform

ultimate boundedness of the weights of the identifier NN and the critic NN.

It is significant to point out that, though our methodology in this work is in a similar spirit as [7], this paper extends the

work of [7] to give an online approximate solution of the HJI equation for constrained-input nonlinear CT systems with unknown

dynamics. Solving the HJI equation of unknown constrained-input nonlinear CT systems is more intractable than those with the

knowledge of system dynamics regardless of control constraints.

The rest of the paper is organized as follows. Section 2 provides preliminaries of H∞ optimal control problems for constrained-

input nonlinear CT systems. Section 3 presents the design of identifier NNs for unknown controlled systems with stability proof.

Section 4 develops a single critic NN to approximate the solution of the HJI equation. Section 5 shows the stability analysis.

Section 6 presents two numerical examples to verify the effectiveness of the developed method. Finally, Section 7 gives several

concluding remarks and potential future extensions.

Notations: R represents the set of all real numbers. R
m denotes the Euclidean space of all real m-vectors. R

n×m denotes the

space of all n × m real matrices. In represents the n × n identity matrix. T is the transposition symbol. Cm represents the class of

functions having continuous mth derivative. When ξ̄ = [ξ̄1, . . . , ξ̄m]T ∈ R
m, ‖ξ̄‖ =

(∑m
i=1 |ξ̄i|2

)1/2
denotes the Euclidean norm

of ξ̄ . When A ∈ R
m×m, ‖A‖ =

(
λmax(ATA)

)1/2
denotes the 2-norm of A, where λmax(ATA) represents the maximum eigenvalue

of ATA.

2. Preliminaries and problem statement

Consider the nonlinear CT system described by

ẋ = f (x) + g(x)u + k(x)ω,

z = h(x) + p(x)u, (1)
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where x(t) ∈ R
n is the state, u(t) ∈ U ⊂ R

m is the control input, U = {u ∈ R
m : |ui| ≤ κ, i = 1, . . . ,m}, and κ > 0 is the saturating

bound. ω(t) ∈ R
q1 is the exogenous disturbance, and z(t) ∈ R

q2 is the fictitious output, f (x) ∈ R
n, g(x) ∈ R

n×m, k(x) ∈ R
n×q1 ,

h(x) ∈ R
q2 , p(x) ∈ R

q2×m with f (0) = 0, and x = 0 is the equilibrium point of the system.

Assumption 1. f(x), g(x), and k(x) are unknown smooth functions defined on R
n. ω(t) ∈ L2[0, ∞), and it implies that there exists

a constant ωM > 0 such that ‖ω(t)‖ ≤ ωM. In addition, hT(x)p(x) = 0 and pT(x)p(x) = I for every x(t) ∈ R
n.

The objective for general H∞ optimal control problems is to find a state feedback control u(x) such that system (1) is locally

asymptotically stable (when ω(t) = 0), and there exists L2-gain less than or equal to γ , that is,∫ ∞

0

‖z(t)‖2dt =
∫ ∞

0

(
hTh + ‖u‖2

)
dt ≤ γ 2

∫ ∞

0

‖ω(t)‖2dt,

where γ > 0 is a prescribed level of the disturbance attenuation. Noticing that u is constrained (i.e., u ∈ U) and motivated by the

work of [2,23], this problem can be transformed to solve the zero-sum game

V ∗(x0) = min
u

max
ω

∫ ∞

0

(
hTh + Y(u) − γ 2‖ω‖2

)
dt, (2)

where

Y(u) = 2κ

∫ u

0

tanh
−1 (υ/κ)dυ = 2κ

m∑
i=1

∫ ui

0

tanh
−1 (υi/κ)dυi.

By (2), the value function for system (1) is given as

V(x(t)) =
∫ ∞

t

(
hT(x(s))h(x(s)) + 2κ

∫ u(s)

0

tanh
−1 (υ/κ)dυ − γ 2‖ω(s)‖2

)
ds. (3)

According to [23], if V(x(t)) ∈ C1, then the Hamiltonian for the control u, the disturbance ω, and the value function V(x) can be

defined as

H(x,Vx,u,ω) = VT
x

(
f (x) + g(x)u + k(x)ω

)
+ hT(x)h(x) + 2κ

∫ u

0

tanh
−1 (υ/κ)dυ − γ 2‖ω‖2, (4)

where Vx ∈ R
n represents the partial derivative of V(x) with respect to x.

The optimal value V∗(x0) given in (2) can be obtained by solving the equation

min
u

max
ω

H
(
x,V ∗

x ,u,ω
)

= 0. (5)

Remark 1. If the saddle point does not exist for the two player zero-sum game, there might be many solutions to (5) [4,46]. In

this sense, it is intractable to derive the optimal value V∗(x0). To avoid this case, similar to [23,33], we require that the following

condition holds

min
u

max
ω

H
(
x,V ∗

x ,u,ω
)

= max
ω

min
u

H
(
x,V ∗

x ,u,ω
)
, (6)

which guarantees the existence of the saddle point. Then, (5) has a unique solution. Actually, as shown in [1], (6) is valid when

the optimal control u∗ and the worst disturbance ω∗ are obtained.

Combining (4) with (5), we obtain the optimal control and the worst disturbance, respectively, as

u∗(x) = −κ tanh

(
1

2κ
gT(x)V ∗

x

)
, (7)

ω∗(x) = 1

2γ 2
kT(x)V ∗

x . (8)

Substituting (7) and (8) into (5), we derive the HJI equation for the nonlinear system as

V ∗
x

T f (x) − 2κ2AT(x) tanh (A(x)) + hT(x)h(x)

+ 1

4γ 2
V ∗

x
Tk(x)kT(x)V ∗

x + 2κ

∫ −κ tanh (A(x))

0

tanh
−T (υ/κ)dυ = 0, (9)

where A(x) = 1
2κ gT(x)V ∗

x .
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Denote A(x) =
[
A1(x), . . . ,Am(x)

]T ∈ R
m with Ai(x) ∈ R, i = 1, . . . ,m. Notice that

2κ

∫ −κ tanh (A(x))

0

tanh
−T (υ/κ)dυ = 2κ

m∑
i=1

∫ −κ tanh (Ai(x))

0

tanh
−T (υi/κ)dυi

= 2κ2AT(x) tanh (A(x)) + κ2
m∑

i=1

ln
[
1 − tanh

2 (Ai(x))
]
.

Then, the HJI equation (9) becomes

V ∗
x

T f (x) + κ2
m∑

i=1

ln
[
1 − tanh

2 (Ai(x))
]

+ hT(x)h(x) + 1

4γ 2
V ∗

x
Tk(x)kT(x)V ∗

x = 0. (10)

From (10), one can find that it is actually a nonlinear PDE with respect to V∗(x). It is difficult to solve by analytical approaches. In

this paper, we shall develop an online ADP-based algorithm to approximately solve (10). The present algorithm is implemented

without using policy iteration and value iteration. Only a single critic NN is constructed to derive the approximate solution of

(10). In addition, differing from [2,23], the prior knowledge of f(x), g(x), and k(x) given in (10) are all completely unavailable.

Therefore, to solve (10), we need first to get the knowledge of f(x), g(x), and k(x). In what follows, a dynamic NN is constructed to

identify the unknown system dynamics.

3. Identifier design via dynamic NNs

According to [42], the first equation of system (1) can be represented by a dynamic NN as

ẋ = Ax + WT
f φ(x) + WT

g ρ(x)u + WT
k 
(x)ω + ε(x), (11)

where A ∈ R
n×n is a Hurwitz matrix, Wf ∈ R

n×n,Wg ∈ R
n×n, and Wk ∈ R

n×n are ideal NN weight matrices, and ε(x) ∈ R
n is the NN

function reconstruction error. The vector function φ(x) ∈ R
n is assumed to be n-dimensional with the elements increasing mono-

tonically. The matrix function ρ(x) ∈ R
n×m is assumed to be ρ(x) =

[
ρ1(ζ

T
1

x), . . . , ρn(ζT
n x)

]T
, where ζi ∈ R

n×m is a constant

matrix and ρ i( · ) is a bounded nondecreasing function. In addition, 
(x) ∈ R
n×q1 is set to be 
(x) =

[

1(ς

T
1 x), . . . , 
n(ςT

n x)
]T

,

where ςi ∈ R
n×q1 is a constant matrix and 
i( · ) is a bounded nondecreasing function. The typical presentations of φ(x), ρ(x) and


(x) are sigmoid functions, such as tanh (x). In this paper, φ(x), ρ(x) and 
(x) are selected to be sigmoid functions. Noticing the

property of sigmoid functions, we assume that, for arbitrary ξ1, ξ2 ∈ R
n, the following inequality holds:

‖A (ξ1) − A (ξ2)‖ ≤ λA ‖ξ1 − ξ2‖, (12)

where A denotes φ, ρ and 
, respectively, and λA (A = φ,ρ, 
) are known positive constants.

In this paper, we employ the dynamic NN identifier to approximate the first equation of system (1) as

˙̂x = Ax̂ + ŴT
f φ(x̂) + ŴT

g ρ(x̂)u + ŴT
k 
(x̂)ω + ν, (13)

where x̂ ∈ R
n is the dynamic NN state, Ŵf ∈ R

n×n, Ŵg ∈ R
n×n, and Ŵk ∈ R

n×n are dynamic NN weight estimates, and ν = ηx̃ with

the design parameter η > 0 and the identification error x̃ � x − x̂.

By using (11) and (13), the identification error dynamics can be derived as

˙̃x = Ax̃ + WT
f φ̃ + WT

g ρ̃u + WT
k 
̃ω − ηx̃

+ W̃T
f φ(x̂) + W̃T

g ρ(x̂)u + W̃T
k 
(x̂)ω + ε(x), (14)

where W̃f = Wf − Ŵf , W̃g = Wg − Ŵg, W̃k = Wk − Ŵk, φ̃ = φ(x) − φ(x̂), ρ̃ = ρ(x) − ρ(x̂), and 
̃ = 
(x) − 
(x̂).

Before proceeding further, we provide some assumptions and facts. These assumptions are common techniques, which have

been used in [13,14,28,42,44].

Assumption 2. The ideal dynamic NN weight matrices Wf, Wg, and Wk satisfy

WT
f Wf ≤ �1, WT

g Wg ≤ �2, WT
k Wk ≤ �3,

where �i (i = 1,2,3) are prior known positive definite matrices.

Assumption 3. The NN function reconstruction error ε(x) is bounded; that is, there exists a known constant bε > 0 such that

‖ε(x)‖ < bε .

Fact 1. Since A is a Hurwitz matrix, there exists a positive-definite symmetric matrix P ∈ R
n×n satisfying the Lyapunov equation

ATP + PA = −βIn,

where β > 0 is a design parameter.
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Fact 2. Let the symmetric matrix P be positive definite. Then, x̃TPx̃ satisfies

λmin(P)‖x̃‖2 ≤ x̃TPx̃ ≤ λmax(P)‖x̃‖2,

where λmin (P) and λmax (P) represent the minimum eigenvalue and the maximum eigenvalue of P, respectively.

Theorem 1. Let Assumptions 1–3 hold. If the dynamic NN weight estimates Ŵf , Ŵg, and Ŵk are updated as

˙̂Wf = �1φ(x̂)x̃TP, ˙̂Wg = �2ρ(x̂)ux̃TP, ˙̂Wk = �3
(x̂)ωx̃TP, (15)

where �i (i = 1,2,3) are given positive-definite symmetric matrices, then, the identifier developed in (13) can ensure that the identi-

fication error x̃(t) converges to the compact set

�x̃ =
{

x̃ : ‖x̃‖ ≤ bε√
β + 2ηλmin(P) − μ

}
, (16)

where μ > 0 is a constant to be determined later (see (22) in the proof). In addition, the weight estimation errors W̃f , W̃g, and W̃k are

all guaranteed to be uniformly ultimately bounded (UUB).

Proof. Consider the Lyapunov function candidate

J(t) = 1

2
x̃TPx̃︸ ︷︷ ︸
J1(t)

+ 1

2
tr
(
W̃T

f �−1
1 W̃f + W̃T

g �−1
2 W̃g + W̃T

k �−1
3 W̃k

)
︸ ︷︷ ︸

J2(t)

. (17)

Taking the time derivative of J1(t) and using (14), we have

˙J1(t) = 1

2
x̃T(ATP + PA)x̃ + x̃TPWT

f φ̃ + x̃TPWT
g ρ̃u + x̃TPWT

k 
̃ω

− ηx̃TPx̃ + x̃TPW̃T
f φ(x̂) + x̃TPW̃T

g ρ(x̂)u + x̃TPW̃T
k 
(x̂)ω + x̃TPε(x). (18)

Denote yT = x̃TP. Applying Cauchy–Schwarz inequality aTb ≤ 1
2 aTa + 1

2 bTb to x̃TPWT
f
φ̃ and x̃TPε(x), and by using (12) and

Assumptions 2 and 3, we obtain

x̃TPWT
f φ̃ = yTWT

f φ̃ ≤ 1

2
ỹTWT

f Wf ỹ + 1

2
φ̃Tφ̃ ≤ 1

2
ỹT�1ỹ +

λ2
φ

2
x̃Tx̃,

x̃TPε(x) ≤ 1

2
x̃TP2x̃ + b2

ε

2
. (19)

Similarly, noticing that u and ω are bounded, i.e., ‖u‖ ≤
(∑m

i=1 α
2
i

) 1
2 � α and ‖ω(t)‖ ≤ ωM, we have

x̃TPWT
g ρ̃u = yTWT

g ρ̃u ≤ 1

2
ỹTWT

g Wgỹ + 1

2
uTρ̃Tρ̃u ≤ 1

2
ỹT�2ỹ + (αλρ)2

2
x̃Tx̃,

x̃TPWT
k 
̃ω = yTWT

k 
̃ω ≤ 1

2
ỹTWT

k Wkỹ + 1

2
ωT
̃T
̃ω ≤ 1

2
ỹT�3ỹ + (ωMλ
)2

2
x̃Tx̃. (20)

Substituting (19) and (20) into (18) and using Facts 1 and 2, we derive

˙J1(t) ≤ 1

2

[
λ2
φ + α2λ2

ρ + ω2
Mλ2


 − β
]‖x̃‖2 + 1

2

3∑
i=1

x̃T(P�iP)x̃ − ηx̃TPx̃

+ 1

2
x̃TP2x̃ + x̃TPW̃T

f φ(x̂) + x̃TPW̃T
g ρ(x̂)u + x̃TPW̃T

k 
(x̂)ω + b2
ε

2

≤ − 1

2

(
β + 2ηλmin(P) − μ

)‖x̃‖2 + x̃TPW̃T
f φ(x̂) + x̃TPW̃T

g ρ(x̂)u + x̃TPW̃T
k 
(x̂)ω + b2

ε

2
, (21)

where

μ =
3∑

i=1

λmax(P�iP) + λ2
max(P) + λ2

φ + α2λ2
ρ + ω2

Mλ2

 . (22)

On the other hand, taking the time derivative of J2(t) and using (15), we have

˙J2(t) = −tr

(
W̃T

f φ(x̂)x̃TP + W̃T
g ρ(x̂)ux̃TP + W̃T

k 
(x̂)ωx̃TP

)
. (23)

Observe that tr(XY) = tr(Y X) = Y X for every X ∈ R
n×1,Y ∈ R

1×n. Therefore, (23) can be represented as

˙J2(t) = −x̃TPW̃T
f φ(x̂) − x̃TPW̃T

g ρ(x̂)u − x̃TPW̃T
k 
(x̂)ω. (24)
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Combining (17), (21) and (24), we obtain

˙J(t) ≤ −1

2

(
β + 2ηλmin(P) − μ

)‖x̃‖2 + b2
ε

2
. (25)

Select proper parameters β and η such that β + 2ηλmin(P) − μ > 0. Then, (25) yields ˙J(t) < 0 as long as the following inequality

holds:

‖x̃‖ >
bε√

β + 2ηλmin(P) − μ
,

where μ is given in (22). According to the standard Lyapunov extension theorem [13], this verifies that the identification error

x̃(t) converges to �x̃ defined as in (16), and it also demonstrates the uniform ultimate boundedness of the weight estimation

errors W̃f , W̃g, and W̃k. �

Remark 2. Though the identifier NN (13) and the weight update law (15) share similar features with [6,11], a significant differ-

ence is that, in our case, we do not use the projection algorithm. In addition, it should be mentioned that parameters η and β
can be selected sufficiently large such that β + 2ηλmin(P) − μ > 0. In this sense, �x̃ given in (16) can be kept small enough by

properly selecting parameters.

From Remark 2, we know that the identifier NN can approximate the first equation of system (1) within a sufficiently small

compact set �x̃. Hence, in what follows we replace the first equation of system (1) with (13). Meanwhile, we replace the actual

state x(t) with the estimated state x̂(t). Then, system (1) can be rewritten as

˙̂x = f̄ (x̂) + ḡ(x̂)u + k̄(x̂)ω,

ẑ = h(x̂) + p(x̂)u, (26)

where f̄ (x̂) = Ax̂ + ηx̃ + ŴT
f
φ(x̂), ḡ(x̂) = ŴT

g ρ(x̂), k̄(x̂) = ŴT
k

(x̂).

The value function (3) can be expressed as

V(x̂(t)) =
∫ ∞

t

(
hT(x̂(s))h(x̂(s)) + 2κ

∫ u(s)

0

tanh
−1 (υ/κ)dυ − γ 2‖ω(s)‖2

)
ds. (27)

Meanwhile, the optimal control (7) and the worst disturbance (8) become

u∗(x̂) = −κ tanh

(
1

2κ
ḡT(x̂)V ∗

x̂

)
, (28)

ω∗(x̂) = 1

2γ 2
k̄T(x̂)V ∗

x̂ . (29)

Then the HJI equation (10) is developed as

V ∗
x̂

T f̄ (x̂) + κ2
m∑

i=1

ln
[
1 − tanh

2 (Āi(x̂))
]

+ hT(x̂)h(x̂) + 1

4γ 2
V ∗

x
Tk̄(x̂)k̄T(x̂)V ∗

x̂ = 0, (30)

where Ā(x̂) = 1
2κ ḡT(x̂)V ∗

x̂
, and Ā(x̂) =

[
Ā1(x̂), . . . , Ām(x̂)

]T ∈ R
m with Āi(x̂) ∈ R, i = 1, . . . ,m, and V ∗

x̂
∈ R

n denotes the partial

derivative of V ∗(x̂) with respect to x̂.

4. Approximate solution of the HJI equation via a single critic NN

According to the universal approximation property of NNs, the value function V ∗(x̂) given in (30) can be represented by a

single-layer NN on a compact set � as

V ∗(x̂) = WT
c σ(x̂) + εc(x̂),

where Wc ∈ R
N0 is the ideal NN weight vector, σ(x̂) = [σ1(x̂), σ2(x̂), . . . , σN0

(x̂)]T ∈ R
N0 is the activation function with σ j(x̂) ∈ C1

and σ j(0) = 0, the set {σ j(x̂)}N0
1

is often selected to be linearly independent, N0 is the number of neurons, and εc(x̂) is the NN

function reconstruction error. Meanwhile, the derivative of V ∗(x̂) with respect to x̂ is derived as

V ∗
x̂ = ∇σT(x̂)Wc + ∇εc, (31)

where ∇σ(x̂) = ∂σ(x̂)/∂ x̂, and it satisfies ∇σ(0) = 0.

Substituting (31) into (30), we have

WT
c ∇σ f̄ (x̂) + 1

4γ 2
WT

c ∇σ k̄(x̂)k̄T(x̂)∇σTWc + hT(x̂)h(x̂)

+ G(∇εc) + κ2
m∑

i=1

ln

[
1 − tanh

2
(
�1i(x̂) + �i(x̂)

)]
= 0, (32)
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where �(x̂), �1(x̂) and G(∇εc) are given, respectively, as

�(x̂) = 1

2κ
ḡT(x̂)∇εc,

�1(x̂) = 1

2κ
ḡT(x̂)∇σTWc,

G(∇εc) = ∇εT
c

(
f̄ (x̂) + 1

2γ 2
k̄(x̂)k̄T(x̂)∇σTWc + 1

4γ 2
k̄(x̂)k̄T(x̂)∇εc

)
, (33)

and �1(x̂) =
[
�11(x̂), . . . ,�1m(x̂)

]T ∈ R
m with �1i(x̂) ∈ R, and �(x̂) =

[
�1(x̂), . . . ,�m(x̂)

]T ∈ R
m with �i(x̂) ∈ R, i = 1, . . . ,m.

By [23], (32) can be represented as

WT
c ∇σ f̄ (x̂) + 1

4γ 2
WT

c ∇σ k̄(x̂)k̄T(x̂)∇σTWc

+ hT(x̂)h(x̂) + κ2
m∑

i=1

ln
[
1 − tanh

2 (�1i(x̂))
]

+ εHJI = 0, (34)

where εHJI is the HJI approximation error [2,23].

Remark 3. It was shown in [2,23] that εHJI converges to zero as the number of neurons N0 goes to infinity. In other words, for

given εh > 0, there exists a positive Nh (depending only on εh) such that N0 > Nh implies ‖εHJI‖ ≤ εh. More specifically, one can

select a sufficiently large number of neurons N0 to keep εHJI small.

By using (31) and the mean-value theorem [29], the optimal control (28) and the worst disturbance (29) are, respectively,

developed as

u∗(x̂) = −κ tanh
(
�1(x̂)

)
+ εu∗ , (35)

ω∗(x̂) = 1

2γ 2
k̄T(x̂)∇σTWc + εω∗ , (36)

where �1(x̂) is given in (33), εu∗ = − 1
2

(
1 − tanh

2 (a)
)
ḡT(x̂)∇εc with 1 = [1, . . . ,1]T ∈ R

m, a ∈ R
m chosen between �1(x̂) and

Ā(x̂), and εω∗ = 1
2γ 2 k̄T(x̂)∇εc.

Since the ideal critic NN weight Wc is typically unknown, (35) cannot be implemented. Hence, we use a critic NN to approxi-

mate the value function V ∗(x̂) as

V̂(x̂) = ŴT
c σ(x̂), (37)

where Ŵc is the estimate of Wc. The estimation error for the critic NN weights is defined as W̃c = Wc − Ŵc.

By using (37), the estimated values of the optimal control (28) and the worst disturbance (29) are

û(x̂) = −κ tanh

(
1

2κ
ḡT(x̂)∇σTŴc

)
, (38)

ω̂(x̂) = 1

2γ 2
k̄T(x̂)∇σTŴc. (39)

Combining (4), (26), (37)–(39), we obtain the approximate Hamiltonian as

H(x̂,Ŵc) = ŴT
c ∇σ f̄ (x̂) + 1

4γ 2
ŴT

c ∇σ k̄(x̂)k̄T(x̂)∇σTŴc

+ hT(x̂)h(x̂) + κ2
m∑

i=1

ln
[
1 − tanh

2 (�2i(x̂))
]
� e, (40)

where �2(x̂) = 1
2κ ḡT(x̂)∇σTŴc, and �2(x̂) =

[
�21(x̂), . . . ,�2m(x̂)

]T ∈ R
m with �2i(x̂) ∈ R, i = 1, . . . ,m.

By using (34), (40) can be derived as

e = κ2
m∑

i=1

[
B(�2i) − B(�1i)

]
− W̃T

c ∇σ
(

f̄ (x̂) + k̄(x̂)ω̂
)

− 1

4γ 2
W̃T

c ∇σ k̄(x̂)k̄T(x̂)σTW̃c − εHJI, (41)

where B(�ιi) = ln
[
1 − tanh

2 (�ιi(x̂))
]
, ι = 1,2, and i = 1, . . . ,m.

For every �ιi(x̂) ∈ R, B(�ιi) can be rewritten as [40]

B(�ιi) = ln 4 − 2�ιi(x̂)sgn(�ιi(x̂)) − 2 ln

[
1 + exp

(
− 2�ιi(x̂)sgn(�ιi(x̂))

)]
,
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where sgn(�ιi(x̂)) ∈ R
m is a sign function [29]. Then, we have

m∑
i=1

B(�ιi) = m ln 4 − 2�T
ι (x̂)sgn(�ι(x̂)) − 2

m∑
i=1

ln
[
1 + exp

(
− 2�ιi(x̂)sgn(�ιi(x̂))

)]
. (42)

Combining (41) with (42), we obtain

e = 2κ2
[
�T

1 (x̂)sgn(�1(x̂)) − �T
2 (x̂)sgn(�2(x̂))

]
+ κ2��

− W̃T
c ∇σ

(
f̄ (x̂) + k̄(x̂)ω̂

)
− 1

4γ 2
W̃T

c ∇σ k̄(x̂)k̄T(x̂)σTW̃c − εHJI

= κ
[
WT

c ∇σ ḡ(x̂)sgn(�1(x̂)) − ŴT
c ∇σ ḡ(x̂)sgn(�2(x̂))

]
+ κ2��

− W̃T
c ∇σ

(
f̄ (x̂) + k̄(x̂)ω̂

)
− 1

4γ 2
W̃T

c ∇σ k̄(x̂)k̄T(x̂)σTW̃c − εHJI

= − W̃T
c

[∇σ
(

f̄ (x̂) + k̄(x̂)ω̂
)

− κ∇σ ḡ(x̂)sgn(�2(x̂))
]

− 1

4γ 2
W̃T

c ∇σ k̄(x̂)k̄T(x̂)σTW̃c + δ(x̂), (43)

where

�� = 2

m∑
i=1

ln
1 + exp

[
− 2�1i(x̂)sgn(�1i(x̂))

]
1 + exp

[
− 2�2i(x̂)sgn(�2i(x̂))

] ,
δ(x) = κWT

c ∇σ ḡ(x̂)
[
sgn(�1(x̂)) − sgn(�2(x̂))

]
+ κ2�� − εHJI.

To get the minimum value of e, it is desired to choose Ŵc to minimize the squared residual error E = 1
2 eTe. The traditional way

for deriving such a Ŵc is to employ the gradient descent method. By using the approach, the weight tuning law for the critic NN

is often given as

˙̂Wctra
= − l

(1 + ψTψ)2

∂E

∂Ŵc

= − lψ

(1 + ψTψ)2
e, (44)

where Ŵctra denotes the critic NN weight, i.e., Ŵctra = Ŵc, l > 0 is a design constant, ψ = ∇σ
(

f̄ (x̂) + ḡ(x̂)û + k̄(x̂)ω̂
)
, and (1 +

ψTψ)2 is employed for normalization.

Two points about the tuning rule (44) should be mentioned. That is,

(i) By using (44), an initial stabilizing control for system (26) is often required. However, such a control law is generally hard

to obtain when system (26) contains high-order terms. More importantly, if the initial control for system (26) is unstable,

then the tuning law (44) might not guarantee stability of the closed-loop system during the learning process of the critic

NN [7].

(ii) To ensure the weights of the critic NN converge to the actual optimal values, an exploration signal is often added to the

input to keep the persistence of excitation (PE) of ψ/(1 + ψTψ) while utilizing (44). Nevertheless, there is no general

approach proposed to give such an exploration signal. The provided exploration signal might give rise to instability of the

closed-loop system. Therefore, when the exploration signal is added, it is necessary to check the stability of the closed-loop

system.

In light of (i) and (ii), the weight update law for the critic NN shall be redefined. Before proceeding, we provide another

assumption, which has been used in [7,25,39,41,43].

Assumption 4. L1(x̂) is a continuously differentiable radially unbounded Lyapunov function candidate such that L̇1(x̂) =
LT

1x̂

(
f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗) < 0 with L1x̂ the partial derivative of L1(x̂) with respect to x̂. Moreover, there exists a symmetric

positive-definite matrix Q(x̂) ∈ R
n×n defined on � such that

LT
1x̂

(
f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗) = −LT

1x̂Q(x̂)L1x̂. (45)

Remark 4. f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗ is often assumed to be bounded by a positive constant on a compact set � [14,17,23,32].

That is, for every x̂ ∈ �, there exists a constant b1 > 0 such that ‖ f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗‖ ≤ b1. To relax the condition, in this

paper, we assume that f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗ is bounded by a function with respect to x̂. Because L1x̂ is the function with

respect to x̂, without loss of generality, we assume that ‖ f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗‖ ≤ b2‖L1x̂‖ (b2 > 0). In this sense, we have

‖LT
1x̂

(
f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗)‖ ≤ b2‖L1x̂‖2. Observing that LT

1x̂

(
f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗) < 0, one shall find that (45) defined as in

Assumption 4 is reasonable. In addition, it should be mentioned that L1(x̂) is usually derived through properly selecting functions,

such as polynomials.
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Based on Assumption 4 and aforementioned analyses, in this paper, we develop a novel weight update law for the critic NN

as

˙̂Wc = − lψ̄

(
ŴT

c ∇σ f̄ (x̂) + 1

4γ 2
ŴT

c B(x̂)Ŵc + hT(x̂)h(x̂) + κ2
m∑

i=1

ln
[
1 − tanh

2 (�2i(x̂))
])

+ l

2
�(x̂, û, ω̂)∇σ

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
L1x̂

+ l

(
κ∇σ ḡ(x̂)

[
tanh (�2(x̂)) − sgn(�2(x̂))

]
ϕT

ms
Ŵc − 1

4γ 2
B(x̂)Ŵc

ϕT

ms
Ŵc −

(
K2 − K1ϕ

T
)
Ŵc

)
, (46)

where ψ̄ = ψ/m2
s , ϕ = ψ/ms, ms = 1 + ψTψ, C (�2(x̂)) = diag{tanh

2 (�2i(x̂))}, i = 1, . . . ,m,B(x̂) = ∇σ k̄(x̂)k̄T(x̂)∇σT, L1x̂ is

defined as in Assumption 4, K1 and K2 are given parameter matrices with suitable dimensions, and �(x̂, û, ω̂) is an indicator

function given by

�(x̂, û, ω̂) =
{

0, if LT
1x̂

(
f̄ (x̂) + ḡ(x̂)û + k̄(x̂)ω̂

)
< 0,

1, otherwise.
(47)

Remark 5. Compared with (44), a distinct feature of (46) is that it contains two additional terms. The second term given in (46)

is utilized to guarantee the stability of the closed-loop system during the NN learning process. To explain it clearly, we denote

the derivative of the Lyapunov function candidate for system (26) with the control (38) and the disturbance (39) as

� = LT
1x̂

(
f̄ (x̂) − κ ḡ(x̂) tanh (�2(x̂)) + 1

2γ 2
k̄(x̂)k̄T(x̂)∇σTŴc

)
.

If the closed-loop system is unstable, then we obtain � > 0. To keep the closed-loop system stable, we need make � < 0. Using

the gradient descent method, we have

−l
∂�

∂Ŵc

= −l
∂
[
LT

1x̂

(
f̄ (x̂) − κ ḡ(x̂) tanh (�2(x̂))

)]
∂Ŵc

− l

2γ 2

∂
[
LT

1x̂
k̄(x̂)k̄T(x̂)∇σTŴc

]
∂Ŵc

= l

(
∂�2(x̂)

∂Ŵc

)T

·
∂
[
κLT

1x̂
ḡ(x̂) tanh (�2(x̂))

]
∂�2(x̂)

− l

2γ 2
∇σ k̄(x̂)k̄T(x̂)L1x̂

= l

2
∇σ

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
L1x̂, (48)

where C (�2(x̂)) = diag{tanh
2 (�2i(x̂))}, i = 1, . . . ,m. Eq.(48) indicates the reason that we employ the second term in (46).

Actually, by �(x̂, û, ω̂) given in (47), we find that if there exists �< 0 (that is, the closed-loop system is stable), then �(x̂, û, ω̂) =
0 and the second term given in (46) disappears. If the closed-loop system is unstable, then �(x̂, û, ω̂) = 1 and the second term

given in (46) (i.e., (48)) works. By (46), it makes no requirement of the initial stabilizing control for system (26). The property will

be verified in the subsequent numerical simulation. The third term given in (46) is a robustifying term, which is used for stability

analysis in the subsequent discussion.

Remark 6. Observing the expression of (46), if selecting proper parameter matrices Ki (i = 1,2) such that K2 = K1ψ
T, one shall

find that ˙̂Wc = 0 when x̂ = 0. In this sense, V̂(x̂) will no longer be updated. Nevertheless, the optimal control might not be derived

at the finite time tf which makes x̂(t f ) = 0. To avoid this case, the exploration signal is often added to the control input, that is,

the PE condition is required. Interestingly, the second term given in (46) can be used to check the stability of the closed-loop

system when the exploration signal is added.

By ψ given in (44) and using (38), we get ∇σ
(

f̄ (x̂) + k̄(x̂)ω̂
)

= ψ + κ∇σ ḡ(x̂) tanh (�2(x̂)). Then, noticing that W̃c = Wc − Ŵc

and utilizing (40), (43), and (46), we have

˙̃Wc = l
ϕ

ms

(
− W̃T

c ψ + κW̃T
c ∇σ ḡ(x̂)F(x̂) − 1

4γ 2
W̃T

c B(x̂)W̃c + δ(x̂)

)

− l

2
�(x̂, û, ω̂)∇σ

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
L1x̂

+ l

(
κ∇σ ḡ(x̂)F(x̂)

ϕT

ms
Ŵc + 1

4γ 2
B(x̂)Ŵc

ϕT

ms
Ŵc +

(
K2 − K1ϕ

T
)
Ŵc

)
, (49)

where F(x̂) = sgn(� (x̂)) − tanh (� (x̂)).
2 2
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5. Stability analysis

Before demonstrating the main theorems, we present several required assumptions. These assumptions have been used in

[18,21,22,24,32,34].

Assumption 5. The ideal NN weight Wc is bounded by a known positive constant WcM, i.e., ‖Wc‖ ≤ WcM. There exist known

constants bεc > 0 and bεcx̂ > 0 such that ‖εc(x̂)‖ < bεc , ‖∇εc(x̂)‖ < bεcx̂ for every x̂ ∈ �. In addition, there exist known constants

bεu∗ > 0 and bεω∗ > 0 such that ‖εu∗‖ ≤ bεu∗ , ‖εω∗‖ ≤ bεω∗ for every x̂ ∈ �.

Assumption 6. There exist known constants bσ > 0 and bσ x̂ > 0 such that ‖σ(x̂)‖ ≤ bσ and ‖∇σ(x̂)‖ ≤ bσ x̂ for every x̂ ∈ �.

From Theorem 1, we know that Ŵg and Ŵk are bounded. Noticing that ρ(x̂) and 
(x̂) are bounded functions over �, therefore,

we can obtain that ḡ(x̂) and k̄(x̂) are bounded over �. Accordingly, we give another assumption as follows.

Assumption 7. There exist known constants ḡM > 0 and k̄M > 0 such that ‖ḡ(x̂)‖ ≤ ḡM and ‖k̄(x̂)‖ ≤ k̄M for every x̂ ∈ �.

Let G(�ι) = tanh (�ι(x̂)), ι = 1,2. By employing Taylor series expansion, we have

G(�1) = G(�2) + ∂G(�2)

∂�2

(
�1(x̂) − �2(x̂)

)
+ O

(
(�1(x̂) − �2(x̂))2

)
= G(�2) + 1

2κ

[
Im − C (�2(x̂))

]
gT(x̂)∇σTW̃c + O

(
(�1(x̂) − �2(x̂))2

)
, (50)

where C (�2(x̂)) = diag{tanh
2 (�2i(x̂))}, i = 1, . . . ,m, and O

(
(�1(x̂) − �2(x̂))2

)
is the high-order terms of the Taylor series [29].

Then, we derive

O
(
(�1(x̂) − �2(x̂))2

)
= G(�1) − G(�2) + 1

2κ

[
C (�2(x̂)) − Im

]
gT(x̂)∇σTW̃c. (51)

Lemma 1. For hyperbolic function tanh , the high-order term in the Taylor series is bounded as∥∥O
(
(�1(x̂) − �2(x̂))2

)∥∥ ≤ 2
√

m + (1/κ)ḡMbσ x̂

∥∥W̃c

∥∥. (52)

Proof. From (51), we have∥∥O
(
(�1(x̂) − �2(x̂))2

)∥∥ ≤ ‖G(�1) − G(�2)‖ + 1

2κ

∥∥[C (�2(x̂)) − Im
]
gT(x̂)∇σTW̃c

∥∥
≤ ‖G(�1)‖ + ‖G(�2)‖ + 1

2κ

∥∥C (�2(x̂)) − Im
∥∥∥∥g(x̂)

∥∥‖∇σ‖∥∥W̃c

∥∥. (53)

Notice that ‖G(�ι)‖ =
(∑m

i=1 | tanh (�ιi)|2
)1/2 ≤ √

m, ι = 1,2, ‖C (�2(x̂)) − Im‖ ≤ 2. Then, by Assumptions 6 and 7 and from

(53), we can obtain (52). �

Theorem 2. Given the input-affine dynamics described by (26) with associated HJI equation (30). Let Assumptions 4–7 hold and take

the control input and disturbance input for system (26) as given in (38) and (39), respectively. Meanwhile, let weight update law for the

identifier NN be (15), and let the weight tuning rule for the critic NN be (46). Then, the function L1x̂ and the critic NN weight estimation

error W̃c are guaranteed to be UUB.

Proof. Consider the Lyapunov function candidate

L(t) = L1(x̂(t)) + 1

2
W̃T

c l−1W̃c, (54)

where L1(x̂(t)) is given in Assumption 4. Taking the time derivative of (54), we have

L̇(t) = LT
1x̂

(
f̄ (x̂) + ḡ(x̂)û + k̄(x̂)ω̂

)
+ ˙̃WT

c l−1W̃c. (55)

Using (49), the second term of (55) can be represented as

˙̃WT
c l−1W̃c =

3∑
i=1

Ni − 1

2
�(x̂, û, ω̂)LT

1x̂

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
∇σTW̃c, (56)

where

N1 =
(

−W̃T
c ψ + κW̃T

c ∇σ ḡ(x̂)F(x̂) − 1

4γ 2
W̃T

c B(x̂)W̃c + δ(x̂)

)
ϕT

ms
W̃c

+ κW̃T
c ∇σ ḡ(x̂)F(x̂)

ϕT

ms
Ŵc

= − W̃T
c ϕϕTW̃c − 1

4γ 2
W̃T

c B(x̂)W̃c
ϕT

ms
W̃c + κW̃T

c ∇σ ḡ(x̂)F(x̂)
ϕT

ms
Wc + δ(x̂)

ϕT

ms
W̃c,
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N2 = 1

4γ 2
W̃T

c B(x̂)Ŵc
ϕT

ms
Ŵc

= 1

4γ 2
W̃T

c B(x̂)W̃c
ϕT

ms
W̃c + 1

4γ 2
W̃T

c B(x̂)Wc
ϕT

ms
Wc

− 1

4γ 2
W̃T

c B(x̂)Wc
ϕT

ms
W̃c − 1

4γ 2
W̃T

c B(x̂)W̃c
ϕT

ms
Wc,

N3 = W̃T
c

(
K2 − K1ϕ

T
)
(Wc − W̃c)

= W̃T
c K2Wc − W̃T

c K2W̃c − W̃T
c K1ϕ

TWc + W̃T
c K1ϕ

TW̃c.

From (56), we obtain

˙̃WT
c l−1W̃c = − W̃T

c ϕϕTW̃c − 1

4γ 2
W̃T

c B(x̂)W̃c
ϕT

ms
Wc − W̃T

c K2W̃c − 1

4γ 2
W̃T

c B(x̂)Wc
ϕT

ms
W̃c

+ W̃T
c K1ϕ

TW̃c + 1

4γ 2
W̃T

c B(x̂)Wc
ϕT

ms
Wc + W̃T

c D̄(x̂) + δ(x̂)
ϕT

ms
W̃c

− 1

2
�(x̂, û, ω̂)LT

1x̂

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
∇σTW̃c, (57)

where D̄(x̂) =
(
κ∇σ ḡ(x̂)F(x̂) ϕ

T

ms
+ K2 − K1ϕ

T
)

Wc.

Let YT =
[
W̃T

c ϕ,W̃T
c

]
. Then, (57) can be rewritten as

˙̃WT
c l−1W̃c = − YTMY + YTN

− 1

2
�(x̂, û, ω̂)LT

1x̂

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
∇σTW̃c, (58)

where

M =

⎡
⎢⎣ I

(
1

8msγ 2
B(x̂)Wc − 1

2
K1

)T

1

8msγ 2
B(x̂)Wc − 1

2
K1 K2 + 1

4msγ 2
ϕTWcB(x̂)

⎤
⎥⎦, N =

⎡
⎣ 1

ms
δ(x̂)

1

4msγ 2
B(x̂)WcϕTWc + D̄(x̂)

⎤
⎦.

Substituting (58) into (55) and choosing Ki (i = 1,2) such that the matrix M is positive definite, we have

L̇(t) ≤ LT
1x̂

(
f̄ (x̂) + ḡ(x̂)û + k̄(x̂)ω̂

)
− λmin(M)‖Y‖2 + ζN‖Y‖

− 1

2
�(x̂, û, ω̂)LT

1x̂

(
ḡ(x̂)

[
Im − C (�2(x̂))

]
ḡT(x̂) − 1

γ 2
k̄(x̂)k̄T(x̂)

)
∇σTW̃c, (59)

where λmin (M) denotes the minimum eigenvalue of M, and ζN is the upper bound of ‖N‖, i.e., ‖N‖ ≤ ζN.

Based on the definition of �(x̂, û, ω̂) given in (47), we divide (59) into the following two cases for discussion:

Case 1: �(x̂, û, ω̂) = 0. In this case, we derive that the first term in (59) is negative via (47). Since ‖x̂‖ > 0 is guaranteed by

adding the PE signal, we can obtain that there exists a constant τ such that 0 < τ < ‖ ˙̂x‖ implies LT
1x̂

˙̂x < −‖L1x̂‖τ < 0 by using

dense property of R [29]. Then, noticing that ˙̂x = f̄ (x̂) + ḡ(x̂)û + k̄(x̂)ω̂, (59) is developed as

L̇(t) ≤ LT
1x̂

˙̂x − λmin(M)‖Y‖2 + ζN‖Y‖

< − ‖L1x̂‖τ − λmin(M)

(
‖Y‖ − ζN

2λmin(M)

)2

+ ζ 2
N

4λmin(M)
. (60)

Thus, (60) yields L̇(t) < 0 as long as one of the following conditions holds:

‖L1x̂‖ >
ζ 2

N

4τλmin(M)
� B1, or ‖Y‖ >

ζN

λmin(M)
. (61)

Noticing that ‖Y‖ ≤
√

1 + ‖ϕ‖2‖W̃c‖ and ‖ϕ‖ ≤ 1/2, we derive ‖Y‖ ≤ (
√

5/2)‖W̃c‖. Then, from (61), we have

‖W̃c‖ >
2ζN√

5λmin(M)
� B2.



446 X. Yang et al. / Information Sciences 328 (2016) 435–454
Case 2: �(x̂, û, ω̂) = 1. In this circumstance, the first term in (59) is nonnegative. It implies that the control given in (38) might

not stabilize system (1). Then, (59) becomes

L̇(t) ≤ −λmin(M)‖Y‖2 + ζN‖Y‖ + R1 + R2, (62)

where

R1 = LT
1x̂

(
f̄ (x̂) + ḡ(x̂)û

)
− 1

2
LT

1x̂ḡ(x̂)
[
Im − C (�2(x̂))

]
ḡT(x̂)∇σTW̃c, (63)

R2 = LT
1x̂k̄(x̂)ω̂ + 1

2γ 2
LT

1x̂k̄(x̂)k̄T(x̂)∇σTW̃c. (64)

From (50), we have

tanh (�2(x̂)) + 1

2κ

[
Im − C (�2(x̂))

]
gT(x̂)∇σTW̃c = tanh (�1(x̂)) − O

(
(�1(x̂) − �2(x̂))2

)
.

Then, by utilizing (35) and (38), R1 given in (63) is developed as

R1 = LT
1x̂ f̄ (x̂) − κLT

1x̂ḡ(x̂)

(
tanh (�2(x̂)) + 1

2κ

[
Im − C (�2(x̂))

]
gT(x̂)∇σTW̃c

)
= LT

1x̂

(
f̄ (x̂) − κ ḡ(x̂) tanh (�1(x̂))

)
+ κLT

1x̂ḡ(x̂)O
(
(�1(x̂) − �2(x̂))2

)
= LT

1x̂

(
f̄ (x̂) + ḡ(x̂)u∗)− LT

1x̂ḡ(x̂)εu∗ + κLT
1x̂ḡ(x̂)O

(
(�1(x̂) − �2(x̂))2

)
. (65)

Similarly, by using (36) and (39), R2 given in (64) becomes

R2 = 1

2γ 2
LT

1x̂k̄(x̂)k̄T(x̂)∇σTŴc + 1

2γ 2
LT

1x̂k̄(x̂)k̄T(x̂)∇σTW̃c = LT
1x̂k̄(x̂)ω∗ − LT

1x̂k̄(x̂)εω∗ . (66)

Combining (65) with (66), and by Assumption 4 and Lemma 1, we obtain

R1 + R2 = LT
1x̂

(
f̄ (x̂) + ḡ(x̂)u∗ + k̄(x̂)ω∗)− LT

1x̂

(
ḡ(x̂)εu∗ + k̄(x̂)εω∗

)
+ κLT

1x̂ḡ(x̂)O
(
(�1(x̂) − �2(x̂))2

)
≤ − λmin(Q(x̂))‖L1x̂‖2 + c1‖L1x̂‖ + bσ x̂ḡ2

M‖L1x̂‖‖W̃c‖, (67)

where c1 = (2κ
√

m + bεu∗ )ḡM + bεω∗ k̄M .

Let θ i ∈ (0, 1) (i = 1,2), and θ1 + θ2 = 1. Then, from (62) and (67), we have

L̇(t) ≤ − θ1λmin(Q(x̂))‖L1x̂‖2 + c1‖L1x̂‖ − θ2λmin(Q(x̂))

(
‖L1x̂‖ − bσ x̂ḡ2

M‖W̃c‖
2θ2λmin(Q(x̂))

)2

+ b2
σ x̂

ḡ4
M‖W̃c‖2

4θ2λmin(Q(x̂))
− λmin(M)‖Y‖2 + ζN‖Y‖

≤ − θ1λmin(Q(x̂))‖L1x̂‖2 + c1‖L1x̂‖ + b2
σ x̂

ḡ4
M‖W̃c‖2

4θ2λmin(Q(x̂))
− λmin(M)‖Y‖2 + ζN‖Y‖. (68)

By the definition of Y, we obtain ‖W̃c‖2 ≤ ‖Y‖2. Then, we can develop (68) as

L̇(t) ≤ − θ1λmin(Q(x̂))

(
‖L1x̂‖ − c1

2θ1λmin(Q(x̂))

)2

+ c2
1

4θ1λmin(Q(x̂))

−
(
λmin(M) − b2

σ x̂
ḡ4

M

4θ2λmin(Q(x̂))

)
‖Y‖2 + ζN‖Y‖

= − θ1λmin(Q(x̂))

(
‖L1x̂‖ − c1

2θ1λmin(Q(x̂))

)2

− c2

4θ2λmin(Q(x̂))

(
‖Y‖ − 2θ2λmin(Q(x̂))ζN

c2

)2

+ c2
1

4θ1λmin(Q(x̂))
+ θ2λmin(Q(x̂))ζ 2

N

c2

, (69)

where c2 = 4θ2λmin(M)λmin(Q(x̂)) − b2
σ x̂

ḡ4
M

. Observe that c2 depends on the parameters θ2, λmin(Q(x̂)), and Ki (i = 1,2). There-

fore, c2 can be kept positive by properly selecting these parameters.

For convenience, we denote

T = c2
1

4θ λ (Q(x̂))
+ θ2λmin(Q(x̂))ζ 2

N

c2

.

1 min
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Then, (69) implies L̇(t) < 0 as long as one of the following conditions holds:

‖L1x‖ >
c1

2θ1λmin(Q(x̂))
+
√

T

θ1λmin(Q(x̂))
� B′

1,

or

‖Y‖ >
2θ2λmin(Q(x̂))ζN

c2

+ 2

√
θ2λmin(Q(x̂))T

c2

. (70)

Observe that ‖Y‖ ≤ (
√

5/2)‖W̃c‖. Then, (70) yields

‖W̃c‖ >
4θ2λmin(Q(x̂))ζN√

5c2

+ 4

√
θ2λmin(Q(x̂))T

5c2

� B′
2.

Combining Cases 1 and 2 and using the standard Lyapunov extension theorem [13], we obtain that the function L1x̂ is UUB with

ultimate bound B1 (or B′
1
) and the critic NN weight estimation error W̃c is UUB with ultimate bound B2 (or B′

2
). �

Remark 7. L1(x̂) given in Assumption 4 is often obtained by selecting polynomials. Therefore, L1x̂ is also a polynomial with

respect to x̂. Since Theorem 2 has verified that L1x̂ is UUB, we can obtain that the trajectory of the closed-loop system is UUB.

The following theorem is established to show that the estimated control û given in (38) and the disturbance ω̂ given in (39)

can approximate the optimal control u∗ and the worst disturbance ω∗ within finite bounds, respectively.

Theorem 3. Consider system (26) with associated HJI equation (30). Suppose Assumptions 4–7 hold and take the control input and the

disturbance input for system (26) as given in (38) and (39), respectively. Meanwhile, let weight update laws for the identifier NN and

the critic NN be described by (15) and (46), respectively. Then, the estimated control û and the estimated disturbance ω̂ can be close to

the optimal control u∗ and the worst disturbance ω∗ within finite bounds, respectively. In addition, V̂(x̂) converges to the optimal cost

function V ∗(x̂) within a small bound L (given in (71)).

Proof. By (35), (38), and using Assumptions 5–7 and Lemma 1, we have

‖û − u∗‖ =
∥∥κ[ tanh (�1(x̂)) − tanh (�2(x̂))

]
− εu∗

∥∥
=
∥∥∥1

2

[
Im − C (�2(x̂))

]
ḡT(x̂)∇σTW̃c + κO

(
(�1(x̂) − �2(x̂))2

)
− εu∗

∥∥∥
≤ 2bσ x̂ḡM

∥∥W̃c

∥∥+ 2κ
√

m + bεu∗ .

From Theorem 2, we know that W̃c is UUB with ultimate bound B2 (or B′
2). Denote " = max{B2,B′

2}. Then, we derive

‖û − u∗‖ ≤ 2bσ x̂ḡM" + 2κ
√

m + bεu∗ .

Similarly, using Assumptions 5–7, we obtain

‖ω̂ − ω∗‖ ≤ 1

2γ 2
k̄Mbσ x̂" + bεω∗ ,

‖V̂ − V ∗‖ ≤ bσ" + bεc
� L. (71)

Remark 8. Noticing the expressions of B2 and B′
2, we can find that " can be kept very small by selecting proper parameters (e.g.,

λmin (M) is large enough). In addition, as pointed out in [8,9], if the number of neurons N0 goes to infinity, there exist εc → 0 and

∇εc → 0. That is, bεc can be kept arbitrarily small. Therefore, L given in (71) can be made very small.

6. Simulation results

In this section, two examples are provided to illustrate the effectiveness of the developed theoretical results.

6.1. Example 1

Consider the CT linear system given by

ẋ =

⎡
⎣−1.01887 0.90506 −0.00215

0.82225 −1.07741 −0.17555

0 0 −1

⎤
⎦x +

⎡
⎣0

0

1

⎤
⎦u +

⎡
⎣1

0

0

⎤
⎦ω (72)

with the state x = [x1, x2, x3]T ∈ R
3, and the control u ∈ U = {u ∈ R : |u| ≤ 1}. The nonquadratic function is given by

‖z‖2 = x2
1 + x2

2 + x2
3 + 2κ

∫ u

tanh
−1 (υ/κ)dυ.
0
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It is desired to solve the H∞ optimal control problem with γ = 5. The prior knowledge of system (72) is assumed to be

unavailable. To obtain the knowledge of system (72), the identifier NN (13) is employed. The identifier gains are selected as

A =

⎡
⎣−2 1 0

0 −0.5 0

0 0 −1

⎤
⎦, �1 =

⎡
⎣ 1 0.2 0.3

0.2 1 0.5

0.3 0.5 1

⎤
⎦, �2 =

⎡
⎣ 1 0.2 0.1

0.2 1 0.3

0.1 0.3 1

⎤
⎦, �3 =

⎡
⎣ 1 0.2 0.5

0.2 1 0.1

0.5 0.1 1

⎤
⎦,

and β = 2, η = 60. φ(x), ρi(ζ
T
i

x), and 
 j(ς
T
j

x) are chosen as hyperbolic tangent functions tanh (x), tanh (ζT
i

x), and tanh (ςT
j

x̂),

respectively. ζ i and ς j (i, j = 1,2,3) are selected randomly within an interval of [−1,1] and held constant. Meanwhile, the initial

weights Ŵf , Ŵg, and Ŵk are all chosen randomly within the interval of [−1,1].

The gains for the critic NN are given as l = 0.95 and κ = 1. The activation function for the critic NN is chosen with N0 = 6

neurons as

σ(x) =
[
x2

1, x2
2, x2

3, x1x2, x1x3, x2x3

]T
,

and the weight of the critic NN is denoted as Ŵc =
[
Ŵc1,Ŵc2, . . . ,Ŵc6

]T
.

Remark 9. It should be emphasized that, the number of neurons required for any particular application is still an open problem.

Choosing the proper number of neurons for NNs is more of an art than science [26]. In this example, the number of neurons is

obtained by computer simulations. We find that selecting 6 neurons in the hidden layer for the critic NN can lead to satisfactory

simulation results.

The initial state is x0 = [3,−0.5,0.5]T (Note: x0 can be selected arbitrarily in D1 = {2 ≤ x1 ≤ 3; −0.5 ≤ x2 ≤ 0.5;−0.5 ≤ x3 ≤
0.5}. For simplicity of discussion, we assume x0 = [3,−0.5,0.5]T). Meanwhile, the initial weights for the critic NN are chosen

randomly within an interval of [0, 2]. In this sense, by using (38), we can find that there is no a special requirement imposed

on the initial control; that is, no initial stabilizing control is required. Since system (72) is linear, we choose L1(x) = 0.5xTx. To

guarantee the PE condition, a small exploratory signal n(t) = 8e(−0.2t)[sin (t) cos (t) + sin3 (2t) cos (0.2t) + sin5 (1.2t)] is added

to the control u(t) for the first 24 sec.

The computer simulation results are shown in Figs. 1–5. Fig. 1 illustrates the system identification error. Fig. 2 presents

the convergence of the critic NN weight matrix, where it converges to [1.4376,0.1573,0.5998,0.3897,−0.7959,0.7393]T. By

Theorem 3, the critic NN is considered to arrive at the approximate optimal value. Then the approximate solution of the HJI

equation (10) can be computed with (37) and the nearly optimal control policy is obtained via (38). The disturbance signal is

given as ω(t) = 3r(t)e−0.2t cos (t) with r(t) randomly chosen within an interval [0, 1]. Fig. 3 indicates the state trajectories of the

closed-loop system when system (72) is at rest and experiencing the disturbance ω(t). Fig. 4 presents the control input for the

closed-loop system. Define the ratio of the disturbance attenuation as

γd =
(∫∞

0

(
hTh + ‖u‖2

)
dt∫∞

0 ‖ω(t)‖2dt

)1/2

. (73)
Fig. 1. System identification error x̃(t) in Example 1.
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Fig. 2. Convergence of the critic NN weight Ŵc in Example 1.

Fig. 3. State trajectories xi(t)(i = 1,2,3) of the closed-loop system in Example 1.
Fig. 5 illustrates the evolution of γ d, where it converges to 1.6935( < γ = 5). Therefore, the obtained control policy can achieve

a prescribed L2-gain performance level γ for the closed-loop system.

6.2. Example 2

Consider the CT nonlinear system [33] given by

ẋ = f (x) + g(x)u + k(x)ω, (74)

where

f (x) =
[ −x1 + x2

−x3
1 − x3

2 + 0.25x2( cos (2x1) + 2)2 − 0.25x2γ
−2
(

sin (4x2
1) + 2

)2

]
,
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Fig. 4. Control input u of the closed-loop system in Example 1.

Fig. 5. Evolution of γ d in Example 1.

[ ] [ ]

g(x) = 0

cos (2x1 + 2)
, k(x) = 0

sin (4x2
1) + 2

.

with the state x = [x1, x2]T ∈ R
2, and the control u ∈ U = {u ∈ R : |u| ≤ 1}. The nonquadratic function is given by

‖z‖2 = x2
1 + x2

2 + 2κ

∫ u

0

tanh
−1 (υ/κ)dυ.

It is desired to solve the H∞ optimal control problem with γ = 4. The prior knowledge of system (74) is assumed to be

unknown. The dynamic NN (13) is utilized to identify system (74). The identifier gains are chosen as

A =
[
−2 0.5
0 −1

]
, �1 =

[
1 0.1

0.1 1

]
, �2 =

[
1 0.2

0.2 1

]
, �3 =

[
1 0.1

0.1 1

]
,
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W

and β = 2, η = 20. φ(x), ρi(ζ
T
i

x), and 
 j(ς
T
j

x) are hyperbolic tangent functions tanh (x), tanh (ζT
i

x), and tanh (ςT
j

x), respec-

tively. ζ i and ς j (i, j = 1,2) are selected randomly within an interval of [−1,1] and kept constant. The initial weights Ŵf , Ŵg, and

ˆ
k are all chosen randomly within the interval of [−1,1]. The gains for the critic NN are given as l = 0.8 and κ = 1. The activation

function for the critic NN is chosen with N0 = 8 neurons as

σ(x) =
[
x2

1, x2
2, x1x2, x4

1, x4
2, x3

1x2, x2
1x2

2, x1x3
2

]T
,

and the weight of the critic NN is denoted as Ŵc =
[
Ŵc1,Ŵc2, . . . ,Ŵc8

]T
. Similar to Example 1, the number of neurons is obtained

by computer simulations.

The initial system state is x0 = [1.5,−0.5]T (Note: x0 can be selected arbitrarily in D2 = {1 ≤ x1 ≤ 2;−0.5 ≤ x2 ≤ 0.5}. For sim-

plicity of discussion, we assume x0 = [1.5,−0.5]T). Meanwhile, the initial weights for the critic NN are chosen randomly within

an interval of [−0.5,0.5]. In this sense, it implies that no initial stabilizing control is required. Due to the expression of system (74),
Fig. 6. System identification error x̃(t) in Example 2.

Fig. 7. Convergence of the critic NN weight Ŵc in Example 2.
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Fig. 8. State trajectories xi(t)(i = 1,2) of the closed-loop system in Example 2.

Fig. 9. Control input u of the closed-loop system in Example 2.
we choose L1(x) = 0.25(xTx)xTx. To guarantee the PE condition, a small exploratory signal n(t) = 2.4e(−0.1t)[sin2 (t) cos (t) +
sin2 ( − 1.2t) cos (0.5t) + cos (2.4t) sin3 (2.4t) + sin5 (t)] is added to the control u(t) for the first 40 sec.

The computer simulation results are shown in Figs. 6–10. Fig. 6 presents the system identification error. Fig. 7 shows the

convergence of the critic NN weight matrix, where it converges to [0.1531,0.8908,0.1183,0.2765,0.2426,−0.1694,−0.0468,

0.2002]T. By Theorem 3, the critic NN is considered to reach the approximate optimal value. Then the approximate solution

of the HJI equation (10) can be computed with (37), and the nearly optimal control policy is derived via (38). The disturbance

signal ω(t) is the same as in Example 1. Fig. 8 shows the state trajectories of the closed-loop system when system (74) is at rest

and experiencing the disturbance ω(t). Fig. 9 presents the control input for the closed-loop system. The ratio of the disturbance

attenuation γ d is defined as (73). Fig. 10 indicates the evolution of γ d, where it converges to 0.9986 ( < γ = 4). Accordingly, the

developed control law can achieve a prescribed L -gain performance level γ for the closed-loop system.
2
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Fig. 10. Evolution of γ d in Example 2.
7. Conclusions

In this paper, we have presented a new ADP-based algorithm which solves the HJI equation for constrained-input affine

nonlinear CT systems in the presence of unknown dynamics. The algorithm employs an identifier-critic architecture. Based on

the present algorithm, the identifer NN and the critic NN are tuned simultaneously. Meanwhile, no initial stabilizing control is

required. A limitation of the present algorithm is that the system state is required to be available. In our future work, we shall

remove this condition. Furthermore, due to the output of nonaffine nonlinear systems depending nonlinearly on the control

input, it will be more intractable to obtain the solutions of HJI equations for nonaffine nonlinear systems than affine nonlinear

systems. Therefore, how to develop efficient online learning algorithms to solve HJI equations for nonaffine nonlinear systems is

also a direction of our future work.
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