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a b s t r a c t

This study proposes an average propulsive speed implementation approach for robotic dolphins theo-
retically and experimentally. First, it analyzes the motion feature of the robotic dolphin, and finds the
strictly corresponding rule between tail’s oscillating frequency and propulsive speed of robotic dolphin.
A kinetic energy mapping coefficient (KEMC) is defined to extract the motion feature. Then, it establishes
a kinematic feature equation based on the KEMC definition. The feature equation takes the KEMC as a
feature data, and describes a kinetic energy mapping relation for robotic dolphin’s motion. Furthermore,
by applying the feature equation and KEMC data, it designs an iterative learning identification and adap-
tive control solution to adjust automatically the average propulsive speed. Simulations prove the system’s
convergence and speed adjustment effectiveness. Experiments have been performed in two steps. One,
a series of KEMC values are identified through the offline identification, and the distribution of KEMCs is
partially known; second, a closed loop control experiment reaches the expected speed target. This study
shows that the average speed implementation method based KEMC converts the speed control issue into
one kind of pure control problem, and it helps robotic dolphin obtain learning ability and adaptive ability.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The dolphin is a type of whale, but it is usually regarded as a
fish in research of its propulsive mode. The dolphin swims quickly
and very efficiently, and it is an ideal bionic object for underwater
vehicles. Lots of researchers make a series of achievements in
hydrodynamic, dynamic modeling and locomotion control.

In terms of hydrodynamics, there are some typical research
achievements. Bose [1] adopted two-dimensional aerofoil theory
to model cetaceous caudal fins, and further calculated hydrody-
namic performance. Nakashima [2] proposed a method to analyze
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the hydrodynamic performance of robotic dolphins with two
joints. Weihs [3] studied the situation in which a small dolphin
swims following a large dolphin, and described the process of leap-
ing out of thewater in detail. Barrett [4] found that the drag force is
much less when active swimming than passive swimming. Liu [5]
adopted Quasi vortex latticemethod to calculate the propulsive ef-
ficiency.

In order to control the movement of robotic dolphins, it is very
significant to study the dynamic modeling. In general the propul-
sion mechanism consists of a series of multiple rigid joints, and
the fins are made of elastic skeleton or flexible material to en-
hance flexibility and reduce water drag. Therefore, the propul-
sion mechanism is usually regarded as a multi-body dynamics
system. Presently, there are four types of common multi-body
dynamics methods commonly used, namely the Newton–Euler
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method [6,7], Lagrangianmethod [8], Schiehlenmethod [9,10] and
Kane method [11]. By applying these methods, numerous repre-
sentative results have been achieved in recent years, as follows.
Zhou [12] adopted the Lagrangian method to study the dynamic
model of one-joint thunniform robotic fish, inwhichwater dynam-
ics were analyzed by the resistance model. Shen [13] adopted the
Kane method to establish a dynamic model for robotic dolphins,
in which the dynamic analysis of wave movement was simplified,
and further generalized that the inertial force and generalized ac-
tive force are used to build dynamic equation. Yu [14,15] used the
Schiehlen method to obtain the dynamic model for robotic dol-
phins and robotic fish in three-dimensional water space, and ap-
plied the model to obtain three-dimensional swimming curves in
simulation.

In terms ofmovement control implementation, there have been
few research results for robotic dolphins. Nakashima [16] realized
the pitch maneuver by controlling the propulsive joints, and
realized yaw and roll maneuvers by controlling the dorsal fin and
pectoral fin. Simulations and experiments were performed by PID
policy. Yu [17] realized propulsive speed control through studying
the oscillating frequency and amplitude of the tail, and yaw control
through controlling turning joints. The main achievement of the
above two studies is open loop control without a feedback loop.
Wang [18] presented a locomotion controller by using the Central
Pattern Generator (CPG) model with nearest coupling for a multi-
jointed robotic dolphin, and realized propulsion and maneuver
for robotic dolphins. Shen [19] proposed a fuzzy PID controller
to realize depth control by considering the nonlinear model in
the depth control and volume variation of the rubber skin due
to water pressure. Wang [20] gives a modeling and open loop
control method, in which the robotic dolphin is modeled as a three
segment organism. That is a rigid anterior body, flexible rear body,
and an oscillating fluke. The dorsoventral movement generates the
thrust, and bending of the anterior body in the horizontal plane
enables turning maneuvers.

The above studies are very useful for further research of robotic
dolphin. At the same time, they also show that the dynamic
modeling is a complex issue. In particular, the existing model
seldom is applied to conduct robotic dolphin movement in aquatic
environments. Due to the complexity and fluidity of water, these
models, which are based onmulti-body dynamicsmethod, become
seriously distorted and are not suitable for application.

For the purpose of obtaining practical kinematic model and
converting the speed control issue into a kind of pure control
problem, this study attempts to find a data-driven way to propel
the robotic dolphin. First, it proposes a KEMC definition based on
the kinetic energy mapping feature and obtains a KEMC feature
equation. Then it designs an average propulsive speed control
method by applying the KEMC equation. Among them, parameter
iterative identification and adaptive control method are adopted
respectively. Simulation analysis and experimental results show
that the feature data KEMC could be used to direct the robotic
dolphin’s motion, and the speed control implementation approach
is feasible.

2. Kinematic feature descriptions and extraction methods

2.1. Kinematic features

On the basis of the biological observations of dolphin swim-
ming, Romanenko [21] established Eq. (1) to describe the periodic
excursions of the body centerline in dorsoventral movements:

h(xn, t) = hT f (xn) sinωt (1)

where hT denotes the maximal vertical excursion of the fluke; BL
denotes the body’s length of the dolphin; xn = x/BL represents
Z
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Fig. 1. The oscillating tail with three centroids.

the longitudinal coordinate, which is measured from the rostrum,
divided by the BL; f (xn) is the polynomial expression of xn; ω is
the angle velocity; and t is time.

A large number of observations show that, when a dolphin
continues to oscillate on a certain frequency and amplitude of tail,
it will obtain a corresponding forward speed. Once the aquatic
environment is stable, the average speed will remain changeless
after a few 2π oscillating periods of tail.

Eq. (1) describes the body centerline oscillating rule for the
dorsoventralmovements of dolphins. Every point on the centerline
oscillates on a sinusoidal wave. In Fig. 1, Point A represents the
fixed point between tail joint and body, and point 1, points 2 and 3
represent the centroids of three joints.

In Eq. (1), when hT and f are constants, the oscillating sinusoidal
rule of the tail is changeless. From the angle of aquatic dynamics,
the propulsive force of the tail is regular and stable. According
to Newton’s Law, the robotic fish will first accelerate, then enter
a stable speed state at this moment of equilibrium of propulsive
force and drag force. It is needed to point out that, although the
instantaneous propulsive speed is a slightly sinusoidal fluctuation
in a 2π oscillating cycle, the average propulsive speed will remain
stable.

2.2. Kinetic energy mapping relation

In order to describe the kinematic features specifically, the
energy conversion feature of dolphins is further analyzed.

When the dolphin is swimming at a stable state, the biological
energy system is working by means of the oscillating of the
tail. The biological energy is converted into three main parts:
propulsive kinetic energy, kinetic energy of the surroundingwater,
and thermal energy. The energy conversion feature is extracted
to describe the kinematic features discussed in Section 2.1.
Correspondingly, a regular mapping relation exists between the
kinetic energy of the tail and the propulsive kinetic energy of
robotic dolphin. By sampling the representative kinetic energy
of the tail in a 2π oscillating period and the average propulsive
kinetic energy of the dolphin at the samemoment, a mathematical
equation would be obtained to describe the kinematic features.
Therefore, a feature kinetic energy is defined to obtain the
representative kinetic energy of the tail as shown below:

Definition 1. Feature kinetic energy.

When the dolphin’s tail oscillating coincides with the X-axis, as
shown in Fig. 1, the oscillating angle velocity reaches themaximum
value in a 2π oscillating period. At the same time, the tail’s kinetic
energy also reaches themaximumvalue. It defines the tail’s kinetic
energy at this moment of t = nπ as the feature kinetic energy,
which is denoted as T .

Based on the feature kinetic energy, a KEMCdefinition should be
proposed to extract the kinematic feature for the robotic dolphin’s
forward motion.
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2.3. Definition of KEMC

Yanov [22,23] offered the wave function on the basis of
experiments, in which Tursiops truncatus swam at the speed of
3.12 m/s.

f (xn) = 0.21 − 0.66(xn) + 1.1(xn)2 + 0.35(xn)8. (2)

Eqs. (1) and (2) describe the periodic excursions of the body
centerline in dorsoventral movements. For the convenience of
engineering applications, f (xn) is simplified as Eq. (3), based on a
polynomial fit of typical dolphin-like swimming features [20,24].

f (xn) = 0.1 − 1.3xn + 2.2x2n. (3)

When xn = 0.5, f (xn) = 0, it is signified that the latter half of
the body is used to generate propulsive force through oscillating. It
adopts three joints to fit the periodic dorsoventralmovements, and
the first joint is fixed at the point of xn = 0.5, as shown in Fig. 1.
The fluctuations of the three joints are described as follows:h(x1, t) = hT f (x1) sinωt

h(x2, t) = hT f (x2) sinωt
h(x3, t) = hT f (x3) sinωt.

(4)

In Eq. (4), x1, x2 and x3 represent the longitudinal coordinate of
the joints’ centroids, as shown in Fig. 1. The linear speed is obtained
by differentiating Eq. (4), as follows:v(x1, t) = 2π fhT f (x1) cosωt

v(x2, t) = 2π fhT f (x2) cosωt
v(x3, t) = 2π fhT f (x3) cosωt.

(5)

Definition 2. KEMC.

When both the tail’s oscillating frequency and amplitude are
changeless, the robotic dolphin will enter a stable forward state
after enough time. It samples the average propulsive speed at
a stable swimming state, and defines the ratio of the average
propulsive kinetic energy of the robotic dolphin to the feature
kinetic energy of the three joints as KEMC, which is denoted as P .

The KEMC may be directly determined by some factors, such
as the inherent physical characteristics of the robotic dolphin, as
well as the steady water environment and propulsive speed of the
robotic dolphin.

As a result of the KEMC definition, the basic kinetic energy
mapping feature equation is as follows:

1
2
MV 2(t) = P(t)T (t) (6)

whereM is themass of the robotic dolphin; V (t) is the sampled av-
erage propulsive speed; P(t) is the sampled KEMC value, and T (t)
is the feature kinetic energy at the moment of ωt = nπ, n ∈ N .

3. KEMC feature equations in engineering

3.1. Engineering kinematic model

In engineering application, the servomotor is usually controlled
by PWM pulse, which originates from the controller, where the
duty ratio of PWM is matched with the amplitude angle of the
servomotor. Therefore, the amplitude angle kinematic formof joint
is needed, and usually expressed as follows [25,26]:

θ(t) = θmax sin(ωt) (7)

where θmax is the maximum amplitude angle for the oscillating
joint, and ω is equal to 2π f . The angular velocities for the rotating
body are commonly calculated as follows:

θ̇ (t) = v(t)/r (8)

where θ̇ (t) is the angle velocity. It is respectively calculated that:θ̇1(t) = v(x1, t)/r1
θ̇2(t) = v(x2, t)/r2 − v(x1, t)/r1
θ̇3(t) = v(x3, t)/r3 − v(x2, t)/r2

(9)

where r1, r2, r3 are respectively the centroid radii of the gyrations
for the three joints, and ri = (2i − 1)L/2 when θi = 0, i = 1, 2, 3.
The integral of Eq. (9) is as follows:θ1(t) = 2hT f (x1) sinωt/L

θ2(t) = 2hT f (x2) sinωt/3L − 2hT f (x1) sinωt/L
θ3(t) = 2hT f (x3) sinωt/5L − 2hT f (x1) sinωt/3L.

(10)

Eq. (10) gives the amplitude angle form of Eq. (4) at themoment
of ωt = nπ . Fig. 2 gives the changing amplitude angle θi(t) of
the three joints. Notably, there is no phase difference between two
adjacent joints.

3.2. Feature kinetic energy T

According to the definition of KEMC, the feature kinetic energy
of the three oscillating joints should first be calculated. Eq. (10)
offers the amplitude angle kinematic equations. According to
Definition 1 and the Lagrange equation, when ωt = nπ, n ∈ N ,
direct calculation gives the following [12,27]:

Ti(t) =
1
2
mv2(xi, t) +

1
2
Ji

i
n=1

θ̇2
n (t), i = 1, 2, 3 (11)

where

Ji =
1
12

mri (12)

ri =
2i − 1

2
L (13)

where Ti(t) is the feature kinetic energy of the ith joint; m is
the mass of one joint; v(xi, t) is respectively the mass centroid
linear speed of the joints; and Ji is respectively the mass centroid
moments of inertia.

By calculating Eq. (11), we obtain the following:

T1(t) =

m
2

+
m
12L


f 2(x1)


hT

θmax

2

ω2(t)

T2(t) =

m
2
f 2(x2) +

m
3L

f 2(x1) +
m
36L

f 2(x2)

−
m
6L

f (x1)f (x2)
 

hT

θmax

2

ω2(t)

T3(t) =

m
2
f 2(x3) +

m
3L

f 2(x1)

+
8m
27L

f 2(x2) −
m
6L

f (x1)f (x2)

+
m
60L

f 2(x3) −
m
18L

f (x2)f (x3)
 

hT

θmax

2

ω2(t).

(14)

3.3. KEMC feature equation

According to Definition 2, the KEMC feature equation is as
follows:

1
2
MV 2(t) = P(t)[T1(t) + T2(t) + T3(t)] t = nπ, n ∈ N. (15)
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(a) The oscillating situation of three joints. (b) The oscillating situation of θi(t) = 0.

Fig. 2. The amplitude angle changing of three joints.
Aiming at the dorsoventral movement described in Eqs. (1) and
(4), according to Eqs. (14) and (15), we may calculate the KEMC
feature equation to obtain the following:

1
2
MV 2(t) = P(t)


m
2

+
3m
4L


f 2(x1)

+


m
2

+
35m
108L


f 2(x2) +

m
2

+
m
60L


f 2(x3)

−
m
3L

f (x1)f (x2) −
m
18L

f (x2)f (x3)
 

hT

θmax

2

ω2(t) (16)

where the sampling moment is t = nπ, n ∈ N for feature kinetic
energy, and V (t) is the average speed in one sampling period.

Remark 1. The KEMC feature equation has the following charac-
teristics:

(1) The principle of modeling is from kinetic energy mapping
feature extraction, and not commonly used in mechanics and
hydrodynamics previously.

(2) The KEMC feature equation, in essence, is an uncertain
proportion model with a time-varying parameter, and the
equation is nonlinear and simple, but it is practical for control
of robotic dolphins.

(3) In Eq. (1), there are no phase differences between any two
adjacent joints, thus the KEMC feature equation is obtained on
the precision of no phase difference. However, it is also suitable
for traveling propulsion once the corresponding feature kinetic
energy T has been obtained.

4. Average propulsive speed implementation

To implement the average propulsive speed, a parameter
iterative identification and adaptive control solution is designed by
applying the KEMC feature equation. Now it converts Eq. (16) into
iterative form to discuss the implementation issue in the iterative
domain.

4.1. Adaptive controller based on parameter iterative identification

According to Definition 2, the robotic dolphin will operate
repetitively in a limited interval. It selects 6 oscillating cycles as a
whole operation interval to study the control realization issue. The
operation interval provides sufficient time to reach stable state, as
shown in Fig. 3(a).

Similarly, according to Definition 2, the final red 2π oscillating
cycle would be sampled to measure the output average speed,
and to calculate the KEMC value by a law of parameter iterative.
The following control issues are discussed on the provision of the
limited operation interval and the given sampling cycle, as shown
in Fig. 3(a).
Therefore, Eq. (16) may be expressed as the following iterative
form in the limited operation interval:

V (j, n) =
hT

θmax
A

P(j, n)ω(j, n), j ∈ N, n = 6 (17)

in which

A =




m
M

+
3m
2ML


f 2(x1) +


m
M

+
35m
54ML


f 2(x2) +

 m
M

+
m

30ML


f 2(x3)

−
2m
3ML

f (x1)f (x2) −
m

9ML
f (x2)f (x3)

(18)

where j is operation iterations, and n is the sampled cycle in the
operation interval, and is equal to 6. The iterative period is set at 6
oscillating cycles to ensure entering into stable state.

An adaptive control with parameter iterative identificationis
then designed, as shown in Fig. 3(b).

n is a constant for the entire operation course, thus n is not
mentioned for simplification of analysis in the following section.

The system error is as follows:

e(j) = V (j) − Vd (19)

where V (j) is the sampling speed at the stable state, and Vd is the
speed target.

The laws of parameter iterative and the law of adaptive control
are as follows:

P(j) = P(j − 1) + Q (j)e(j) (20)

ω(j + 1) =
θmaxVd

hTA
√
P(j)

(21)

where Q (j) is the iterative gain.

4.2. Issues of initial value and iterative period

(1) For the propulsive system of the three-jointed robotic dolphin,
the value of hT could theoretically be selected in the range of
[0, 3L].

(2) The value of P(0) must be set only once in the same aquatic
environment, and may be obtained by offline measurement,
or be given an empirical value. The difference is that if the
initial error is smaller, then the iterative time will be shorter.
The initial value of ω(1) is determined by P(0) and the control
target Vd.

(3) The limited operation intervalmust ensure that the robotic fish
may enter a stable state. It is preliminarily set to 6 oscillating
cycles, thus the iterative operation period is 12π/ω(j).

Remark 2. The adjustment of the target speed is gradually
completed through several iterative periods, so that every iterative
unit’s time is different according to the changing signal ω(j).
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(a) Tail oscillating in a whole operation interval.

–
+

Memory Unit

 Parameter Iterative Learning Adaptive control Robotic Fish

(b) Adaptive control with parameter iterative identification.

Fig. 3. Implementation of average speed control. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.3. Analysis of convergence

Theorem 1. The system,which consists ofmodel (17), law of adaptive
control (20) and law of parameter iterative (21), has the following
characteristics:

(1) All parameters and signals in the system are bounded.
(2) In the iterative domain, when j → ∞, the system error ap-

proaches zero:

Lim
j→∞

e(j) = 0, j ∈ N. (22)

Proof. (1) The initial value P(0) is given as a constant by offline
identification in advance, and according to Eq. (20), the P(j)
would be monotonous by designing a suitable parameter learning
gain Q (j). Suppose that the actual P0 is less than P(0), thus the
supremum of P(j) is P(0), and the infimum of P(j) is P0. The P(j)
would be Monotonic decrease by designing a suitable parameter
learning gain Q (j). According to the Theorem of Nested Interval, if
the series exist a supremum or infimum, the monotonous series
should be bounded. Thus, the P(j) is bounded. Similarly, if the
actual P0 is greater than P(0), thus the supremum of P(j) is P0, and
the infimum of P(j) is P(0). The P(j) would be Monotonic increase
by designing a suitable parameter learning gain Q (j), thus, the P(j)
is bounded.

For ω(1) = θmaxVd/(hTA
√
P(0)), thus the ω(1) is a bounded

initial value. For the law of adaptive control ω(j + 1) = θmaxVd/
(hTA

√
P(j)), a suitable learning gain Q (j)may be designed tomake

Limj→∞ω(j + 1) approach the stable value monotonically. There-
fore, the ω(j + 1) is bounded between the initial value and stable
value. Similarly, the output signal is bounded due to Eq. (17) by the
actual P0.

(2) The jth iterative error equations is

e(j) = V (j) − Vd. (23)

The actual output signal is

V (j) = ω(j)
hT

θmax
A

P0 (24)

where the P0 is the actual KEMC at stable state. According to
Eq. (21), the input signal is

ω(j) =
θmaxVd

hTA
√
P(j − 1)

. (25)
Substituting Eqs. (24) and (25) into Eq. (23), we obtain the fol-
lowing:

e(j) =

 √
P0

√
P(j − 1)

− 1

Vd. (26)

According to Eq. (20):

P(j − 1) = P(j − 2) + Q (j − 1)e(j − 1). (27)

Case 1: P(j − 1) ≥ P0, j ∈ N .
For P(j − 1) ≥ P0, so e(j) ≤ 0. A suitable iterative gain is de-

signed as follows:

Q (j − 1) =
ρP(j − 2)

Vd
, 0 ≤ ρ ≤ 1. (28)

Substituting Eq. (28) into Eq. (27) yields the following:

P(j − 1) = P(j − 2) + P(j − 2)
e(j − 1)ρ

Vd
. (29)

The e(j − 1) ≤ 0 and other parameters are not negative, thus the
P(j − 1) will be monotone decreasing. Considering the range of
P(j − 1) is [P0, P(0)], and according to the Theorem of Nested In-
terval, the following is true:

lim
j→∞

P(j − 1) = P0, j ∈ N. (30)

Correspondingly, according to Eq. (26), the following is also true:

lim
j→∞

e(j) = 0. (31)

Case 2: P(j − 1) ≤ P0, j ∈ N .
For P(j − 1) ≤ P0, thus e(j) ≥ 0. Similarly, a suitable iterative

gain is designed as follows:

Q (j − 1) =
ρP(j − 2)

Vd
, 0 ≤ ρ ≤ 1. (32)

Substituting Eq. (32) into Eq. (27) yields the following:

P(j − 1) = P(j − 2) + P(j − 2)
e(j − 1)ρ

Vd
. (33)

The e(j − 1) ≥ 0 and other parameters are not negative, thus the
P(j − 1) would be monotone increasing. Considering the range of
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a b

dc

Fig. 4. (a) Identification curves of parameters. (b) Input angle velocity. (c) Output propulsive speed. (d) Error convergence curves. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
P(j − 1) is [P(0), P0], and according to the Theorem of Nested In-
terval, the following is true:

lim
j→∞

P(j − 1) = P0, j ∈ N. (34)

Correspondingly, according to Eq. (26), we obtain the following:

lim
j→∞

e(j) = 0. (35)

According to the results of cases 1 and 2, the speed control
system is convergent in the iterative domain. This completes the
proof.

5. Simulation analysis

According to the inherent physical characteristics of robotic
fish, the parameters are set in Eq. (17) tom = 0.3 kg; M = 10 kg;
L = 0.1 m; hT

= 0.2 m; θmax = 0.588 rad, and the parameters in
Eq. (3) are set to x1 = 0.5833 x2 = 0.75 x3 = 0.9167. Therefore
the KEMC feature equation is as follows:

V (j) = 0.0785

P(j)ω(j). (36)

5.1. Speed adjustment

We set P = 1.21 and P(0) = 0.81, where P is the actual KEMC
when the robotic fish is in the current aquatic environment. The
parameter learning gain is designed as follows:

Q (j) =
0.99P(j − 1)

Vd
. (37)

The iterative period is also set to 6 oscillating cycles. The
simulation results are shown in Fig. 4.

For the velocity targets 0.2 m/s and 0.3 m/s, Fig. 4(a) gives the
iterative course for the coefficient P(j), and the value of P(j) itera-
tively increases from 0.81 to the stable value of 1.21. On different
speed targets, the iterative tracking is basically consistent.
Table 1
Iterative operation time and error.

Iteration number Time (s) Error

1 13.32 0.045
2 14.6 0.022
3 15.31 0.013
4 15.75 0.007
5 16 0.003
6 16.1 0.002
7 16.14 0.001
8 16.2 ∼0

Fig. 4(b) shows that the input signalsω(j) successively decrease
from the initial values of 2.5 rad/s and 1.7 rad/s to the stable values
of 2.1 rad/s and 1.4 rad/s, which are the respective oscillating
angular velocities under the target propulsive speeds of 0.2m/s and
0.3m/s. Converting into frequency, the final oscillating frequencies
are respectively 0.9 times per second and 1.35 times per second.
This shows that the input signalω(j)will reach a stable value along
with the precise identification of P(j).

Fig. 4(c) and (d) show the adjustment results of the speed
control. It is shown that the velocity error basically converges to
0 m/s along with the final inputting signal ω(10).

For the two target velocities of 0.2 m/s and 0.3 m/s, although
the initial errors e(j) are different, the convergence performance is
basically consistent. This shows that the law of control and law of
parameter iterative have determined the system’s convergence.

The sampling iterative period is 6 oscillating cycles, thus the
iterative time is t(j) = 12π/ω(j) for the jth iterative operation.
All ten iterative operation times for the target speed of 0.2 m/s are
listed in Table 1.

At the seventh iteration, the speed’s error is 0.001 m/s, which
is less than 1%. The total iterative operation time at this moment is
107.1 s. This shows that the robotic fishwill basically reach a target
speed state in 107.1 s, and that the actual P value is identified.

Remark 3. 107.1 s is a relatively long time, but this is only for the
first operation, the following switching course requires much less
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Fig. 5. (a) Switching of parameter. (b) Switching of input angle velocity. (c) Speed adjustment. (d) Error convergence curve.
time. More importantly, monotone successive approaching will
ensure the stability of the KEMC value. In addition, the discussed
speed adjustment method is mainly suitable for long distance
swimming application.

5.2. Speed switching

When Vd = 0.2 m/s switches to 0.3 m/s at the eleventh
iteration, and the switching curves are as shown in Fig. 5.

When the target speed switches from 0.2 m/s to 0.3 m/s at the
eleventh iteration,we can see fromFig. 5(a) that the P(j)undergoes
no change. The previous ten iterative operations have correctly
identified the actual KEMC value, so that the actual value may be
selected as an initial value when switching. At the moment of the
eleventh iteration, the control system acquires the actual P(10)
value and quickly realizes the adjustment of input angle velocity,
and the output speed and error both reach to zero at the same time,
as shown in Fig. 5(c) and (d). Fig. 5(d) shows that the speed error
undergoes no change at the switching point.

As a result, the eleventh iteration time is 10.85 s, thus the
robotic fish will reach 0.3 m/s in 10.85 s, thereby greatly reducing
the time compared with the first operation. Similarly, switching of
the later target speeds will also perform in this manner.

Therefore, the value of the KEMC is stable in the same aquatic
environment, once the KEMC is identified at the first target speed
it may be used for the follow-up control target, and the speed
adjustment will be much faster than the first target operation.

6. Experiments

The simulations theoretically prove the feasibility of the
average speed control. Physical experiments would also be carried
out to further verify the effectiveness of average speed control.
To ensure the convergence of speed on the experiment, the
initial KEMC value should be close to the actual value. Thus the
experiment is divided into two parts, offline identification of the
initial KEMC value, and closed loop control.
Table 2
Physical parameters of robotic dolphin.

Size (L ∗ W ∗ H) 80 ∗ 36 ∗ 24 cm
Length of tail 38 cm
Size of caudal fin (L ∗ W) 7 ∗ 20 cm
Length of joint 10 cm
Mass of fish body 9 kg
Quantity of servomotors 3
Mass of servomotor 0.08 kg
Mass of one joint approx. 0.3 kg
Time of battery life approx. 2 h
Communication mode Wireless (435.92 MHz)
Speed measurement Ultrasonic
hT 0.2 m
θmax 0.588 rad

6.1. Robotic dolphin prototype

A robotic dolphin prototype is designed, as shown in Fig. 6.
Three servomotors are in series and generate a propulsive force
by regular oscillating. As a whole propulsive system, a flexible
crescent caudal fin is fixed with the last joint.

The physical parameters of the robotic dolphin are listed in
Table 2.

A 10m long swimming pool is used to carry out the experiment.

6.2. Offline identification of KEMC

For the KEMC feature equation, the parameters are the same as
the simulation case, so that the KEMC feature equation is equally
calculated as follows Eq. (36).

A series of ω(j) is respectively inputted and the corresponding
propulsive average speed is measured. As a result, a database of
KEMC is obtained by offline identification. Offline identification is
carried out for three times repeatedly in 5 m distance, and the
average speed is measured by artificial way. The experimental
scene is shown in Fig. 7.

Eq. (36) is used to calculate the KEMC value, the identification
results are shown in Table 3.
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Table 3
Offline identification results.

ω(j) (rad/s) 0.56π 1.11π 1.67π 2.22π 2.78π 3.33π 3.89π 4.45π 5π 5.56π
V (j) (m/s) 0.04 0.08 0.13 0.18 0.23 0.28 0.33 0.38 0.29 0.21
P(j) 0.084 0.087 0.1 0.108 0.113 0.116 0.118 0.12 0.055 0.023
Fig. 6. Experimental robotic dolphin.

Starting point

5m

Terminating point

Fig. 7. KEMC and average speed at stable state.

According to Table 3, Fig. 8(b) gives the KEMC’s distribution
with the increase of speed.

We can see from Table 3 and Fig. 8 that every input angle
velocity has a corresponding KEMC value in the current aquatic
environment for the robotic dolphinwith feature equation, and the
KEMC value is basically stable.

When the angle velocity is 4.45π rad/s, the KEMC reaches
the maximum value, signifying the highest energy conversion
efficiency. When the angle is over 4.45π rad/s, the KEMC value
decreases quickly, which means that the tail’s oscillating enters a
saturated state, and the propulsive efficiencywill decrease quickly.
At the same time, the KEMC feature in Eq. (36) is not suitable
for conducting the robotic dolphin’s movement once the angle
velocity is over 4.45π rad/s.

Once the KEMC value is clear, the robotic dolphin’s average
speedwould be obtained. KEMCdatawould beused to generate the
angular velocity corresponding to the target speed. Theoretically,
the open-loop driven could reach the target speed approximately.

For self-regulation of robotic dolphin, these eight KEMC values
in Table 3 would be as the initial reference values for the closed
loop speed control. Conversely, the closed loop control results
would update these values in Table 3.

6.3. Closed loop speed control

Taking 0.3 m/s as a speed target, a closed loop speed control
experiment is carried out. To enhance the reliability of the system,
the first sampled period is designed as 2 s and the parameter
learning gain is selected as follows:

Q (j) =
0.95P(j − 1)

Vd
. (38)

The speed is measured through two ultrasonic modules. One
module is mounted on the robotic dolphin, and which would
receive ultrasonic. The other is fixed in the front of robotic
dolphin, and which would transmit ultrasonic. The motion speed
is calculated by measure the change of distance. The transmitting
period is 443 ms, and the sampling period is 2 s. The closed four
measured speed values are used to calculate the average speed V .
Fig. 9 gives the experimental scene.

The experiment is repeatedly carried out for 5 times, and
the swimming effectiveness is basically similar. Fig. 10 gives the
operation data at one time.

For reducing errors and improving the data reliability, the
measured V (j) is filtered by a threshold interval of [0.285, 0.315].
All measured data would be regarded as invalid once over the
threshold interval, and this ensures that the control system is
verified successfully. We can see from Fig. 10(b), the third data is
invalid, and the fourth, the eighth data are also invalid. In Fig. 10(a),
the KEMC value is not adjusted because of the invalid speed data.

In Fig. 10(a), the stable KEMC value is identified as 0.117 for
the target speed 0.3 m/s. Compared with the simulation course,
the physical robotic dolphin may reach a close speed value more
quickly because of the close initial KEMC value 0.116 in Table 3.
The experimental results prove further that the KEMC data could
be used to propel the robotic dolphin, and the closed loop control
could identify the KEMC value more detail.

6.4. Comparison analysis

The propulsive speed implementation approach is different
with the past typical researches which are shown in papers
[17,18]. The following is the detailed comparison.

An OscData[M][N] array is proposed to drive the robotic
dolphin. There are a few significant differences between the
OscData[M][n] and the KEMC method.

First, the OscData[M][N] is forecasted by given hT , and it is a
constant; but the KEMC is an uncertain parameter, and the initial
value should be identified offline. In essence the KEMC is a dynamic
data. Second, an open loop control is implemented in [17] by
applying OscData[M][N], but the KEMC method implements the
closed loop control based on external feedback. Most importantly,
the speed errors are different. The OscData[M][N] method could
forecast the data, but cannot revise the data, so larger error appear
in [17]. But for KEMC method, the initial P value is closed to an
actual value, so error is much less, and further, the KEMC has
learning ability.

A CPG model is adopted to propel the robotic dolphin in [18]. A
series of CPG parameters are set to get a measured speed. Similar
to OscData[M][N] method, it propels the robotic dolphin, but does
not control the robotic dolphin. The KEMC method has less error
in open loop control, furthermore, the robotic dolphin obtains
learning and adaptability in closed loop control. The dynamic
characteristic of KEMC is the key of learning and adaptability.

Totally, the KEMC method has obvious advantages: dynamic
data, closed loop control, learning ability and adaptability.
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Fig. 8. KEMC and average speed at stable state.
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Fig. 9. Experimental scene for closed loop control.
7. Conclusions

This paper proposed a systematic solution based on KEMC
for the robotic dolphin’s propulsion both theoretically and
experimentally. It offers two main distributions for average speed
implementation of robotic dolphinswithmulti-joint propulsion, as
follows.

One, the feature extraction method is introduced to analyze
the kinematics of robotic dolphins, which is also suitable for BCF
robotic fish with caudal fin propulsion, and a KEMC is defined on
the basis of extracting kinetic energy mapping features.

Second, parameter iterative learning and adaptive control are
applied to realize the speed control of robotic dolphins by using the
KEMC data, thereby exploring a data-driven approach for robotic
dolphin’ average speed implementation.

Further research objectives include the whole identification
of KEMC for a certain robotic dolphin without physical and
environmental changes, and establish a more detailed datasheet
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Fig. 10. The average speed adjustment process.
for different average speed targets. Second, the optimization of the
control system should be carried out in terms of three aspects,
namely shortening the speed adjustment time, strengthening
the anti-disturbing ability, and enhancing the energy conversion
efficiency. Besides, the KEMC could be an evaluating indicator for
propulsion efficiency research.
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