
Convergence Proof of Approximate Policy Iteration
for Undiscounted Optimal Control of Discrete-Time Systems

Yuanheng Zhu1 • Dongbin Zhao1 • Haibo He2 • Junhong Ji3

Received: 8 April 2015 / Accepted: 4 August 2015 / Published online: 25 August 2015

� Springer Science+Business Media New York 2015

Abstract Approximate policy iteration (API) is studied

to solve undiscounted optimal control problems in this

paper. A discrete-time system with the continuous-state

space and the finite-action set is considered. As approxi-

mation technique is used for the continuous-state space,

approximation errors exist in the calculation and disturb the

convergence of the original policy iteration. In our

research, we analyze and prove the convergence of API for

undiscounted optimal control. We use an iterative method

to implement approximate policy evaluation and demon-

strate that the error between approximate and exact value

functions is bounded. Then, with the finite-action set, the

greedy policy in policy improvement is generated directly.

Our main theorem proves that if a sufficiently accurate

approximator is used, API converges to the optimal policy.

For implementation, we introduce a fuzzy approximator

and verify the performance on the puddle world problem.

Keywords Approximate policy iteration � Approximation

error � Optimal control � Fuzzy approximator

Introduction

Currently, a lot of complex control technique has been

proposed to solve some difficult tasks, such as mobile

robots [16, 25], complex network control [14], Markov

chains [15], and so on [29, 33]. When considering optimal

control, the target is to produce the optimal control policies

according to the optimal value functions, which are mostly

unknown beforehand. Reinforcement learning (RL) [9, 17,

22, 26, 32] and adaptive dynamic programming (ADP) [7,

30, 31] are among the most efficient methods to obtain the

optimal performance. Their calculation of the optimal

value functions can be seen as a cognitive process which is

established through interacting with the system dynamics

and combining with the long-term rewards.

Policy iteration (PI) [3, 13, 28] as an approach of RL and

ADP has been developed and become an efficient way to

solve optimal control problems. Generally, PI includes a

two-step iteration: policy evaluation and policy improve-

ment. The value function of a policy is computed in the

first step, and a greedy policy is extracted in the second

step. Another similar iterative method is value iteration

(VI) [4, 12, 34], and detailed comparisons between PI and

VI are available in the literatures [9, 17].

Manyworks have studied the convergence of PI. For finite

Markov decision problems (MDPs), Bertsekas and Tsitsiklis

[6] proved that the solution of PI converged to the optimal

policy through analyzing the monotonicity of the value

function sequence. Other researchers [1, 2] considered con-

tinuous-time systems and studied the optimal problemwith a

saturating controller using PI. They analyzed the

& Dongbin Zhao

dongbin.zhao@gmail.com

Yuanheng Zhu

yuanheng.zhu@gmail.com

Haibo He

he@ele.uri.edu

Junhong Ji

junhong.ji@hit.edu.cn

1 The State Key Laboratory of Management and Control for

Complex Systems, Institute of Automation, Chinese

Academy of Sciences, Beijing 100190, China

2 Department of Electrical, Computer and Biomedical

Engineering, University of Rhode Island, Kingston,

RI 02881, USA

3 State Key Laboratory of Robotics and System, Harbin

Institute of Technology, Harbin 150001, China

123

Cogn Comput (2015) 7:763–771

DOI 10.1007/s12559-015-9350-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9350-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-015-9350-z&domain=pdf

convergence and gave a rigorous proof. Liu and Wei [19]

studied discrete-time systems and obtained similar theorems.

However, few of the above works considered the impact

of approximation errors. When the state space is large-scale

or continuous, approximators have to be used to approach

value functions and policies. In this way, approximation

errors inevitably occur in PI and disturb the convergence.

So the convergence of approximate policy iteration (API)

needs to be reconsidered.

For discounted optimal control, Bertsekas and Tsitsiklis

[6] gave a generic error analysis between the result of API

and the optimal solution. They proved that the error was

related to the approximation error and the discounted fac-

tor. Munos [21] obtained a stricter bound. However, when

optimal problems are undiscounted, their analysis cannot

be applied as the iterative calculation is no longer a con-

traction. Liu and Wei [18] developed a novel numerically

adaptive learning control scheme based on ADP and gave

rigorous analysis of convergence and stability. However,

the convergence of API for undiscounted problems has not

been studied.

Here, a discrete-time system with a continuous-state

space and a finite-action set is considered, and API is studied

for undiscounted optimal control. First, in approximate

policy evaluation, it is demonstrated that if the approximator

satisfies certain conditions, errors of approximate value

functions are bounded. Then, the corresponding greedy

policy is the same policy of the exact value function. The

convergence theorem is concluded. Our contribution

emphasizes that it is the first time to prove the convergence of

API for undiscounted optimal control. To verify our results,

we use a fuzzy approximator in the implementation and

apply to the puddle world problem to observe the

performance.

The whole paper is organized as follows. First, brief

introductions of PI and API are given in Sects. ‘‘Policy

Iteration’’ and ‘‘Approximate Policy Iteration.’’ The theo-

retical analysis is presented in Sect. ‘‘Convergence of

Approximate Policy Iteration.’’ A fuzzy approximator is

combined with API, and an example is simulated in Sect.

‘‘A Fuzzy Implementation and an Example’’. In the end are

our discussion and conclusion.

Policy Iteration

Consider a deterministic discrete-time system with a

compact continuous-state space X � Rn and a finite-action

set U ¼ f�u1; �u2; . . .; �umg. We use the following function to

specify its system dynamics

xkþ1 ¼ f ðxk; ukÞ ð1Þ

where xk; xkþ1 2 X and uk 2 U. k is the time index. Sup-

pose zero point is an equilibrium, i.e., f ð0; 0Þ ¼ 0. Given a

policy h : X ! U, its value function is defined by

VhðxkÞ ¼
X1

t¼k

rðxt; utÞ
�����ut ¼ hðxtÞ

where r is a positive definite penalty or cost function. The

above equation can be transformed to a backward form

VhðxkÞ ¼ rðxk; hðxkÞÞ þ Vhðf ðxk; hðxkÞÞÞ: ð2Þ

The undiscounted optimal control is to find a policy that

achieves the minimum value function for all xk 2 X

V�ðxkÞ ¼ min
h

VhðxkÞ

and the corresponding policy h� is called the optimal

policy.

As the value function is defined in the infinite horizon

manner and by the undiscounted factor, an admissible

definition is needed.

Definition 1 (Admissible) [1, 19] A control policy h is

defined to be admissible w.r.t. (1) on X, if hð0Þ ¼ 0, h

stabilizes (1) on X, and 8xk 2 X, VhðxkÞ is finite.

As it is mentioned, PI includes a two-step iteration.

Given an initial admissible policy hð0Þ, its corresponding

value function Vhð0Þ is calculated based on (2) (policy

evaluation). Then a greedy policy (policy improvement) is

computed using

hðiþ1ÞðxkÞ ¼ arg min
uk2U

rðxk; ukÞ þ VhðiÞ ðf ðxk; ukÞÞ
h i

: ð3Þ

With the new policy hð1Þ, the calculation starts again and

the process keeps iterating. Liu and Wei [19] have proved

that the new policy has a better performance than the

previous one, i.e., Vhðiþ1Þ �VhðiÞ , and finally converges to

the optimal solution, i.e., hðiÞ ! h�, VhðiÞ ! V� as i ! 1.

However, value functions and policies can be exactly

approached only if the system has a small and finite state-

action set. For large or continuous systems, approximators

are required and PI becomes API.

Approximate Policy Iteration

Any kind of approximators can be used to approach value

functions but all bring in approximation errors. For brevity,

the approximation of a value function Vh is denoted by V̂h,

and a projection operator P is defined to map target func-

tions to approximate functions. In this way, policy evalu-

ation in (2) turns to calculating the following equation

764 Cogn Comput (2015) 7:763–771

123

V̂hðxkÞ ¼ P rðxk; hðxkÞÞ þ V̂
hðf ðxk; hðxkÞÞÞ

� �
: ð4Þ

P is generally known, and a common projection is based on

least-square principle. Even if P is known, it is still difficult

to solve V̂h directly from (4) as the equation is implicit.

Based on linear parametrizations and least-squares princi-

ple, LSTD or LSPE [23] can solve it directly, but the error

between V̂h and Vh is hardly analyzed.

To overcome this problem, we introduce an iterative

method [9] for approximate policy evaluation. Given an

initial approximation V̂h
0 (usually V̂h

0 ¼ 0), implement

iterative calculation as

V̂h
jþ1ðxkÞ ¼ P rðxk; hðxkÞÞ þ V̂h

j ðf ðxk; hðxkÞÞÞ
� �

: ð5Þ

All the elements on the right side of (5) are available

during the iterations, so it is easier to compute (5) than to

solve (4). Furthermore, it will be demonstrated in the fol-

lowing section that under certain conditions, the difference

between V̂h
j and Vh will reduce into a small bound which is

related to the approximation error. The result of (5) after

the iterative calculation is denoted as the approximate

policy evaluation, i.e., V̂h
1 ! V̂h. It is further used in

policy improvement

ĥ0ðxkÞ ¼ arg min
uk2U

rðxk; ukÞ þ V̂
hðf ðxk; ukÞÞ

h i
:

As the action set U is finite and V̂h is available, ĥ0 is

computed exactly using enumeration to extract the mini-

mum value. Here, we use ĥ0 to specify the greedy policy

w.r.t. approximate policy evaluation V̂h, compared to the

greedy policy h0 w.r.t. exact policy evaluation Vh. Note that

as the difference between V̂h and Vh is caused by

approximation errors, the relationship between ĥ0 and h0

needs to be analyzed.

Algorithm 1 presents the whole process of API. Because

of approximation errors, the convergence of the original PI

is disturbed and a new analysis of API is required.

Convergence of Approximate Policy Iteration

Now, let us study the convergence of API. First, consider

the i-th iteration of API and use the notations in Table 1 for

our analysis. The following assumptions are required.

Assumption 1 8xk 2 X, given an arbitrary admissible

policy h, we have rðxk; hðxkÞÞ� dVhðxkÞ and rðxk; hðxkÞÞ�
cVhðf ðxk; hðxkÞÞÞ, where d[0 and c[0.

Assumption 2 Given a function g and its approximation

ĝ ¼ PðgÞ, the approximation error e (ĝ� gj j � e) can be

rewritten using a parameter r in the form ð1� rÞg� ĝ

�ð1þ rÞg with 0\r\1.

The first assumption is about the system, and the second

one is about the approximation. Assumption 1 defines some

relations between reward and value functions. Assumption

2 transforms the approximation error into a proportional

version which will benefit our next analysis. With both

sides of ĝ� gj j � e being divided by gj j, we have

ĝ=g� 1j j � e= gj j. Defining r ¼ e= gj j, the form of

Assumption 2 is obtained. Similar assumptions were used

by Liu and Wei [18] to prove the convergence of their ADP

method.

Theorem 1 At the i-th iteration of API, admissible policy

ĥðiÞ, exact value function Vĥ
ðiÞ

and approximate value

functions V̂ ĥ
ðiÞ

0 ; V̂ ĥ
ðiÞ

1 ; . . .; V̂ ĥ
ðiÞ

j ; . . . are defined as above.

Under Assumptions 1 and 2, from an initial approximation

V̂ ĥ
ðiÞ

0 ¼ 0, 8xk 2 X we have

ð1� rÞ c
1þc

Pj�2

l¼0

1�r
1þcð Þlþ 1�r

1þcð Þj�1
d

� �
Vĥ

ðiÞ
ðxkÞ

� V̂ ĥ
ðiÞ

j ðxkÞ

� ð1þ rÞ c
1þc

Pj�2

l¼0

1þr
1þcð Þlþ 1þr

1þcð Þj�1

� �
Vĥ

ðiÞ
ðxkÞ:

ð6Þ

where j ¼ 1; 2;

Table 1 Notations for the i-th iteration of API

Symbol Meaning

ĥðiÞ Initial policy at the i-th iteration

Vĥ
ðiÞ

Exact value function of ĥðiÞ from (2)

V̂ ĥ
ðiÞ

0 ; V̂ ĥ
ðiÞ

1 ; � � � ! V̂ ĥ
ðiÞ Approximate policy evaluation from (5)

hðiþ1Þ
Greedy policy from Vĥ

ðiÞ

ĥðiþ1Þ
Greedy policy from V̂ ĥ

ðiÞ

Algorithm 1 Approximate policy iteration
Input: projection operator P ; admissible policy ĥ(0); thresh-

old parameter εAPE

Output: policy ĥ(i)

1: for i = 0, 1, 2, · · · do
2: initialize approximation V̂ ĥ(i)

0 = 0
3: for j = 0, 1, 2, · · · do
4: V̂ ĥ(i)

j+1(xk) = P r(xk,ĥ
(i)(xk))+V̂ ĥ(i)

j
(f(xk,ĥ

(i)(xk)))

5: end for V̂ ĥ(i)

j+1 − V̂ ĥ(i)

j ≤ εAPE

6: V̂ ĥ(i)

j+1 → V̂ ĥ(i)

7: ĥ(i+1)(xk) = arg min
uk∈U

r(xk, uk) + V̂ ĥ(i)
(f(xk, uk))

8: end for ĥ(i+1) = ĥ(i)

Cogn Comput (2015) 7:763–771 765

123

Proof (6) can be proved using the inductive method. At

the beginning with V̂ ĥ
ðiÞ

0 ¼ 0, compute V̂ ĥ
ðiÞ

1 ðxkÞ ¼
Pðrðxk; ĥ

ðiÞðxkÞÞÞ by (5). Under Assumptions 1 and 2, we

have

ð1� rÞdVĥ
ðiÞ
ðxkÞ� ð1� rÞrðxk; ĥ

ðiÞðxkÞÞ

� V̂ ĥ
ðiÞ

1 ðxkÞ

� ð1þ rÞrðxk; ĥ
ðiÞðxkÞÞ

� ð1þ rÞVĥ
ðiÞ
ðxkÞ:

After j iterations, we suppose the following relationship

holds

ð1� rÞ c
1þc

Pj�2

l¼0

1�r
1þcð Þlþ 1�r

1þcð Þj�1
d

� �
Vĥ

ðiÞ
ðxkÞ

� V̂ ĥ
ðiÞ

j ðxkÞ

� ð1þ rÞ c
1þc

Pj�2

l¼0

1þr
1þcð Þlþ 1þr

1þcð Þj�1

� �
Vĥ

ðiÞ
ðxkÞ:

Then for the ðjþ 1Þ-th iteration, it is easy to deduce (7)

and (8)

V̂ ĥ
ðiÞ

jþ1ðxkÞ

¼ P rðxk; ĥ
ðiÞðxkÞÞ þ V̂ ĥ

ðiÞ

j ðf ðxk; ĥ
ðiÞðxkÞÞÞ

� �

�ð1þ rÞ rðxk; ĥ
ðiÞðxkÞÞ þ V̂ ĥ

ðiÞ

j ðf ðxk; ĥ
ðiÞðxkÞÞÞ

h i

�ð1þ rÞ rðxk; ĥ
ðiÞðxkÞÞ þ ð1þ rÞAVĥ

ðiÞh

f ðxk; ĥ
ðiÞðxkÞÞÞ

� i

�ð1þ rÞ 1þ 1

1þ c
ð1þ rÞA� 1½ �

� �
rðxk; ĥ

ðiÞðxkÞÞ
�

þ ð1þ rÞA� c
1þ c

ð1þ rÞA� 1½ �
� �

	Vĥ
ðiÞ
ðf ðxk; ĥ

ðiÞðxkÞÞÞ
o

¼ ð1þ rÞ c
1þ c

þ 1þ r
1þ c

A

� 	
rðxk; ĥ

ðiÞðxkÞÞ
h

þ Vĥ
ðiÞ
ðf ðxk; ĥ

ðiÞðxkÞÞÞ
i

¼ ð1þ rÞ c
1þ c

Xj�1

l¼0

1þ r
1þ c

� 	l

þ 1þ r
1þ c

� 	j
" #

Vĥ
ðiÞ
ðxkÞ:

A ¼ c
1þ c

Xj�2

l¼0

1þ r
1þ c

� 	l

þ 1þ r
1þ c

� 	j�1
" # !

ð7Þ

V̂ ĥ
ðiÞ

jþ1ðxkÞ

¼ P rðxk; ĥ
ðiÞðxkÞÞþ V̂ ĥ

ðiÞ

j ðf ðxk; ĥ
ðiÞðxkÞÞÞ

� �

�ð1�rÞ rðxk; ĥ
ðiÞðxkÞÞþ V̂ ĥ

ðiÞ

j ðf ðxk; ĥ
ðiÞðxkÞÞÞ

h i

�ð1�rÞ rðxk; ĥ
ðiÞðxkÞÞþ ð1�rÞBVĥ

ðiÞ
ðf ðxk; ĥ

ðiÞðxkÞÞÞ
h i

�ð1�rÞ 1� 1

1þ c
1�ð1�rÞB½ �

� �
rðxk; ĥ

ðiÞðxkÞÞ
�

þ ð1�rÞBþ c
1þ c

1�ð1�rÞB½ �
� �

	Vĥ
ðiÞ
ðf ðxk; ĥ

ðiÞðxkÞÞÞg

¼ ð1�rÞ c
1þ c

þ 1�r
1þ c

B

� 	
rðxk; ĥ

ðiÞðxkÞÞ
h

þVĥ
ðiÞ
ðf ðxk; ĥ

ðiÞðxkÞÞÞ
i

¼ ð1�rÞ c
1þ c

Xj�1

l¼0

1�r
1þ c

� 	l

þ 1�r
1þ c

� 	j

d

" #
Vĥ

ðiÞ
ðxkÞ:

B¼ c
1þ c

Xj�2

l¼0

1�r
1þ c

� 	l

þ 1�r
1þ c

� 	j�1

d

" # !

ð8Þ

where the first inequations come from Assumption 2 and

the second ones are based on the above premise about V̂ ĥ
ðiÞ

j

and Vĥ
ðiÞ
. In the third inequations, Assumption 1 is utilized.

It is obvious that the forms of (7) and (8) are the same as

the premise but with ðjþ 1Þ.
By the induction, the proof is complete. h

Corollary 1 Hold the results of Theorem 1 and suppose

approximation error r satisfies 0\r\c. Then 8xk 2 X,

1� rð1þ cÞ
cþ r

� �
Vĥ

ðiÞ
ðxkÞ� lim

j!1
V̂ ĥ

ðiÞ

j ðxkÞ

¼ V̂
ĥ
ðiÞ

ðxkÞ

� 1þ rð1þ cÞ
c� r

� �
Vĥ

ðiÞ
ðxkÞ:

ð9Þ

Proof (9) can be proved directly from (6) under the

condition 0\r\c. h

From the conclusions of Theorem 1 and Corollary 1, it is

demonstrated that if approximation error r satisfies

0\r\c, the result of approximate policy evaluation ðV̂ ĥ
ðiÞ
Þ

is constrained around the exact policy evaluation ðVĥ
ðiÞ
Þ.

766 Cogn Comput (2015) 7:763–771

123

The smaller r is, the more closely V̂ ĥ
ðiÞ

approaches Vĥ
ðiÞ
.

Next, a theorem about the policy improvement of API is

presented. Before that, a new assumption is defined.

Assumption 3 Given an arbitrary admissible policy h and

its corresponding value function Vh, the greedy policy h0

w.r.t. Vh based on (3) is always q better than any other

actions for all xk 2 X, i.e.,

rðxk; h0ðxkÞÞ þ Vhðf ðxk; h0ðxkÞÞÞ
� min

uk2Unfh0ðxkÞg
rðxk; ukÞ þ Vhðf ðxk; ukÞÞ

 �

� q;

where q is a positive constant.

Assumption 3 defines the superiority of greedy actions

to the others during the policy improvement. Then, the

following theorem is deduced.

Theorem 2 At the i-th iteration of API, ĥðiÞ denotes the

given policy, Vĥ
ðiÞ

denotes the corresponding exact value

function, and V̂ ĥ
ðiÞ
denotes the result of approximate policy

evaluation under 0\r\c. Suppose Vĥ
ðiÞ
satisfies jVĥ

ðiÞ
j\C

on X. Under Assumptions 1–3, the greedy policy hðiþ1Þ

w.r.t. Vĥ
ðiÞ
is the same greedy policy ĥðiþ1Þ w.r.t. V̂ ĥ

ðiÞ
on X,

if

r\min c;
1

2
ð1þcÞ 1þ2C

qð Þ�
ffi
ð1þcÞ2 1þ2C

qð Þ2�4c

qh i�
: ð10Þ

That means 8xk 2 X

hðiþ1ÞðxkÞ ¼ ĥðiþ1ÞðxkÞ:

Proof Let �u denote arbitrary actions in action set except

hðiþ1ÞðxkÞ, i.e., 8�u 2 Unfhðiþ1ÞðxkÞg. Based on Assumption

3, we have

rðxk; hðiþ1ÞðxkÞÞ þ Vĥ
ðiÞ
ðf ðxk; hðiþ1ÞðxkÞÞÞ

� rðxk; �uÞ þ Vĥ
ðiÞ
ðf ðxk; �uÞÞ � q:

ð11Þ

Substitute the result of Corollary 1 into (11),

rðxk; hðiþ1ÞðxkÞÞ þ
1

1þ rð1þcÞ
c�r

V̂
ĥ
ðiÞ

ðf ðxk; hðiþ1ÞðxkÞÞÞ

� rðxk; �uÞ þ
1

1� rð1þcÞ
cþr

V̂
ĥ
ðiÞ

ðf ðxk; �uÞÞ � q:

ð12Þ

Rewrite (12)

rðxk; hðiþ1ÞðxkÞÞ þ V̂
ĥ
ðiÞ

ðf ðxk; hðiþ1ÞðxkÞÞÞ

� rðxk; �uÞ � V̂
ĥ
ðiÞ

ðf ðxk; �uÞÞ

� rð1þ cÞ
cð1þ rÞ V̂

ĥ
ðiÞ

ðf ðxk; hðiþ1ÞðxkÞÞÞ

þ rð1þ cÞ
cð1� rÞ V̂

ĥ
ðiÞ

ðf ðxk; �uÞÞ � q:

ð13Þ

To have ĥðiþ1ÞðxkÞ ¼ hðiþ1ÞðxkÞ, we let the right side of (13)
less than zero, i.e.,

rð1þ cÞ
cð1þ rÞ V̂

ĥ
ðiÞ
ðf ðxk; hðiþ1ÞðxkÞÞÞ

þ rð1þ cÞ
cð1� rÞ V̂

ĥ
ðiÞ
ðf ðxk; �uÞÞ � q\0:

ð14Þ

Besides, for all xk 2 X,

V̂
ĥ
ðiÞ����

����� 1þ rð1þ cÞ
c� r

� �
Vĥ

ðiÞ���
���� cð1þ rÞ

c� r
C:

So we define the following inequation to support (14)

rð1þ cÞ
cð1þ rÞ þ

rð1þ cÞ
cð1� rÞ

� �
cð1þ rÞ
c� r

C\q: ð15Þ

Rewrite (15)

r2 � ð1þ cÞð1þ 2C

q
Þrþ c[0

, and the solution is

r\
1

2
ð1þ cÞ 1þ 2C

q

� 	
�

ffi

ð1þ cÞ2ð1þ 2C

q
Þ
2

� 4c

s2
4

3
5:

In this way, combined with 0\r\c, hðiþ1Þ is greedy to

V̂ ĥ
ðiÞ
, namely the same as ĥðiþ1Þ. h

After the above analysis, our main theorem is

concluded.

Theorem 3 Given an initial admissible policy ĥð0Þ,

compute the policy sequence fĥð1Þ; ĥð2Þ; � � �g using API.

Suppose Assumptions 1–3 hold and ĥð0Þ has jVĥ
ð0Þ
j\C on

X. If the approximation error r satisfies (10), then fĥðiÞg is

convergent to the optimal policy h� on X.

Proof From Theorem 2, it is inferred that with ĥð0Þ, ĥð1Þ

selects the same actions as hð1Þ if r satisfies (10). Based on

the convergence analysis of Liu and Wei [19], ĥð1Þ is also

Cogn Comput (2015) 7:763–771 767

123

an admissible policy and Vĥ
ð1Þ
\Vĥ

ð0Þ
\C. Proceeding

iteratively, ĥðiÞ ¼ hðiÞ holds for any i. As the policy

sequence fhðiÞg of the original PI converges to h�, fĥðiÞg of

API also converges to h� on X. h

Through our analysis, it is proved that API can converge

to the optimal policy under some conditions. The conver-

gence is guaranteed only if the approximation error is

constrained to a small value, indicating a sufficiently

accurate approximator is necessary. Besides, we use a

generic form to represent the approximator and the

approximation error. So the analytic results do not rely on

any specific structure. Arbitrary approximators that satisfy

the conditions can conclude the same convergence

theorem.

A Fuzzy Implementation and an Example

Fuzzy approximator is commonly used in RL because of its

quantified approximate property (e.g., [10, 11, 20]). To

verify our convergence theorem, a fuzzy approximator is

combined with API, more concretely, with approximate

policy evaluation. An example is simulated to observe the

performance.

Fuzzy-API

Here, we use the same fuzzy approximator of Busoniu

et al. [8] which considered the implementation of VI. A

triangular fuzzy partition is defined with the state space

into N sets. Each set corresponds to a triangular mem-

bership function ll : X ! R. The membership of a state

x belonging to set l is equal to llðxÞ. Each triangular

membership function has a core cl and satisfies the fol-

lowing properties

1. llðclÞ ¼ 1

2.
PN

l¼1 llðxÞ ¼ 1; 8x 2 X

Suppose the target function is F and it has the following

continuity assumption.

Assumption 4 For any x; y 2 X,

FðxÞ � FðyÞj j � LFkx� yk

where LF is the Lipschitz continuity of F.

Given the value FðclÞ at each cl, the approximation is

formulated by

F̂ðxÞ ¼ P FðxÞð Þ ¼
XN

l¼1

llðxÞFðclÞ:

Now, let us define a resolution which is helpful to estimate

the precision of a fuzzy approximator.

Definition 2 (Resolution) Resolution is the largest dis-

tance between any state and its closest core,

d ¼ max
x2X

min
l¼1;...;N

x� clk k:

Based on the above properties, for arbitrary x only the

surrounding memberships have values. So the following

inequation holds

XN

l¼1

llðxÞ x� clk k� d:

Then, about the triangular fuzzy approximator we have the

following theorem.

Theorem 4 The approximation error between F and F̂ is

bounded by

F̂ðxÞ � FðxÞ
�� ��� LFd:

Proof

F̂ðxÞ � FðxÞ
�� ���

XN

l¼1
llðxÞ FðclÞ � FðxÞj j

�
XN

l¼1
LFllðxÞkcl � xk

� LFd

h

From Theorem 4, it is revealed that the approximation

error of the triangular fuzzy approximator is related to the

resolution. The smaller value resolution chooses, the

smaller approximation error will be. So we can design a

fine fuzzy approximator in API so that the requirement in

Theorem 2 is satisfied. The approximate policy evaluation

with the triangular fuzzy approximator is presented in

Algorithm 2.

Algorithm 2 Approximate policy evaluation of Fuzzy-
API
Input: triangular membership functions {μl} and cores {cl};

given policy ĥ; threshold parameter εAPE ; initial core
values V̂ ĥ

0 (cl) = 0;
Output: approximate value function V̂ ĥ

j+1 → V̂ ĥ

1: calculate approximation V̂ ĥ
0 (x) = N

l=1 μl(x)V̂ ĥ
0 (cl)

2: for j = 0, 1, 2, · · · do
3: V̂ ĥ

j+1(cl) = r(cl, ĥ(cl)) + V̂ ĥ
j (f(cl, ĥ(cl)))

4: V̂ ĥ
j+1(x) =

N
l=1 μl(x)V̂ ĥ

j+1(cl)

5: end for V̂ ĥ
j+1 − V̂ ĥ

j ≤ εAPE

Puddle World Problem

Now, we apply the Fuzzy-API to a commonly used prob-

lem–puddle world [5, 27]. Puddle world is a two-dimen-

sional path problem [24] with the goal in the upper-right

768 Cogn Comput (2015) 7:763–771

123

corner and two oval puddles. Each dimension is continuous

in [0, 1]. The two puddles extend with a radius 0.1 from

two line segments: one from (0.2, 0.65) to (0.55, 0.65) and

the other from (0.55, 0.3) to (0.55, 0.7). The state variables

are the x and y coordinates, and there are four actions—up,

down, right and left. At each action, the agent moves 0.05

distance. The cost is 1 for each step, plus a penalty if the

agent is in any puddle, equal to 400 times the distance into

the puddle (distance to the nearest edge). The goal region

satisfies xþ y� 0:95þ 0:95. An initial admissible policy is

moving the agent directly up and right to the goal.

In Fuzzy-API, we choose the triangular membership

functions with M equidistant cores for each state variable,

leading to M2 fuzzy sets. To study the impact of M, we

change it from 4 to 41. A total of 100 randomly selected

samples are used to evaluate the convergent policies. The

performance of a policy is defined by the average of

accumulated costs starting from the selected samples. In

addition, if in an episode the sum of costs has exceeded a

large value (here we use 103) before reaching the goal, we

truncate the accumulated sum with the large value without

further calculating.

After the simulation, the relationship between M and the

convergent policies is revealed in Fig. 1. When M is small

(\7), the learned policies are bad. Not all samples reach

the goal because of large approximation errors. When

M reaches 7, the policy is improved obviously. With

M increasing continually, the performance is improved

gradually and stabilizes in the end. This result is consistent

with our analysis that if the approximation error is small,

API is convergent to the optimal policy.

Next, we select M ¼ 21 to observe the details in the

implementation of Fuzzy-API. The costs of policies at

different iterations are presented in Fig. 2. It is viewed in

the figure that policies are improved monotonically with

5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

M

co
st

s

10 20 30 40
18

20

22

24

Fig. 1 Costs of convergent policies by Fuzzy-API at different M

0 5 10 15
15

20

25

30

35

40

45

50

55

60

65

of iteration

co
st

s

Fig. 2 Costs of policies at different iterations in Fuzzy-API when

M ¼ 21

10
0

1 Goal

Fig. 3 The strategy of the convergent policy when M ¼ 21

10
0

1 Goal

Fig. 4 Trajectories from different positions by the convergent policy

when M ¼ 21

Cogn Comput (2015) 7:763–771 769

123

the iteration increasing. After ten iterations, policies are

convergent. The strategy of the convergent policy is

illustrated in Fig. 3, and trajectories from different posi-

tions are depicted in Fig. 4.

Discussion and Conclusion

The convergence of API for undiscounted optimal control

is proved for the first time in this paper. By the iterative

method, errors in approximate policy evaluation are

bounded. With the finite-action set, the same improved

policy is extracted in policy improvement. The conver-

gence theorem is concluded that API converges to the

optimal policy if approximations have small approximation

errors. Note that our theoretical results do not rely on any

specific approximators.

For the implementation of API, we choose a triangular

fuzzy structure to verify our analysis. It is demonstrated

that the approximator can satisfy the requirement of API. A

puddle world is simulated, and the results are consistent

with our analysis.

However, we only consider the finite-action set in this

paper. It avoids bringing in errors in policy improvement.

But the more general case is the continuous-action system.

In these systems, approximations have to be used to

approach continuous policies. Due to this, additional errors

occur in API in addition to the errors of approximate policy

evaluation. Therefore, the analysis of API for continuous-

action systems is more difficult and needs further research.

Acknowledgments This work was supported in part by National

Natural Science Foundation of China (No. 61273136), State Key

Laboratory of Robotics and System (SKLRS-2015-ZD-04), and

National Science Foundation (NSF) under grant ECCS 1053717.

References

1. Abu-Khalaf M, Lewis FL. Nearly optimal control laws for non-

linear systems with saturating actuators using a neural network

HJB approach. Automatica. 2005;41(5):779–91.

2. Abu-Khalaf M, Lewis F, Huang J. Policy iterations on the

Hamilton–Jacobi–Isaacs equation for H 1 state feedback control

with input saturation. IEEE Trans Autom Control. 2006;51(12):

1989–95.

3. Al-Tamimi A, Abu-Khalaf M, Lewis F. Adaptive critic designs

for discrete-time zero-sum games with application to H 1 con-

trol. IEEE Trans Syst Man Cybern B. 2007;37(1):240–7.

4. Al-Tamimi A, Lewis F, Abu-Khalaf M. Discrete-time nonlinear

HJB solution using approximate dynamic programming: Con-

vergence proof. IEEE Trans Syst Man Cybern B. 2008;38(4):

943–9.

5. Barty K, Girardeau P, Roy JS, Strugarek C. Q-learning with

continuous state spaces and finite decision set. In: Proceedings of

the 2007 IEEE international symposium on approximate dynamic

programming and reinforcement learning (ADPRL 2007); 2007.

pp. 346–351.

6. Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming. Bel-

mont, MA: Athena Scientific; 1996.

7. Boaro M, Fuselli D, Angelis F, Liu D, Wei Q, Piazza F.

Adaptive dynamic programming algorithm for renewable

energy scheduling and battery management. Cogn Comput.

2013;5(2):264–77.

8. Busoniu L, Ernst D, De Schutter B, Babuska R. Fuzzy approxi-

mation for convergent model-based reinforcement learning. In:

Proceedings of the 2007 IEEE international conference on Fuzzy

systems (FUZZ-IEEE-07), London, UK; 2007. pp. 968–973.

9. Busoniu L, Babuska R, De Schutter B, Ernst D. Reinforcement

learning and dynamic programming using function approxima-

tors. New York: CRC Press; 2010.

10. Chen F, Jiang B, Tao G. Fault self-repairing flight control of a

small helicopter via fuzzy feedforward and quantum control

techniques. Cogn Comput. 2012;4(4):543–8.

11. Derhami V, Majd VJ, Nili Ahmadabadi M. Exploration and

exploitation balance management in fuzzy reinforcement learn-

ing. Fuzzy Sets Syst. 2010;161(4):578–95.

12. Heydari A. Revisiting approximate dynamic programming and its

convergence. IEEE Trans Cybern. 2014;44(12):2733–43.

13. Howard R. Dynamic programming and Markov processes.

Cambridge, MA: MIT Press; 1960.

14. Hui G, Huang B, Wang Y, Meng X. Quantized control design for

coupled dynamic networks with communication constraints.

Cogn Comput. 2013;5(2):200–6.

15. Ikonen E, Najim K. Multiple model-based control using finite

controlled markov chains. Cogn Comput. 2009;1(3):234–43.

16. Jia Z, Song Y, Cai W. Bio-inspired approach for smooth motion

control of wheeled mobile robots. Cogn Comput. 2013;5(2):

252–63.

17. Lewis F, Vrabie D. Reinforcement learning and adaptive dynamic

programming for feedback control. IEEE Circuits Syst Mag.

2009;9(3):32–50.

18. Liu D, Wei Q. Finite-approximation-error-based optimal control

approach for discrete-time nonlinear systems. IEEE Trans Cybern.

2013;43(2):779–89.

19. Liu D, Wei Q. Policy iteration adaptive dynamic programming

algorithm for discrete-time nonlinear systems. IEEE Trans Neural

Netw Learn Syst. 2014;25(3):621–34.

20. Meng F, Chen X. Correlation coefficients of hesitant fuzzy sets

and their application based on fuzzy measures. Cogn Comput.

2015;7(4):445–63.

21. Munos R. Error bounds for approximate policy iteration. In:

Proceedings of the 20th international conference on machine

learning, Washington, Columbia; 2003. pp. 560–576.

22. Muse D, Wermter S. Actor-critic learning for platform-indepen-

dent robot navigation. Cogn Comput. 2009;1(3):203–20.

23. Nedić A, Bertsekas DP. Least squares policy evaluation algo-

rithms with linear function approximation. Discrete Event Dyn

Syst. 2003;13(1–2):79–110.

24. Samar R, Kamal W. Optimal path computation for autonomous

aerial vehicles. Cogn Comput. 2012;4(4):515–25.

25. Song Y, Li Q, Kang Y. Conjugate unscented fastslam for

autonomous mobile robots in large-scale environments. Cogn

Comput. 2014;6(3):496–509.

26. Sutton RS, Barto AG. Reinforcement learning: an introduction.

Cambridge, MA: MIT Press; 1998.

27. Vieira D, Adeodato P, Goncalves P. A temporal difference GNG-

based algorithm that can learn to control in reinforcement

learning environments. In: Proceedings of the 12th international

conference on machine learning and applications (ICMLA 2013),

2013; vol 1, pp. 329–332.

770 Cogn Comput (2015) 7:763–771

123

28. Wang D, Liu D, Li H. Policy iteration algorithm for online design

of robust control for a class of continuous-time nonlinear sys-

tems. IEEE Trans Autom Sci Eng. 2014;11(2):627–32.

29. Wang Y, Feng G. On finite-time stability and stabilization of

nonlinear port-controlled Hamiltonian systems. Sci China Inf Sci.

2013;56(10):1–14.

30. Wei Q, Liu D. A novel iterative h-adaptive dynamic program-

ming for discrete-time nonlinear systems. IEEE Trans Autom Sci

Eng. 2014;11(4):1176–90.

31. Zhang H, Liu D, Luo Y, Wang D. Adaptive dynamic program-

ming for control: algorithms and stability. London: Springer;

2013.

32. Zhao D, Zhu Y. MEC-a near-optimal online reinforcement

learning algorithm for continuous deterministic systems. IEEE

Trans Neural Netw Learn Syst. 2015;26(2):346–56.

33. Zhao Y, Cheng D. On controllability and stabilizability of

probabilistic Boolean control networks. Sci China Inf Sci.

2014;57(1):1–14.

34. Zhu Y, Zhao D, Liu D. Convergence analysis and application of

fuzzy-HDP for nonlinear discrete-time HJB systems. Neuro-

computing. 2015;149:124–31.

Cogn Comput (2015) 7:763–771 771

123

	Convergence Proof of Approximate Policy Iteration for Undiscounted Optimal Control of Discrete-Time Systems
	Abstract
	Introduction
	Policy Iteration
	Approximate Policy Iteration
	Convergence of Approximate Policy Iteration
	A Fuzzy Implementation and an Example
	Fuzzy-API
	Puddle World Problem

	Discussion and Conclusion
	Acknowledgments
	References

