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Abstract—In the context of social media services, data shortage
has severally hindered accurate user modeling and practical
personalized applications. This paper is motivated to leverage
the user data distributed in disparate online social networks
(OSN) to make up for the data shortage in user modeling, which
we refer to as “cross-OSN user modeling.” Generally, the data
that the same user distributes in different OSNs consist of both
behavior data (i.e., interaction with multimedia items) and social
data (i.e., interaction between users). This paper focuses on the
following two challenges: 1) how to aggregate the users’ cross-OSN
interactions with multimedia items of the same modality, which we
call cross-OSN homogeneous behaviors, and 2) how to integrate
users’ cross-OSN social data with behavior data. Our proposed
solution to address the challenges consist of two corresponding
components as follows. 1) Homogeneous behavior quantification,
where homogeneous user behaviors are quantified based on their
importance in reflecting user preferences. After quantification, the
examined cross-OSN user behaviors are aggregated to construct a
unified user-item interaction matrix. 2) Local social regularization,
where the cross-OSN social data is integrated as regularization
in matrix factorization-based user modeling at local topic level.
The proposed cross-OSN user modeling solution is evaluated in
the application of personalized video recommendation. Carefully
designed experiments on self-collected Google+ and YouTube
datasets have validated its effectiveness and the advantage over
single-OSN-based methods.

Index Terms—Behavior fusion, cross-OSN user modeling, local
social regularization, personalization, video recommendation.

I. INTRODUCTION

OCIAL MEDIA has exploded beyond anyone’s wildest
S imagination, and User Generated Content (UGC) is prop-
agated online at an unparalleled level. Taking YouTube for ex-
ample, there were in total three billion videos on this website by
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the end of 2014 with more than 300 hours of new videos being
uploaded every minute. In the face of the critical information
overload and the increasing customized user needs, personal-
ized recommendation services stand out as requiring solutions
and play a more and more important role in the exploration and
discovery of interesting resources [1].

In contrast to the huge volume of data to be served, the
number of accessible personal user data is very limited. We
have observed in our previous study that a typical YouTube
user has less than 50 video-related behaviors (e.g., upload, fa-
vorite, add-to-playlist) [2]. In the past decade, many researchers
have devoted to the problem of user modeling and proposed
advanced models/algorithms to complement the user data
shortage for personalized services. For example, factorization
models are proposed to project the users and items onto a
low-dimension space to capture the underlying structure [3],
user behavior and registered information is exploited with
regularization of the available social interactions [4]. However,
the task of user modeling still remains open. The notorious data
sparsity issue has severely hindered accurate user modeling
and practical personalized services [5], [6].

Nowadays, many users are using a multitude of Online Social
Network (OSN) services, such as Google+, Twitter, YouTube,
etc. Global Web Index 2015 has reported that within the inves-
tigated 50 OSNSs, each individual holds user accounts on an av-
erage of 5.54 OSNs, and actively participate in 2.82 OSNs.!
In this context, users’ data distribute among different OSNs
which together record people’s integral online footprint and re-
flect their demographics, as well as interests from a variety of
perspectives. This work falls into the topic of cross-OSN user
modeling [7], i.e., leveraging the user data distributed in dif-
ferent OSNs for user modeling to address the data sparsity issue
under single-OSN situation.

Generally, in cross-OSN user modeling, there consists of two
types of user data for fusion from different OSNS, i.e., the be-
havioral data indicating the interaction between user and the
multimedia items, and the social data indicating the interaction
between users. Regarding fusing the behavioral data, two types
of data are further involved, the cross-OSN heterogeneous be-
haviors where the interacted items are from different modali-
ties (e.g., YouTube video favorite and Twitter tweeting), and the
cross-OSN homogeneous behaviors where the interacted items
are from the same modality (e.g., YouTube video favorite and

[Online]. Available: http://www.globalwebindex.net/blog/internet-users-
have-average-of-5-social-media-accounts.

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2260

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 12, DECEMBER 2015

£'~ A EEE --

-
A
\
P NG i
@l
0 7%, 2 %R s
&Y Video5 |

2

rate

;v»u E Google
uplosd share
favorite
playlist

comment

0.22

~ __~~N [ —

Yol Google serA \ 10 A | video 1
\ -

upload 019 ghare 1 ¢ AN/ Video 2

favorite 0.22 “-——"x;, Mo

comment 0.

107 i
playlist 0.10 UserB "7 A video 4

4
; /011 | Videos

rate 0.11

User C

Cross-OSN video-related

Homogeneous Behavior Quantification

Unified user-video

behaviors preference matrix
Google+ ‘
&7 = Video topics
E—&_j » I,;’-'“ — > mm » & — LTI .
&7 - e/ — - ==
Video topic _ latent user t : i
ﬁ space feature | [ Y p— :
5 Google+ c - -
p(zlu)

Social interaction
on Google+

Local Social Regularized User Modeling

User latent distribution

Fig. 1. Proposed solution framework.

Google+ video “+17). In our previous work [8], [2], we have
proposed solutions to address the fusion of cross-OSN heteroge-
neous behaviors by mining the association between users’ inter-
actions with different modalities of items. The first goal of this
work is to fuse the other type of behavioral data, the cross-OSN
homogeneous behaviors. Taking video-related cross-OSN be-
haviors as an example: the “upload”, “favorite” behaviors on
YouTube, and the “+17, “share” behaviors on Google+ all in-
dicate users’ interest in the videos. To fuse these behaviors for
user modeling, we need to know how significant each behavior
is in reflecting users’ preferences. Till now, the discrepant sig-
nificance of homogeneous behavior remains unexplored. Re-
garding fusing the social data, current solutions are devoted to
adopting the social interactions as the global regularization, ei-
ther by propagating interests among users with close social re-
lations based on random walk [9], [10], or by modifying a latent
factor model and regularizing the user factors [11], [12]. Both
lines of solutions lead to the result that the socially interacting
users will have similar feature vectors in all dimensions. How-
ever, in most cases, users connect with each other only because
they share interests in a certain field. For example, colleagues
in a securities company share interests in finance, daily friends
share interests in classical music, family members share inter-
ests in TV shows, etc. Therefore, the second goal of this work
is to fuse user-user social interaction with user-item behavioral
data at a local level in the derived user model.

We achieve the above mentioned two goals by using the
video-related behaviors and social interactions on YouTube
and Google+ as example, and evaluating the cross-OSN user
modeling performance in the context of personalized video
recommendation application. Regarding fusing cross-OSN
homogeneous behaviors, if each type of behavior constitutes a
user-item interaction matrix, the most straightforward way is to
construct a unified user-item matrix. Existing solutions either
conduct the fusion at the decision stage by tuning the weight
according to single behavior-based performance [13], or manu-
ally set the behavior significance according to priori knowledge

and experiences. This work will conduct an exploratory study
to quantify the different contributions for each behavior and
how it indicates users’ preferences. With each type of behavior
defining a kernel, a multi-kernel learning strategy is designed
to intimate the real preference and discover the behavioral
importance as the kernel weight.

After behavior quantification, the cross-OSN homogeneous
behaviors are aggregated to construct a unified user-video inter-
action matrix and we can conduct user modeling directly based
on this matrix. To fuse the user social data into user model, we
propose local social regularization to regularize the learned user
models at fine-grained level. Two tasks need to be addressed
to achieve this goal: 1) making the derived user models inter-
pretable and able to be correlated with the videos; and 2) pro-
jecting the observed user social interactions onto certain dimen-
sions of user models. For the first task, the work exploits Modi-
fied Fuzzy C-Means (MFCM), which combines the advantages
of Matrix Factorization and Fuzzy C-Means and can obtain item
clusters as well as the user distribution (membership) over these
clusters. For the second task, the work investigates an itera-
tive strategy to locally regularize the dynamically updated user
models. We summarize the framework of the proposed solution
in Fig. 1. The inputs include user video-related behaviors on
Google+ and YouTube, user social interactions on Google+. The
outputs are the generated video topics and user latent distribu-
tions. The main contributions of this paper are as follows.

1) We present a novel framework of cross-OSN user mod-
eling to investigate two previously unexplored challenges:
homogeneous behavior discrepancy and social interaction
locality.

2) The challenge of homogeneous behavior discrepancy is ad-
dressed by exploiting the correlation between different be-
haviors to quantify their respective significance to express
user preferences. The challenge of social interaction lo-
cality is addressed by a novel iterative updating user mod-
eling which integrate the user social interaction at fine-
grained topic level.
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The rest of this paper is organized as follows. The re-
lated work on cross-OSN user modeling is briefly reviewed
in Section II. In Section IIl, we present the proposed ho-
mogeneous behavior quantification solution. Following that
Section IV elaborates the local social regularized user modeling
solution. Experimental results, analysis and discussion are
reported in Section V. Finally, Section VI concludes this work
with future directions.

II. RELATED WORK

Nowadays, many users are not only using multiple Online
Social Network (OSN) services but willing to disclose their
cross-OSN user accounts. This opens up possibilities for the
researchers to analyze people’s online complete footprint and
exploit the cross-OSN ata to solve many challenging problems
which cannot be well explored under single-OSN situation.
Szomszor and Alali [14] conducted a very early cross-OSN
user modeling work by proposing to integrate user behaviors
on Flickr and Delicious by matching user-contributed tags on
the two OSNs to Wikipedia categories. Abel et al. analyzed
the characteristics and overlap of tag-based user profiles on
Flickr, Twitter and Delicious, and developed several heuristic
cross-OSN user modeling solutions [15], [16]. Yuan et al
[17] proposed to model the lifestyle spectrum of a group of
individuals based on their online behaviors in different types
of OSNSs. A hierarchical topic model is presented, where each
topic corresponds to a specific life pattern in certain OSN.

Most of the above mentioned work are devoted to fusing
the cross-OSN user data without considering the correlations
between them. In recent years, we have conducted a series
of work on cross-OSN analysis and addressing the task of
user modeling by explicitly exploring the cross-OSN user data
correlations. In [18], we observed that users have similar social
and behavioral correlations on Twitter and Flickr, based on
what we proposed a “coldest-start” Twitter friend recommen-
dation problem by only utilizing the user behavior and social
data from Flickr. In [19], based on the data observation that
the same user responses faster on Twitter than on YouTube
to the same emerging event/topics, we propose a temporal
cross-OSN user modeling solution by exploiting users’ Twitter
and YouTube data for short-term and long-term interest estima-
tion respectively. Recently, we proposed to mine the correlation
between users’ heterogeneous cross-OSN behaviors, e.g.,
the Twitter tweeting and YouTube watching behaviors. The
discovered correlations are then utilized in the application of
Twitter-assistant YouTube video promotion [8] and YouTube
video recommendation [2]. In this paper, we aim at addressing
two major challenges in cross-OSN user modeling that are not
considered by previous work: 1) examining the significance of
the cross-OSN interactions with the same type of items, and
2) integrating user social interactions on Social Networking
Site (SNS) with user behaviors at fine-grained topic level.

III. HOMOGENEOUS BEHAVIOR QUANTIFICATION

This work will use the homogeneous video-related
cross-OSN behaviors as an example, i.e., favorite, rate, up-
load, add-to-playlist on YouTube, and share, comment, +1 on
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Google+. Both the motivation and the solution are expected to
be readily generalized to other behaviors. To quantify and fuse
the different video-related behaviors, the basic assumption is
that: the different homogeneous behaviors are correlated and
deserve similar significance weights if they are consistent in
terms of user interactions with unique videos. For example,
when a user watched an interesting video, he/she may com-
ment, favorite it and add it to playlist. This indicates that some
behaviors are consistent in expressing user preferences to some
degree. If a group of users simultaneously conduct different
behaviors on the same video, we are confident to claim that
these behaviors are correlated and have similar significance in
reflecting user preferences. Inspired by this, two solutions are
proposed to examine the correlation between homogeneous
behaviors for quantification, which will be detailed in the
following two subsections respectively.

A. Heuristic Quantification

The first quantification solution is to directly calculate the
behavior correlation based on their co-occurrence in terms of
users’ interaction with the same videos. Given a type of be-
havior, one user’s interaction with the videos can be encoded
into a binary vector where the element is set to 1 if this user
has interacted with the video and 0 otherwise. Since the number
of user interaction is very small compared to the video collec-
tion, the raw user-video vectors are extremely sparse and cannot
be directly used to calculate the correlation. Therefore, we first
cluster the videos based on their co-interactions with users. Spe-
cially, we view each user as a document and the videos user in-
teracted with as words. Latent Dirichlet Allocation (LDA) [20]
is adopted to learn the latent video topics which are represented
by the occurrence probability of each video. Each video is repre-
sented over the discovered latent video topics, where K-means
is utilized to obtain the video clusters.

After clustering the videos, we can transfer the user-video
interaction vectors to user-cluster vectors. Person Correlation
Coefficient (PCC) [21] is adopted to calculate the correlations
between these homogeneous behaviors. Given user u, the cor-
relation between YouTube “favorite” and Google+ “share” be-
havior is calculated as follows:

corr(ayf, ays)
N' _ P
_ Zi:l(azﬁ — Aug)(ays — Bus)
NI . _ 2 ]V/ . _ 2
VEN @y~ aup) 2 (s — )

where a, ¢, a,s denote the user-cluster vector for YouTube “fa-
vorite” and Google+ “share” behaviors; a’, £ al,; denote the in-
teraction value of user u on the ith cluster for YouTube “fa-
vorite” and Google+ “share” behaviors; @, @, denote the cor-
responding average interaction value; N’ denotes the number of
clusters in K-means. The final relative significance of different
behaviors is obtained by aggregating the correlation scores of
all the examined users.

)

B. Learning-Based Quantification

The above introduced heuristic quantification is straightfor-
ward and easy to realize. In this subsection, we introduce an-
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other learning-based quantification solution to deal with the in-
evitable noise in the observed raw user-video interactions.

We utilized Multiple Kernel Learning (MKL) [22] to
examine the consistency between users’ different types of
interactions with videos. In this case, each type of behavior is
considered as a kernel. Selecting one user-video cluster matrix
as the reference, the task is to use the combination of the other
behavior kernel vectors to fit the selected reference kernel
vector. Google+ “share” behavior is selected as the reference
behavior due to the following reason: Google+ is an extension
of YouTube video consuming to socializing. We observed that
76.5% of the shared videos in Googlet+ are from YouTube.
Google+ “share” behavior connects the Google+ with YouTube
where these cross-OSN shared videos strongly indicate user
preferences.2 The formulation of the linear combination for
user u is as follows:

Ny,
Ayy = Z @i * Ay (2)

where a,, is the reference user-video vector, ¢; is the linear
parameter for the corresponding behavior, and Vg, is the number
of homogeneous behavior types except the reference behavior.
For all users, the formulation is as follows:

N
= Z pi* A 3)
i=1
where A, € RM*N' A, € RM*N' | M indicates the number

of users, and N’ indicates the number of video clusters.

For model inference, the kernel matrices need first to be trans-
ferred to be square. Equation (3) is reformulated by multiplying
the corresponding matrix transpose, i.e., K, = Af* A, K, =
AT« A;. Equation (3) is rewritten as

Ny,
K, =Y ¢ +K, 4)

where the matrixes K; € RV *N' K, € RV >N,

A kernel-based learning technique is leveraged to find the op-
timal combination of multiple kernels by following the princi-
ples of KTA [23]. Specifically, we first centralize the kernel ma-
trices [24] as follows:

N’ N’
1 1
Ky = Koy S S Kot Y K 9
i=1 =1 i,5=1

Kernel alignment is then adopted to measure the quality of the
kernel K; with respect to the target reference matrix K,

Eftr(K,K;)]

K, K;)= .
o( ) VE[ir K, K,)E[tr(K;K;)]

(6)

2We emphasize that since the derived weights indicate the relative signifi-
cance of different behaviors. The proposed solution has no requirements on the
selection of certain behavior as the reference behavior.
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It is easy to obtain the optimal kernel weights by maximizing
the alignment p over K;. The solution ¢* of the optimization
problem is given by

@* = arg min " Mep — 2" b (7)
where b = [tr(KiK,),...,tr
tr(Kin), i,j € Ng.

Assuming the significance weight of the reference behavior
as 1, the derived normalized weight parameters are the desired
behavior significance to reflecting user preferences. Given the
behavior significance weights, we can easily aggregate the dif-
ferent behaviors to construct a unified user-video interaction
matrix denoted by R. R is defined with each element setting
as the maximum weight among the user-video interaction be-
haviors, i.e.

(Kn, K)]T, and [M];; :=

1, user u,, shared video v,
max I},,,¢;, otherwise

R~ {

where I is an indicator function that equals 1 if user u,, has
the corresponding behavior on video v, and equals 0 otherwise.
One example is illustrated in Fig. 2.

IV. LOoCAL SOCIAL REGULARIZATION

OSNss have different functionality focuses, e.g., YouTube fo-
cuses on user-content behavioral interaction, and Google+ fo-
cuses on user-user social interaction. This section focuses on
integrating the cross-OSN social data with behavioral data, i.c.,
users’ social interaction on Google+ with the aggregated homo-
geneous behaviors from above section. For integrating the so-
cial interaction between users into the final user model, the basic
premise is that: users usually interact with each other because
they share interests in certain fields. For example, one user is
interested in sport and finance. When he/she shared a video on
“European Cup” on Google+, his/her sport friends who share an
interest in sport are very likely to comment or reshare it, while
those who share an interest in finance may not interact with this
video. These social interactions only reflect the common inter-
ests for sports. Therefore, at this stage, the goal is to leverage
the observed social interactions as local regularization that cor-
responds to certain dimensions (e.g., sports) in the derived user
models. We have proposed a MFCM based solution to achieve
this goal.
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The first step is to associate the user models with the videos.
We briefly introduce how to utilize MFCM to factorize the uni-
fied user-video matrix to obtain video latent topics and user
model (user distribution over these topics). Specifically, given
the user-video interaction matrix R € RM™*Y where M (N) is
the number of users (videos), the objective function of MFCM
is as follows:

H(Z,C) = |R - ZC" ||z + M|IZ|% + [IClF)

1 X ’
= 5 Z (Tu,v - Zzukcvk>

y,veP k=1
A K K
S (Erarrya)
u€P k=1 veP k=1
K
st > zg=1 and zu >0(k€[LK]) (8
k=1
where Z = (Zl,...,ij)T S RMXK,C = (Cl,...,CK) €

RYXE z.(c;) is the distribution vector of the ith user on each

video topic, K is the number of video topics, r,, ,, is the observed
interaction value of user u on video v, z, is the derived user
model where z,, indicates the preference significance of user u
on video topic k, ¢, is the probability of video v belonging to
topic k, A is the penalty parameter to prevent overfitting.

In the following, we first introduce the traditional global so-
cial regularization in MFCM model. Thereafter, we elaborate
how to measure user similarity at topic level and how to in-
tegrate the topic-level similarity into MFCM model to realize
local social regularization.

A. Global Social Regularization

In factor models, existing methods assume that the similar
users will have similar feature vectors and introduce users’ sim-
ilarities to constrain all dimensions of their feature vectors. The
similarities can be measured by either the explicit (e.g., social
relation) or the implicit (e.g., co-interaction with the same mul-
timedia item) user social interactions. On Google+, since the
explicit social relation (i.e., Google circle) information is unac-
cessible via API, we use the co-interaction with Google+ posts
to calculate the social similarity between users. The co-interac-
tion between users on Google+ is illustrated in Fig. 3. Typically
the user similarity is integrated into factor models as global reg-
ularization term.
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The objective function of MFCM with global social regular-
ization is as follows:

H(Z,0) = |R - 2C7 |} + M|Z[} + | Cl13)
A Y simu, )z, — 2%

u.u' €P

1 X ’
= 5 Z <ru.u - Z Zukcuk>
k=1

u,vEP

+%(Z iziﬁZic&)

uEP k=1 vEP k=1
A K
+ 75 Z Zsim(u,u')(zuk — Zy)?
w,u’ €P k=1
K
st. > zge=1 and z >0(k€[1,K]) (9
k=1

where sim(u, u') denotes the similarity between the users % and
u’, A\, is the weight parameter to control the influence of social
interactions.

B. Local Social Regularization

As mentioned in the introduction, users often share similar
interests on certain topic. The social interactions between users
can reflect their shared interests at topic level, which should
be considered in user modeling as the local regularization. By
the standard MFCM, we can associate the derived user models
with video topics. This provides a way to project the observed
user-user social interactions with videos onto the derived user
models, i.e., the topic-level user similarity. However, the video
latent topics obtained by MFCM dynamically change during the
iteration process. Therefore, the topic-level user similarity must
keep pace with the update of the video latent topics. Since each
video topic is represented by the occurrence probability (mem-
bership) of videos, our basic premise to address this problem
is to calculate the user similarity based on the probability dis-
tribution over the videos in advance. The topic-level user simi-
larity can then be dynamically computed by projecting the prob-
ability distribution to the derived video topics. Enlightened by
this, we design a scheme to dynamically integrate topic-level
user similarity.

We use v; to denote the TF-IDF vector of the ith video calcu-
lated from its metadata including video title, tags and descrip-
tion. The social interactions between users » and «’ can be rep-
resented by a similar TF-IDF vector 1, constituted by the tex-
tual metadata of the videos co-interacted by them. Therefore,
we project the user similarity l,,,» to each video vector v; and
can obtain the probability distributions of user similarity over
the videos, denoted by S,/ € RY, where the element in s, is
defined as

w
Syu's = lgulvi = Z luu’wviw»i € [LJ\T]

w=1

(10)

where 1y, Vi 18 the weight of the wth word in vector

Ly and vy,; W is the size of the word vocabulary.
Afterwards, we project the video-level distribution vector

Sy to each video topic to obtain the topic-level user similarity
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distribution vector, denoted by t,,,,» € RX. The element in t.,,,’
is calculated as follows:
N
tuu’k = Sz;ulck = Z Sun’iCik ke []_,K]

i=1

(11)

The derived topic-level user similarity vector t,,- can be then
integrated into MFCM model as follows:

H(Z,C) = |R - ZCT|[% + A (1Z]1% + | CIF)

+ A Z [(Zo — 2u) © tuu’”%
u,u'€P

- 2

K

1

= 5 Z Ty — Z Zuk Cok
u,veP k=1

A K K
(2 zzzwzzczk)
ueP k=1 vEP k=1
2
(Z Syu! ncnk>

% Z Z Zuk_fvu’k
Zzuk =1 and 2z, >0(k€[l1,K]).

w,u' €P k=1
k=1

(12)

It is easy to conceive that the users’ similarities at topic-level
are introduced into MFCM to constrain the users’ latent repre-
sentation in the user model, which are changing with the update
of the video topic space.

C. Model Inference

We introduce two strategies to infer the proposed model:
1) one strictly subjects to the constraints, called MFCMS and
2) the other loosely subjects to the constraints, called MFCML.

1) MFCMS: The constraints in Eq. (12) is equivalent to the
formulation as follows:

e‘Juk

Ellil edul )

By incorporating the constraints into the objective function, (12)
can be rewritten as follows:

(13)

Zuk =

1 1 & ’
H(ch)zi E Tuw = R p E :e T eyg
u,vEP 1=1°¢ ! k=1
2
e%k edu'k
+ s E E _
K
uu'€P k=1 1 ef! lel edut

A K K
* (Z Suu’vcuk> + 5 (Z Z qik_’_z Z 0121/17) .
v=1

uC€P k=1 veEP k=1

(14)

Then, we adopt gradient descending strategy to infer the model.
Let the partial derivatives of H(Q, C) on g, and ¢, be equal
to 0

oOH
aQuk

oH
= 0 - O.
’ 6cvk
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For each user-video interaction pair u,v € P, we have

56111,k - euvzuk(Fuv - cvk)
N 2
+ )‘quk + )\s Z (Z suu’ncnk>
uw'€P \n=1

X (Zuk: - Zu’k)zuk(]- - zuk)

5Cvk = —€upZuk t+ Acuk
)\ 2
+ As E E suu’ncnksuu’v(zuk _Zu,’k)
uw EPn=1
Quk = Quk — N * 5Quk

(15)

where 1 denotes the learning rate, +,, is the estimated interac-
tion value, e, = 7y, — Py, 1s the error between real value and
estimated value.

2) MFCML: The constraints in (12) can also be directly in-
corporated into the objective function as follows:

Cyk = Cypp — N % 5cvk

H(Z,C)=|R - ZCT| + A (| Z|% + |C||% + | 271 — 1|
+ ||Z—H%’) + A Z (2o — 2u) © tu,u’”%«“
1 = F o =
SEDILUNE) SRR 1P 9 o
u,vEP k=1 veEP k=1
K 2 K
2 Q=)+ ) (et s
weP k=1 weP k=1
\ K N 2
+ 73 Z Z (Zuk: - Zu'k)2 (Z Suu’ncnk>
u,u'€P k=1 n=1
(16)
where Z_ (21,0 r2K)s 2. = maz(0,—z), |Z_||%
forces zj, > O(k: € [1,K]). The term [|Z71 — 1]|? is to force
Zk 1 %uk — 1.

Gradient descending is further adopted for model inference.
For each user-video rating pair u, v € P, we have

K
5Zuk: = —eyyCuk T A (Zuk — Zuk_t § Zul — 1)
=1
N 2
§ Suu'nCnk

n=1

+As Z (Zuk - Zu’k) *
u'eP
—eyyZuk + Acvk:

N
2
+ As E E suu’ncnksuu’v(zuk - Zu’k)

w'ePn=1
Zuk — Zuk — N ¥ 5zuk

Cpl = Cykp — N * 5cvk-

5cuk =

(17

Since the topic-level user similarity must be calculated and up-
dated at each iteration, the time complexity of the proposed
local social regularization solution is relative high. Therefore,
we adopt a strategy to accelerate the model convergence speed.
A simple strategy can be designed to speed up the model con-
vergence. Since topic modeling outputs a similar structure as
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TABLE I
NUMBER OF DIFFERENT VIDEO-RELATED
BEHAVIORS ON YOUTUBE AND GOOGLE+

YouTube Google+
#favor  #upload #playlist #comm  #rate #share+  #comm+
534814 223106 456622 50851 469620 114970 53124
TABLE II
STATISTIC OF USER-VIDEO MATRIX IN OUR DATASET
Statistic User  Video
Min. No. of interactions 0 5

Max. No. of interactions 215 129
Avg. No. of interactions 189 11.2

MFCM, the solution is inspired to leverage the output from topic
modeling as the starting-point for the iteration process. Specif-
ically, we run the standard topic modeling method (e.g., Latent
Dirichlet Allocation, LDA) and utilize the derived user-topic
and topic-word distribution to initialize the model. In experi-
ments, we compare the performance of our model with random
and LDA initialization.

V. EXPERIMENTS

A. Dataset and Evaluation Metrics

In our previous studies, we observed that a considerable
proportion of users share their YouTube accounts to their
Google+ homepages [25]. Enlightened by this, we first col-
lected 10,500 users with available YouTube accounts from
Google+ homepages. Then, we crawled these user data from
Google+ and YouTube by the respective APIs. On Google+, the
user registration and all the posts are collected including their
interactions with text, image and video. On YouTube, all the
video-related behaviors are collected such as favorite, rating,
commenting, uploading and adding to playlist. As a result, we
obtained a dataset with 1,903,107 video-related behaviors and
1,083,485 text- and image-related behaviors for the 10,500
users. Table I summarizes the statistics of the video-related
homogeneous behaviors.

We evaluate the performance of the proposed cross-OSN user
modeling solutions in the context of personalized video recom-
mendation. In order to better illustrate the significance of social
interaction to user modeling, we only keep the users who in-
teracted with no less than 10 users in our dataset in the video
recommendation experiments. Besides, the videos rated by less
than five users are also filtered out. As a result, we obtained a
dataset with 2,181 users and 3,667 videos for our experiments.
The detailed statistic information about the experimental data is
summarized in Table II. We use different amounts of training
data (90%, 70%, 50%, 30%, 10%) and the rest to evaluate the
performance.

Two evaluation metrics are utilized, Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE). Specifically, RMSE
is defined as

RMSE = \/Zi.jep (Rij - Rz‘j)
T

2

(18)

2265
TABLE III
CORRELATIONS BETWEEN DIFFERENT VIDEO-RELATED
BEHAVIORS IN YOUTUBE AND GOOGLE+
favor upload  playlist ~comm rate share+  comm+
favor - 0.680 0.524 0.371 0.666 0.675 0.662
upload 0.680 - 0.500 0.378 0.655 0.687 0.670
playlist 0.524 0.500 - 0.238 0.457 0.488 0.477
comm 0.371 0.378 0.238 - 0.434 0.387 0.379
rate 0.666 0.655 0.457 0.434 - 0.666 0.648
share 0.675 0.687 0.488 0.387 0.666 - 0.719
comm+ 0.662 0.670 0.477 0.379 0.648 0.719 -
TABLE 1V
OVERALL CORRELATION FOR EACH VIDEO-RELATED
BEHAVIOR IN YOUTUBE AND GOOGLE+
favor  upload playlist comm rate share+ comm+
3.579 3.572 2.684 2.188  3.526 3.623 3.556
TABLE V

LINEAR WEIGHTS OBTAINED BY MKL-BASED BEHAVIOR QUANTIFICATION

favor
0.2162

upload
0.1895

rate
0.1114

playlist
0.0968

comm
0.1211

comm-+
0.3559

where I; j(RL‘j) denotes the real (estimated) interaction value
user ¢ gives to item j, I" denotes the total number of the tested
interaction elements.

MAE is defined as

Yoijep | Rij — Rijl
- .

MAFE =

19

B. Experimental Results for Homogeneous Behavior
Quantification

We first introduce the parameter settings. In LDA model,
there are two hyperparameters: « and 8. We empirically fix the
parameters according to the prior expectation about the data.
The hyperparameter 5 is fixed to 0.1 and « is set to 50/ N
where N is the number of the latent topics. We set N = 25
according to the perplexity examination [26]. In order to guar-
antee the effectiveness of the experiment, we only keep the users
who have all the video-related behaviors in Table I. The number
of clusters in K-means is set to 25 which is equal to the number
of the latent topics in LDA.

In heuristic quantification, the average correlations over all
users are shown in Table III. We can see that the correlations
between behaviors are quite different. The correlations of each
behavior with the others are summed up and shown in Table IV.
It is shown that the total correlations for these behaviors are not
simply proportional to their numbers shown in Table I. Google+
“share” behavior has the largest overall correlation indicating its
high overlap with other behaviors. This also validates our mo-
tivation to use the “share” behavior as the reference behavior in
learning-based quantification. The total correlation scores listed
in Table I are normalized to obtain the significance weight for
each behavior in the fused user-video matrix for user modeling.
We record this method as Heuristic in the video recommenda-
tion experiment.

The learning-based behavior quantification results are
demonstrated in Table V. We can see that Google+ “comment”
(denoted as comm+) behavior has the biggest weight, while
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TABLE VI
PERFORMANCE COMPARISON OF LSOCMFCMS WITH
DIFFERENT BEHAVIOR QUANTIFICATION STRATEGIES

Training data  Metrics = MKL  Heuristic  Equivalent
90% RMSE 0.271 0.2848 0.2959
MAE 0.2205 0.2222 0.2326
70% RMSE  0.2828 0.3089 0.3197
MAE 0.2272 0.2350 0.2384
50% RMSE 03127 0.3220 0.3316
MAE 0.2373 0.2478 0.2496
30% RMSE 0.334 0.3373 0.358
MAE 0.2535 0.2617 0.2761
10% RMSE 03613 0.3662 0.3701
MAE 0.2657 0.2697 0.2844

YouTube “comment” behavior has very small weight. This can
be explained by the fact that on Google+, the commented videos
are often shared by their friends and the comment behaviors
are often positive. Besides, YouTube “favorite” behavior also
obtains significant weight, while YouTube ‘“add-to-playlist”
behavior has the smallest weight. This result is reasonable as
“favorite” behavior explicitly express the user’s preference
to the video, while the behavior of “add-to-playlist” conveys
much fewer preference hints.

We evaluate the performance of homogeneous behavior
quantification in the context of video recommendation applica-
tions. Specifically, three behavior quantification solutions are
compared: 1) Equivalent, the different behaviors are assigned
with equal significance weight; 2) Heuristic, the different
behaviors are quantified based on their total correlations with
the other behaviors (see Table IV); and 3) MKL, the proposed
learning-based behavior quantification solution. For user mod-
eling method, we utilize the proposed local social regularized
MFCM with strict constraints (denoted as LSocMFCMS).
The recommendation results in terms of RMSE and MAE are
shown in Table VI. We can observe that the performance of
personalized video recommendation based on the proposed
learning-based behavior quantification strategy is consistently
superior than those based on heuristic and equivalent quantifi-
cation strategies. We explain this result that by kernel learning
we can reduce the influence from noisy user-video interactions
and discover the underlying correlation between the different
behaviors.

C. Experimental Results for Local Social Regularization

In order to measure the effectiveness of local social regular-
ization, we compare our proposed approach with several social
recommendation approaches as well as the basic Matrix Factor-
ization-based methods. The examined methods are as follows:
* PMF: the basic probabilistic matrix factorization method
[27];

* SocMF1: integrating social relations by global average-
based regularization [11];

* SocMF2: integrating social relations by global individual-
based regularization [12];

* MFCMS: the basic MFCM method with strict constraints

without social regularization;

* MFCML: the basic MFCM method with loose constraints

without social regularization;
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e GSocMFCMS: the MFCMS with global social
regularization;

* GSocMFCML: the MFCML with global social
regularization;

* LSocMFCMS: the MFCMS with local social
regularization; and

* LSocMFCML: the MFCML with local social

regularization.

The global user similarity in SocMF1, SocMF2, MFCMS and
MFCML is measured by the cosine value between user vectors,
which are obtained by extracting the semantic words in the con-
tent information of user posts on Google+.3

Three major parameters are involved in social recommenda-
tion: K, A and A;. K is the number of the video clusters. The
regularization parameter A is to prevent the overfitting of the
model. The parameter A, is to control the influence of social
interactions. It is impractical for all the examined methods
to achieve the best performance by tuning these parameters.
Therefore, according to the prior knowledge, we fix the number
of video clusters K = 25 which is equal to the number of latent
topics in LDA, and set A = 0.05 for all the models to ensure
that PMF and MFCML(S) have the similar performance [28].
Since A, has different scales in the examined methods, we set
A, to arelatively small value of A; = 0.0001 in GSocMFCML,
GSocMFCMS, LSocMFCML and LSocMFCMS models, and
a relatively big value of A; = 0.1 in SocMF1 and SocMF2
models. This setting guarantees that these models achieve a
good performance when A = 0.05. In the following, we first
conduct experiments based on the above parameter values.
Then, we examine the influence of the parameters A; and K on
the performance of the proposed approaches.

1) Comparison of Different Methods: The experimental
results of different video recommendation methods are demon-
strated in Table VII and Table VIII in terms of RMSE and MAE,
respectively. We have the following observations. 1) MFCM
with local social regularization (LSocMFCML and LSocM-
FCMS) outperforms the other strategies consistently in different
experimental settings. 2) The performance of LSocMFCMS
(GSocMFCMYS) is slightly better than that of LSocMFCML
(GSocMFCML) due to the fact that LSocMFCMS strictly
subjects to the constraints. However, LSocMFCMS is more
time-consuming than LSocMFCML in the training process
since the user distribution needs to be completely updated
at each iteration step. 3) The performance of SocMF1 and
SocMF?2 is much better than that of the basic MFCMS (PMF),
which demonstrates the effectiveness of social regularization.
4) LSocMFCMS achieves superior performance than the global
social regularization model GSocMFCMS. Compared with
the state-of-the-art global social recommendation methods,
SocMF1 and SocMF2, the relative improvement of LSocM-
FCMS is around 3%.

Furthermore, in order to examine the influence of each
behavior on the performance of our proposed approach, we
conduct experiments with each behavior missing, respectively.
Table IX demonstrates the experimental results. We can see

3We only keep noun words which are the least noisy representations for user
interests.
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT STRATEGIES BY RMSE

Training data  Metrics PMF  SocMFl SocMF2 MFCML MFCMS GSocMFCML GSocMFCMS LSocMFCML  LSocMFCMS
RMSE 0.2998 0.2802 0.2869 0.3025 0.2976 0.2907 0.2825
0% Improve  9.61% 3.28% 5.54% 10.41% 8.94% 6.78% 4.07% 0.2742 0.2710
RMSE 0.3157 0.2928 0.3045 0.315 0.3198 0.3103 0.2941
0% Improve  10.42% 3.42% 7.13% 10.22% 11.57% 8.86% 3.84% 0.2852 0.2828
RMSE 0.3371 0.3168 0.3282 0.3226 0.3215 0.3247 0.3277
0% Improve  7.24%  1.29%  472%  3.07%  2.74% 3.70% 4.58% 0.3203 0.3127
RMSE 0.3568 0.3443 0.3542 0.3476 0.3435 0.347 0.3391
30% Improve  6.39% 2.99% 5.70% 391% 2.77% 3.75% 1.50% 0.3452 0.3340
RMSE 0.3761 0.374 0.376 0.3768 0.3673 0.3764 0.3639
10% Improve  3.94% 3.40% 391% 4.11% 1.63% 4.01% 0.71% 0.3767 0.3613
TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT STRATEGIES BY MAE
Training data ~ Metrics PMF SocMF1I  SocMF2 MFCML MFCMS GSocMFCML GSocMFCMS — LSocMFCML  LSocMFCMS
MAE 0.2362 0.2255 0.2289 0.2405 0.2337 0.2304 0.2273
0% Improve  6.65% 2.22% 3.67% 8.32% 5.65% 4.30% 2.99% 0.2218 0.2205
MAE 0.239 0.2377 0.2308 0.2483 0.2343 0.2448 0.2304
0% Improve  494%  442%  1.56%  8.50%  3.03% 7.19% 1.39% 0.2332 0.2272
MAE 0.2542 0.2382 0.2474 0.2513 0.2522 0.253 0.2395
0% Improve  6.65% 0.38% 4.08% 5.57% 5.91% 6.21% 0.92% 0.253 0.2373
MAE 0.2695 0.2594 0.2682 0.2672 0.2612 0.2668 0.2572
30% Improve  5.94% 2.27% 5.48% 5.13% 2.95% 4.99% 1.44% 0.2685 0.2535
MAE 0.286 0.285 0.2868 0.2854 0.2716 0.2869 0.2683
10% Improve  7.10% 6.77% 7.36% 6.90% 2.17% 7.39% 0.97% 0.2873 0.2657
TABLE IX
PERFORMANCE COMPARISON OF LSOCMFCMS WITH ONE OF THE BEHAVIORS MISSING
.. . Missing behaviors .
Training data  Metrics favor upload  playlist comment rate share+  comment+ all behaviors
90% RMSE 0.2798 0.2744  0.2711 0.2723 02717 0.2743 0.2741 0.2710
‘ MAE 0.2299  0.2261  0.2209 0.2279 0.2207  0.2247 0.2270 0.2205
70% RMSE 0.2918 0.2846  0.2832 0.2844 0.2834  0.2865 0.2854 0.2828
‘ MAE 0.2344  0.2352  0.2275 0.2344 0.2279  0.2347 0.2324 0.2272
50% RMSE 0.3239 03178  0.3149 0.3187 03157 0.3184 0.3194 0.3127
‘ MAE 0.2503  0.2407  0.2385 0.2408 0.2384  0.2400 0.2412 0.2373
309 RMSE 0.3418 0.3382  0.3354 0.3391 0.3368  0.3431 0.3385 0.3340
‘ MAE 0.2584  0.2539  0.2541 0.2533 0.2543  0.2604 0.2550 0.2535
10% RMSE 0.3752 0.3639  0.3619 0.3630 0.3625 0.3733 0.3710 0.3613
¢ MAE 0.2796 0.2664  0.2663 0.2662 0.2659  0.2787 0.2745 0.2657
that the behavior “favorite” has the highest significance, while —¢=RMSE —m=MAE
the behavior “add-to-playlist” has the lowest significance. 05
Although the “share+” behavior has the largest correlations 045 |
(see Table IV) with other behaviors, it has less influence than 04 L
the “favorite” behavior. This can be explained by the fact that S sl
the “favorite” behavior has much larger number of videos than & 03l
the “share+” behavior (see Table I) with adequately high cor- 025
relation with other behaviors (see Table IV). The experimental '
. . . . . 02 1 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 1 L J
results are basically consistent with our quantification results DN N Y T Y T MM MM NN NN o oo
. . . e A T e e e e S e S A
in the previous section. 8888888888888 883868 8 9
. . — wn ~ - n ~ n ~ n ~ wn
2) Influence of Parameters. In order to illustrate the influence " " 1 " "

of the parameters on the video recommendation performance in
the proposed models, we conduct experiments on different pa-
rameter settings. We fix the parameter values as stated in the pre-
vious section and examine the performance change of LSocM-
FCMS by tuning the parameters one by one. Firstly, we fix the
other parameters and conduct experiments on different settings
of parameter \;. Fig. 4 demonstrates the influence of A; on
the performance of our proposed approach LSocMFCMS. We
can see that the performance remains steady when A; changes
from 0.00001 to 0.1 and deteriorates sharply after 0.1. This in-

s

Fig. 4. Influence of social interactions.

dicates the performance is insensitive to the change of A, when
As < 0.1. This indicates that the social relation helps personal-
ized video recommendation lot within a certain range.

We also investigate the influence of iteration steps on the per-
formance of LSocMFCMS. We conduct experiments with the
different settings of iteration steps and the experimental results
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Fig. 6. Influence of the number of video topics.

are shown in Fig. 5. It is observed that the performance im-
proves with the increasing of the number of the iteration steps.
However, when the iteration step gets close to 100, the perfor-
mance remains relatively steady. This indicates that the pro-
posed model can converge within acceptable iteration steps.

Moreover, in order to examine the influence of the number
of video latent topics (clusters) on the performance of LSocM-
FCMS, we conduct experiments with settings of different video
topic numbers. To guarantee the convergence of the training
process of LSocMFCMS with big cluster number, we set A to
a relatively small value of 0.005. We can see from Fig. 6 that
the performance keeps improving before the number of clusters
increases up to 25. This indicates that it is reasonable to set the
number of video clusters according to the perplexity metric.

In general, we can observe that the performance is relatively
steady when these parameter values change within certain
ranges, i.e., the performance is not sensitive to parameter
changes, which indicates that our proposed method is practical
and will not be immersed in the parameter curse.

D. Discussions

In this subsection, we introduce the limitations of the pro-
posed approach and discuss on the possible solutions.

The first limitation lies in the homogeneous behavior quantifi-
cation that the derived behavior significance is unique to all the
users. In fact, users may have different perceptions for the same
type of behavior in reflecting their preferences. For example, the
behavior “favorite” clearly reflects the preference of users who
have very sparse behaviors, but captures less preference infor-
mation for those who favor videos very frequently. However,
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TABLE X
PERFORMANCE COMPARISON WITH DIFFERENT INITIALIZATION STRATEGIES
Training data ~ Metrics ~ Random LDA
oo R OI G O
R T
W AR 0o U2 02140 9
U
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TABLE XI

TIME COMPLEXITIES OF DIFFERENT MODELS

Model Complexity in training ~ Complexity in testing

BasMF O(R X K) O(K x N)

SocMF O(RXx K x M) O(K x N)
LSocMFCM O(R x K x M x N) O(K x N)

it is quite challenging to discover the user-specific significance
weight for each type of behavior. The huge number of parame-
ters to be learned exacerbates the data sparsity problem. More-
over, it is very difficult to evaluate the performance due to lack
of ground-truth user data. We leave the discovery of user-spe-
cific behavior quantification as one of our future work.

The second limitation is that both behavior quantification and
local regularization solutions are towards the interactions with
the same type/modality of items, e.g., video-related cross-OSN
behaviors. The discrepant significance of these behaviors are ex-
plored and fused. In real world, such application scenarios are
very common, like the interactions with photos on Flickr and
Instagram, etc. However, in case of interactions with different
types of items, e.g., the Twitter tweeting and YouTube watching
behaviors, the approaches proposed in this work are not readily
applied. Our previous work in ACM Multimedia 2014 [8] and
ACM ICMR 2015 [2] are devoted to mining the association
between users’ cross-OSN interactions with different types of
items. Therefore, another line of future work is to integrate both
the homogeneous and heterogeneous cross-OSN behaviors in a
unified framework.

Another major limitation of the proposed cross-OSN user
modeling solution is the high computational complexity of local
social regularization. The training process of local social regu-
larization is very time-consuming. In order to accelerate the it-
eration process, we initialize our model by the outputs of LDA
model. To examine the effectiveness of this speedup strategy,
we compare the performance of LSocMFCMS initialized by
random and LDA, respectively. Table X demonstrates the ex-
perimental results where the numerics in brackets indicate the
iteration steps before convergence. We can observe that LSocM-
FCMS initialized by LDA converges more quickly with gener-
ally superior performance than that initialized randomly. This
demonstrates that it is helpful to provide a structured start-point
for the iteration process of our model and validates the effec-
tiveness of the convergence acceleration strategy.

With R denoting the number of training samples, K denoting
the dimension of user (video) latent factor vector, M (N} de-
noting the number of users (videos), the time complexities for
different models are shown in Table XI. Regarding the time
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complexity in training, traditional MF model without social reg-
ularization is O(R x K), and the traditional MF model with
global social regularization is O(R x K x M ). In our proposed
LSocMFCM model, the topic space is dynamically changing
during the iteration process, and the topic-level user similarity
needs to be updated at each iteration. As a result, the time com-
plexity of LSocMFCM in training is as high as O(R x K x M
x N), which makes the online training for large-scale dataset
inapplicable. As shown in Table XI, the time complexity of
LSocMFCM in testing is the same as the traditional method.
Since the goal of model training is to obtain user and video rep-
resentations which are then used for personalized service, we
can train our model off-line and then only need to update the
models for the users who contributed new data.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
cross-OSN user modeling to 1) aggregate homogeneous user
behaviors, and 2) integrate user social interactions at local topic
level. We observed that there are adequate overlaps between
different video-related behaviors on YouTube and Google+.
A preliminary learning-based behavior quantification strategy
is introduced to investigate the significance that each type
of behavior contributes to user preferences. Furthermore, we
have proposed to integrate the social interactions observed
on Google+ into user model on the fused behavior matrix
as local social regularization. Promising experimental results
have demonstrated the effectiveness of the derived behavior
significance and the local social regularization in the context
of personalized video recommendation problem. In the future,
we will be working towards user-specific behavior quantifi-
cation, integration of both homogeneous and heterogeneous
cross-OSN behaviors, and more efficient local social regular-
ization solution.
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