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Abstract—Selective harmonic elimination (SHE) technology has
been widely used in many medium- and high-power converters
which operates at very low switching frequency; however, it is still
a challenging work to solve the switching angles from a group of
nonlinear transcendental equations, especially for the multilevel
converters. Based on the Groebner bases and symmetric polyno-
mial theory, an algebraic method is proposed for SHE. The SHE
equations are transformed to an equivalent canonical system which
consists of a univariate high-order equations and a group of uni-
variate linear equations, thus the solving procedure is simplified
dramatically. In order to solve the final solutions from the definition
of the elementary symmetric polynomials, a univariate polynomial
equation is constructed according to the intermediate solutions and
two criteria are given to check whether the results are true or not.
Unlike the commonly used numerical and random searching meth-
ods, this method has no requirement on choosing initial values and
can find all the solutions. Compared with the existing algebraic
methods, such as the resultant elimination method, the calcula-
tion efficiency is improved, and the maximum solvable switching
angles is nine. Experiments on three-phase two-level and 13-level
inverters verify the correctness of the switching angles solved by
the proposed method.

Index Terms—Converter, Groebner bases, inverter, multilevel,
selective harmonic elimination (SHE), symmetric polynomial.

I. INTRODUCTION

IN the medium- and high-power applications, such as the
renewable generation [1], motor drive [2], harmonic com-

pensation [3]–[5], static synchronous compensator [6], etc., the
switching frequency is usually very low (300–800 Hz) due
to the limitations of the switching losses and electromagnetic
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interferences caused by high dv/dt. With such a low switch-
ing frequency, the carrier PWM will produce lots of low-order
harmonics and poor THD performance; hence, the selective
harmonic eliminated pulse width modulation (SHEPWM) [7],
[8], which can eliminates the low-order harmonics very pre-
cisely and improve the output equality, has been widely used
in these applications. However, the biggest challenge to utilize
the SHEPWM technology is to solve the switching angles from
a group of nonlinear transcendental equations. The most com-
monly used methods to do this are the numerical methods and
the random searching methods. The typical numerical methods
include the Newton–Raphson algorithm [8]–[10] and the homo-
topy algorithm [11], [12], whereas the genetic algorithm [13],
[14] and the evolutionary algorithm [15], [16] are the typical
random searching methods. Although these two types of meth-
ods have shown their effectiveness in various applications, there
are also some shortcomings of them.

First, the initial values must be well selected; otherwise, the
iteration will probably be diverged. For the two-level and three-
level converters, the initial values usually are chosen by two
different approaches: Enjeti et al. [9] represented the first one in
which some linear functions are derived to calculate the initial
values for a given modulation index; these linear functions are
obtained from solving the selective harmonic eliminated (SHE)
equations with less switching angles and then generalize them to
more switching angles. The other one is based on the assumption
that “the solutions to the SHE equations vary continuously with
the modulation indices,” the solutions for current modulation
index are directly taken as the initial values for new equations
with slightly increased modulation index [17]. In [18], the ini-
tial values for the SHE equations with incremented modulation
index is predicted along the tangent directions of the current
point on the solution trajectory. For the multilevel converters, a
method for getting initial values based on the rule of equality
of area and superposition of the center of gravity of the PWM
section with the sine reference signal is proposed in [19] and
[20]. Although these methods for choosing initial values can
work well for many cases, they may fail to handle some multi-
level cases whose solutions are discontinuous with modulation
indices, such as the staircase multilevel converters.

Second, due to the local convergent nature of the numerical
methods and the random searching methods, usually only one
solution can be found for one proper selected initial values,
but actually, there exist multiple solutions for most modulation
indices. In the last decade, some methods with the capability
to find multiple solutions for SHE equations have been pro-
posed. In [21] and [22], a method based on the minimization
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technique and random search has been proposed to solve the
SHE equations for two-level converters. For a specific modula-
tion index, the minimization problem to find the first solution
is done by using the genetic algorithm or Nelder–Mead sim-
plex algorithm; then, the combined random search and biased
pattern for the initial values are used to find all the possible
solutions, which are then used as initial values to find the solu-
tions for new modulation index with slightly increment. Later,
this minimization method is used to solve the SHE equations
for three-level converters [23], and then for the multilevel con-
verters [24]–[26] with both equal and nonequal dc sources. This
minimization method does not seek the solutions that strictly
eliminate the harmonics, but rather tries to find solutions that
minimize the objective function. This approach could give solu-
tions even beyond the point that other methods do not converge,
or even when the solutions do not exist; moreover, it has the
ability to find multiple solutions. However, due to the numer-
ical nature of this minimization method, a formal proof of its
completeness cannot be easily provided and no guarantee can
be given that it would be feasible when the switching angles
keep increasing. Although this method can find all the possible
solutions for most modulation indices, it still has missed some
solutions for some cases. For example, in the case of a two-
level converter with three switching angles to eliminate 5th and
7th harmonics, this minimization method asserted that the solu-
tions exist only when the modulation index is negative [22], but
actually, there definitely exist solutions for modulation indices
in [0.92, 0.93]. In [27], two formulas are used to compute the
initial values and then the switching angles versus modulation
index in full range are computed by the Newton–Raphson itera-
tion algorithm, by varying the iteration steps, multiple solutions
can be given. In their conclusions, there are two solutions for
modulation indices in [0, 0.55], three solutions for [0.55, 0.59],
and four solutions for modulation indices above 0.59, but in our
investigation, there definitely exist the fifth solution for mod-
ulation indices in [0.58, 0.7]. If the quarter-wave symmetric of
the output waveform is relaxed to half-wave symmetric, there
probably exist infinite number of solutions for SHE problem
[28]–[30]; however, this is beyond the subject of this paper.

Third, as the prior knowledge about the existence of the solu-
tion for the SHE equations is unknown, when these algorithms
fail to provide a final result, it is not clear whether it is caused by
the selection of initial values, or the parameters are unsuitable
or there are indeed no solutions for the SHE equations.

In order to overcome these problems, recently, several com-
puter algebra-based methods have been proposed. Due to their
completeness in mathematics, these methods do not need to
choose initial values and can find all the possible solutions.
In [31] and [32], the resultant elimination theory is introduced
to convert the SHE equations to an equivalent triangular form
which can be solved by the way like the Gaussian elimination in
solving the linear equations. The only problem of this method
is the huge computation burden, it is only effective when the
switching angles or the dc sources are less than five [34]. Then,
the symmetric polynomial theory [33] and the power sum [34]
are introduced to reduce the degrees of the polynomials and
the reported maximum solvable switching angles is limited to

five. In [35], the Wu method is introduced to convert the SHE
equations to a characteristic triangular sets whose zeros are the
same as the original polynomials; however, only a simple case
with three switching angles has been studied.

Except for the above three categories of methods which are
all based on solving the SHE equations, in recent years, some
totally different approaches of SHEPWM technology have been
proposed. In [36], a modulation-based approach for harmonic
elimination is proposed. In [37] and [38], the authors propose
a four-equation-based harmonic elimination method which is
motivated by the ideas of equal area criteria and harmonic in-
jection in active power filter. As there are lots of works on the
topic of SHE, it is difficult to give a comprehensive review about
them in a short introduction, one can refer to [39] to get a de-
tailed introduction about the formulations, solving algorithms,
implementation, and applications of the SHE technologies.

This paper proposes another algebraic method to solve the
SHE equations, which combines the Groebner bases and the
symmetric polynomials. The main superiority of this method
over the other methods is the avoidance of solving the multi-
variate high-order equations and all the equations need to be
solved are two univariate high-order equations and a group of
univariate linear equations; thus, the solving procedure is dra-
matically simplified, and the maximum solvable switching an-
gles is increased to nine. Also, this method does not need to
choose initial values and can find all the solutions; furthermore,
it can be used for all the two-level, three-level, and multilevel
inverters (not only the case of single switching per dc level but
also the case of multiple switching per dc level).

II. MATHEMATICAL MODEL OF SHE

The basic principle of the SHEPWM technology is the Fourier
series of the output PWM waveform, in order to simplify the
expression of the Fourier coefficients, the output waveform is
usually assumed quarter-period symmetric. The equations used
to compute the amplitude of harmonics for two-level and mul-
tilevel inverters are listed as follows [8], [20]:

bn =
4Vdc

nπ

[
1 + 2

N∑
i=1

(−1)i cos(nαi)
]

(1)

bn =
4Vdc

nπ

N∑
i=1

± cos(nαi) (2)

where bn is the amplitude of the nth harmonics, Vdc is the voltage
of the dc source, N is the number of switching angles, and
αi are the switching angles in a quarter period. The “±” sign
in front of cos(nαi) in (2) depends on the transition state on
switching angles αi , that is, if αi is a rising edge, the sign will
be “+,”; otherwise, the sign will be “−.” If there is only one
dc source, (2) degrades to the case of three-level inverter which
has alternating signs of “+” and “−.”

Equations (1) and (2) indicate that the amplitude of the funda-
mental and the harmonics are directly decided by the switching
angles, if the fundamental amplitude b1 is set to a desired value
U and the amplitude of some selected harmonics are set to
zero, the SHE equations will be obtained. For example, for the
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Fig. 1. Staircase waveform of multilevel inverter.

multilevel inverter with five dc sources and a staircase output
waveform like Fig. 1, the SHE equations are shown as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(α1 )+ cos(α2 )+ cos(α3 )+ cos(α4 )+ cos(α5 ) =
πU

4Vdc

cos(5α1 )+ cos(5α2 )+ cos(5α3 )+ cos(5α4 )+ cos(5α5 ) = 0

cos(7α1 )+ cos(7α2 )+ cos(7α3 )+ cos(7α4 )+ cos(7α5 ) = 0

cos(11α1 )+ cos(11α2 )+ cos(11α3 )+ cos(11α4 )+ cos(11α5 ) = 0

cos(13α1 )+ cos(13α2 )+ cos(13α3 )+ cos(13α4 )+ cos(13α5 ) = 0

(3)

with

0 < α1 < α2 < α3 < α4 < α5 <
π

2
where U is the desired amplitude of fundamental which has a
relationship with modulation index m as follows:

m =
πU

4N · Vdc
. (4)

By using the multiple-angle formulas and substitute cos(αi)
with xi , (3) can be converted to the following polynomial
equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(x) � x1 + x2 + x3 + x4 + x5 − m = 0

p2(x) �
∑5

i=1 16x5
i − 20x3

i + 5xi = 0

p3(x) �
∑5

i=1 64x7
i − 112x5

i + 56x3
i − 7xi = 0

p4(x) �
∑5

i=1 1024x11
i − 2816x9

i + 2816x7
i

−1232x5
i + 220x3

i − 11xi = 0

p5(x) �
∑5

i=1 4096x13
i − 13312x11

i + 16640x9
i

−9984x7
i + 2912x5

i − 364x3
i + 13xi = 0

(5)
with

0 < x5 < x4 < x3 < x2 < x1 < 1.

III. SYMMETRIC POLYNOMIALS AND DEGREE REDUCTION

OF SHE EQUATIONS

A symmetric polynomial is a multivariate polynomial, such
that if any of the variables are interchanged, one obtains the
same polynomial. Obviously, all the polynomials in the SHE

equations as (5) are symmetric polynomials. According to the
fundamental theorem of symmetric polynomials [40], any sym-
metric polynomial has a unique representation in terms of the
elementary symmetric polynomials. By using this transforma-
tion, the degrees of the SHE equations which are highly related
to the computation burden of the algebraic methods can be re-
duced dramatically, hence, the maximum solvable switching
angles can be promoted much higher.

A. Elementary Symmetric Polynomials

Denote f(x) = xn + a1x
n−1 + · · · + an−1x + an as a uni-

variate polynomial defined on the real number field, and
x1 , x2 , . . . , xn are n roots for equation f(x) = 0. Then,
f(x) can be rewritten as follows:

f(x) = (x − x1)(x − x2) . . . (x − xn ). (6)

If (6) is expanded and compared with the original form of f(x),
it can be seen that there exist the following relationship between
the coefficients ai and the roots xi , i = 1, 2, . . . , n:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an = (−1)n
∏n

i=1 xi

an−1 = (−1)n−1 ∑n
i=1

∏
j �=i xj

...

a2 = (−1)2 ∑
1<i<j<n xixj

a1 = (−1)1 ∑n
i=1 xi.

(7)

If the signs of ai are omitted, (7) turns into the definition of el-
ementary symmetric polynomials. For example, the elementary
symmetric polynomials for n = 5 are listed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = x1 + x2 + x3 + x4 + x5

e2 = x1x2 + x1x3 + x1x4 + x1x5 + x2x3

+x2x4 + x2x5 + x3x4 + x3x5 + x4x5

e3 = x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4

+x1x3x5 + x1x4x5 + x2x3x4 + x2x3x5

+x2x4x5 + x3x4x5

e4 = x1x2x3x4 + x1x2x3x5 + x1x2x4x5

+x1x3x4x5 + x2x3x4x5

e5 = x1x2x3x4x5 .

(8)

B. Degree Reduction of SHE Equations

As mentioned above, (5) can be represented in terms of el-
ementary symmetric polynomials ei, i = 1, 2, . . . , 5, and this
conversion can be done by calling the SymmetricReduction
command in the symbolic computing software Mathematica.
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TABLE I
COMPARISON OF THE DEGREES OF p5 (x) AND p5 (e)

x1 /e1 x2 /e2 x3 /e3 x4 /e4 x5 /e5

p5 (x) 13 13 13 13 13
p5 (e) 0 6 4 3 2

The conversion results are listed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1(e) � e1 − m = 0

p2(e) � 5e1 − 20e3
1 + 16e5

1 + 60e1e2 − 80e3
1e2

+ 80e1e
2
2 − 60e3 + 80e2

1e3 − 80e2e3

− 80e1e4 + 80e5 = 0

p3(e) � −7e1 + 56e3
1 + · · · − 448e2e5 = 0

p4(e) � −11e1 + 220e3
1 + · · · + 11264e1e

2
5 = 0

p5(e) � 13e1 − 364e3
1 + · · · + 53248e3e

2
5 = 0.

(9)

As the expressions of p3 , p4 , and p5 are too long, their interme-
diate items are omitted here.

In (9), as the modulation index m is a constant, when e1 =
m is substituted to the other four equations, one variable is
eliminated and the degrees of (9) are reduced dramatically. For
example, Table I is the comparison of the degrees of p5 before
and after the conversion.

As the computation complexity of the algebraic methods are
highly related to the number and the degrees of the variables,
Table I implies that the computation burden to solve the SHE
equations would be reduced tremendously after this conversion.

For the two-level, three-level, and multilevel converters
whose output waveforms are not staircase as shown in Fig. 1,
the original SHE equations are not symmetric; therefore, the
elementary symmetric polynomials cannot be directly used
to reduce the degrees. However, if the cosine items in the
SHE equations which are leaded by “−” are substituted with
xi = cos(π − αi), the SHE equations turn into symmetric, and
just the constraints for (5) need to be slightly modified by adding
a “−” in front of the corresponding xi .

IV. GROEBNER BASES AND SOLVING THE SHE EQUATIONS

A. Groebner Bases

The Groebner bases theory [40] was proposed by an
Austria mathematician Bruno Buchberger in his doctoral disser-
tation in 1965, and this provided an efficient algebraic method
to solve the nonlinear algebraic system which is different from
the traditional numerical iterative methods. About half a cen-
tury later, the Groebner bases theory has been widely used not
only in the applied mathematics field but also in many engineer-
ing fields. Like the resultant elimination method, the Groebner
bases method also has no requirement on choosing initial values
and can find all the possible solutions for the SHE equations;
furthermore, it has some nice properties that the resultant elim-
ination method does not have. As the Groebner bases theory

involves lots of concepts, definitions, and theorems in commu-
tative algebra, it is difficult to give a detailed introduction about
it here; therefore, just some important conclusions and the tools
used to compute the Groebner bases will be introduced from
a viewpoint of engineering application. For more details about
solving the SHE equations with Groebner bases, one can refer
to [41].

Denote p = (p1 , p2 , . . . , pn ) as a group of polynomials in
which pi are polynomials in variables x1 , x2 , . . . , xn . Accord-
ing to Hilbert’s basis theorem, there exist Groebner bases
g = (g1 , g2 , . . . , gn ) whose zeros are the same as that of p.
Generally speaking, the Groebner bases is not unique unless the
monomial order is given, and the reduced Groebner bases of p
under the pure lexicographical monomial order is always in a
triangular form as follows:

g =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1(xn )

g2(xn−1 , xn )

...

gn (x1 , x2 . . . , xn ).

(10)

This nice property of Groebner bases is guaranteed by the elim-
ination theorem. Once the SHE equations have been converted
to their equivalent triangular form like (10), they can be solved
in the following iterative way: First, solve the first univariate
polynomial equation and substitute the solutions of xn to the
second equation to solve xn−1 ; then, repeat this procedure un-
til the last equation is solved. The stringency of this procedure
is guaranteed by the extension theorem. The elimination theo-
rem and the extension theorem are two important theorems in
Groebner bases theory and their detailed explanation can be
found in [40].

Now, the core problem is how to compute the Groebner bases
for a given polynomials set? This can be done by using the fa-
mous Buchberger algorithm and some improved versions of it,
due to the constructive nature of these algorithms, the Groebner
bases of a certain group of polynomials can always be con-
structed and there are no conditions to compute them; however,
the detailed description of these algorithms is beyond the sub-
ject of this paper. As the implementation of these algorithms re-
quires solid knowledge about the polynomials and professional
programming skills, it is unrealistic to develop the algorithm
by engineers. Actually, some commercial symbolic computing
software such as the Maple or the Mathematica provide some
functions to compute the Groebner bases, and it is user friendly
for the engineers. For example, the command to compute Groeb-
ner bases in Maple is

Basis([p1 , p2 , . . . , pn ], plex(x1 , x2 , . . . , xn ))

where [p1 , p2 , . . . , pn ] are the polynomials and “plex” desig-
nates the monomial order is pure lexicographical order which
ensures that the output polynomials are triangular.

The approach described above is very similar to the method
used in [31] –[34], where the SHE equations are triangularized
by the resultant elimination method. The main difference be-
tween these two methods is that the degrees of the triangular
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TABLE II
COMPARISON OF THE TRIANGULAR POLYNOMIAL EQUATIONS (NO DEGREE

REDUCTION AND N = 4)

x1 x2 x3 x4 operands

g1 1 1 1 1 5 GB
1 1 1 1 5 RE

g2 23 2 2 0 31 GB
4 4 4 0 53 RE

g3 23 3 0 0 51 GB
22 22 0 0 451 RE

g4 24 0 0 0 25 GB
884 0 0 0 885 RE

equations given by Groebner bases method are much lower than
that of the resultant elimination method. Take the SHE equations
with four switching angles, for example, the degree reduction
by symmetric polynomials is not applied, Table II gives a de-
tailed comparison of the degrees in variables x1 , x2 , x3 , x4 and
the number of operands of each equation for these two methods,
the last column of this table identifies which method is used,
that is, “GB” represents the Groebner bases method, whereas
“RE” represents the resultant elimination method. It can be seen
that except for g1 , both the degrees and the number of operands
produced by the Groebner bases method are much less than that
produced by the resultant elimination method.

If the degree reduction is applied before computing the
Groebner bases, the output triangular equations will be further
simplified to one univariate high-order equation and a group of
univariate linear equations. This amazing property is very useful
and can dramatically simplify the subsequent solving procedure.
For example, by computing the Groebner bases under the pure
lexicographical monomial order of e2 � e3 � e4 � e5 , (9) can
be converted to the following equivalent equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g1(e5) � a9e
9
5 + a8e

8
5 + · · · + a1e5 + a0 = 0

g2(e4 , e5) � b1e4 + f1(e5) = 0

g3(e3 , e5) � b2e3 + f2(e5) = 0

g4(e2 , e5) � b3e2 + f3(e5) = 0

(11)

where a0 , a1 , . . . , a8 , a9 and b1 , b2 , b3 are all big integers, and
f1 , f2 , and f3 are all eight-order univariate polynomials in
e5 . It can be seen from (11) that the first equation is a uni-
variate polynomial in e5 , as the topic of how to solve a uni-
variate high order polynomial equation has been well devel-
oped in the algebra, it is easy to find all the solutions of e5 .
Once the solutions of e5 are obtained, the other three equa-
tions in (11) are all turned into univariate linear equations,
and e2 , e3 , e4 can be solved very easily. This property is the
main advantage of Groebner bases method, whereas the resul-
tant elimination method does not have. Table III is the com-
parison of (11) with the triangular form of (9) computed by
the resultant elimination method. The elimination order is the
same as the monomial order of the Groebner bases method.
It can be seen that the degrees and the number of operands
produced by the Groebner bases method are much lower than

TABLE III
COMPARISON OF THE TRIANGULAR POLYNOMIAL EQUATIONS (WITH DEGREE

REDUCTION AND N = 5)

e2 e3 e4 e5 operands

g1 0 0 0 9 10 GB
0 0 0 262 263 RE

g2 0 0 1 8 10 GB
0 0 15 13 129 RE

g3 0 1 0 8 10 GB
0 3 3 2 17 RE

g4 1 0 0 8 10 GB
2 1 1 1 7 RE

that produced by the resultant elimination method, this property
will dramatically simplify the subsequent solving procedure.
As there is only one high-order equation in (11), the maxi-
mum number of intermediate solutions produced by the Groeb-
ner bases method is nine, whereas this number produced by
the resultant elimination method is 262 × 15 × 3 × 2 = 23 580.
This means that the Groebner bases method will save lots
of time to remove the error solutions. Furthermore, the tri-
angularization procedure of the Groebner bases method is
much faster than the resultant elimination method, in this
example, the execution time is 0.063 versus 2.247 s on a
2.2-GHz quad-core i7-2720QM CPU with 8 GB RAM and the
symbolic computing software is Maple18.

Once e1 , e2 , e3 , e4 , e5 are known, the last step is to solve
x1 , x2 , x3 , x4 , x5 from (8). In [33], the resultant elimination
method is used again to triangularize (8), although this method
can work well, it is much more complicated than the method
used here. According to the description of elementary symmetric
polynomials in Section III-A, the roots of a univariate polyno-
mial equation have a relationship with the coefficients as (7).
Since the values of e1 , e2 , e3 , e4 , e5 are known, the following
univariate polynomial can be constructed:

f(x) = x5 − e1x
4 + e2x

3 − e3x
2 + e4x − e5 . (12)

Then, substitute each e1 , e2 , e3 , e4 , e5 into (12) and solve the
resulted univariate equations f(x) = 0. As the solutions for (5)
must satisfy 0 < x5 < x4 < x3 < x2 < x1 < 1, if f(x) = 0
has complex roots or multiple roots or real roots outside (0, 1),
the corresponding five roots are not the correct solutions for (5).
The following two criteria can be used to check whether the five
roots are correct or not:

1) all the roots of f(x) = 0 are real roots and they are not
equal to each other;

2) all the roots are located in the range (0, 1).
If the solutions satisfy the above two criteria simultaneously,

they are the true solutions for the SHE equations. Then, sort
the solutions in descending order and compute their anticosine
values, the switching angles are obtained.

For the cases with more switching angles, a similar polyno-
mial as (12) can be constructed by the same way. Also, this
method can be easily extended to the two-level, three-level, and
the general multilevel cases, just the above second criterion and
the order of the solutions need to be slightly modified.
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Fig. 2. Flowchart of the proposed algorithm.

B. Implementation of the Proposed Algorithm

The proposed algorithm is implemented under the symbolic
computing software Maple, and the maximum solvable switch-
ing angles is nine on the mainstream personal computers or
workstations. It can be used to solve the switching angles for
the two-level, three-level, and multilevel converters. The main
program flow of the proposed algorithm is shown in Fig. 2.

V. COMPUTATION RESULTS

The computing hardware is a workstation computer with
XEON E3-1230 CPU and 16 GB RAM and the symbolic com-
puting software is Maple18. The range of m is set to [0, 1]
for three-level and multilevel converters, for the two-level con-
verters, as there exist solutions for the negative modulation in-
dices, the range of m is set to [−1, 1]. The increment steps are
set to Δm = 0.01 for two-level and three-level converters and
Δm = 0.01

N for multilevel converters. The computation results
for eight switching angles are shown in Figs. 3–5, respectively,
in which the blue represents α8 , the black represents α7 , the
yellow represents α6 , the mauve represents α5 , the cyan repre-
sents α4 , the red represents α3 , the green represents α2 , and the
brown represents α1 .

Fig. 3 shows the four groups of solutions for three-phase
two-level converter with eight switching angles. It can be
seen that there exist solutions for the SHE equations when
m ∈ [−0.81, 0.91], and almost all the modulation indices have
four solutions except m = −0.81 which has only two solutions.

Fig. 4 shows the switching angles versus modulation indices
in full range for the three-phase three-level converter with eight

Fig. 3. Four groups of solutions for three-phase two-level converter with eight
switching angles, and each of them are shown separately as (a), (b), (c), and (d).

Fig. 4. Switching angles versus modulation indices for three-phase three-level
converter with eight switching angles. There are two groups of solutions in (a),
(b), and (c), and one group of solutions in (d). In (a), (b), and (c), the second
group of solutions is represented by “�.”

switching angles, and Table IV is the classification of the solu-
tion number versus modulation index. It can be seen that there
are at least six solutions for m ≤ 0.5, and for m > 0.5, as there
are some isolated solution trajectories, the solution number is
much more complicated than m ≤ 0.5.

Fig. 5 shows the switching angles versus modulation in-
dex in full range for the three-phase multilevel staircase con-
verter with eight switching angles. It can be seen that the tra-
jectories are much more disorganized than the two-level and
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Fig. 5. Switching angles versus modulation indices for three-phase multilevel
converter with eight switching angles. There are one group of solutions in (a),
(b), and (c), and three groups of solutions in (d). In (d), the second group of
solutions are represented by “�” and the third group of solutions are represented
by “∗.”

TABLE IV
THREE-PHASE THREE-LEVEL CONVERTER N = 8

No. Range of m

2 [0.54, 0.57], [0.7, 0.77], 0.87
3 0.58, [0.67, 0.69], 0.78
4 [0.52, 0.53], [0.59, 0.66], [0.79, 0.86]
5 0.51
6 [0.01, 0.43], [0.47, 0.5]
7 [0.44, 0.46]
0 [0.88, 1]

three-level cases, and there are lots of intervals where the
SHE equations have no solutions. The modulation index range
where the SHE equations have solutions is m ∈ [ 347

800 , 348
800 ] ∪

[ 378
800 , 402

800 ] ∪ [ 418
800 , 601

800 ] ∪ [ 612
800 , 631

800 ] ∪ 636
800 ∪ [ 647

800 , 664
800 ] ∪ 692

800 .
For most numerical methods [9], [10], usually, some empiri-

cal formulas are used to compute the initial values for m = 0,
and then, the current solutions are directly taken as the ini-
tial values for the new SHE equations with slightly increased
m. This approach is based on the following two assumptions:
1) There exist solutions for m = 0; 2) the solution trajectories
vary continuously with the modulation index. For the two-level
and three-level converters, as shown in Figs. 3 and 4, these
two assumptions are both true, so the numerical methods can
work well in these cases although they would probably miss
some true solutions. But for the multilevel converter, as shown
in Fig. 5, there are no solutions for m = 0, so, it is almost im-
possible to establish the empirical formulas; furthermore, the
solution trajectories are discontinuous on many modulation in-
dices. The above two assumptions are no longer tenable, thus,
this approach would probably fail for multilevel converters. But

with the proposed method, as its completeness in mathematics
and no requirement on choosing initial values, all the solutions
for any given modulation index can be found.

The computation results indicate that there are no solutions in
some ranges of modulation index, especially for the multilevel
cases. In order to extend the range of modulation index, some
strategies has been proposed. By eliminating some constraints
in the SHE equations, a modified SHE technique has been pro-
posed in [42], which employs reduced number of transcendental
equations to find the N desired switching angles, the range of
modulation index can be extended with the same switching
frequency, however, the number of eliminated harmonics is re-
duced. The Groebner bases and symmetric polynomials-based
method proposed in this paper can also handle this modified
SHE strategy very well. For example, for the case of three-
level converters with four switching angles, the traditional SHE
strategy has no solutions for modulation indices in (0.87, 1), if
the equation used to eliminate 11th harmonic is removed, this
method can definitely tell us that there exist an infinite number
of solutions for m = 0.9, so an optimal solution can be further
identified to improve the THD performance. Furthermore, if the
modulation index is assigned values started from 0.87 to 1, this
method can further figure out how much of the modulation index
can be extended by this modified SHE strategy.

For the multilevel converter, if the output is not limited to the
staircase waveform, then more switching patterns can be used
to control the converter and this increases the possibility to find
valid solutions for specific modulation indices, especially for
low modulation indices [43]. As mentioned in Section IV-A,
the Groebner bases and symmetric polynomials-based method
proposed in this paper can be easily extended to the general
multilevel cases; hence, the optimal SHE strategy can be real-
ized in the full range of modulation indices, and the number of
eliminated harmonics does not need to be reduced.

VI. EXPERIMENTS

Experiments on both three-phase two-level inverter and
13-level cascade H-bridge inverter have been carried out to ver-
ify the correctness of the switching angles computed by the
proposed method. The power stage for the two-level inverter is
a 600-V/18-A intelligent power modular STGIPS20K60 and
the power stage for the 13-level inverter uses FDD8424H
(40 V/20 A) as the switching device and ADuM3220 as the
gate driver and isolator. An ARM Cortex-m3-based microcon-
troller STM32F103R is used to generate the PWM gating signal
and control the power stage.

A. Three-Phase Two-Level Inverter

The modulation index is set to m = 0.7 and the number of
switching angles is N = 9. There exist four groups of switching
angles which are listed in Table V, and the last row are the
theoretical THDs calculated up to 49th harmonics. Figs. 6–8 are
the phase voltages, line voltages, and their FFT results for the
first solutions, respectively, and Figs. 9–11 are for the second
solutions. It can be seen that the aimed 5th, 7th, 11th, 13th, 17th,
19th, 23rd, and 25th harmonics are eliminated very well and the
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TABLE V
FOUR GROUPS OF SWITCHING ANGLES FOR TWO-LEVEL INVERTER (m = 0.7)

I II III IV

α1 7.1736◦ 4.4553◦ 7.0120◦ 4.3595◦

α2 10.195◦ 10.360◦ 9.919◦ 10.194◦

α3 18.653◦ 18.736◦ 16.012◦ 16.076◦

α4 20.156◦ 20.217◦ 20.840◦ 20.863◦

α5 64.668◦ 52.510◦ 40.243◦ 40.237◦

α6 67.487◦ 55.330◦ 43.429◦ 43.424◦

α7 76.547◦ 76.553◦ 64.677◦ 52.496◦

α8 79.730◦ 79.736◦ 67.500◦ 55.321◦

α9 88.053◦ 88.055◦ 88.065◦ 88.068◦

THD 67.86% 65.68% 65.34% 62.11%

Fig. 6. Phase voltage generated by switching angles I in Table V.

Fig. 7. Line voltage generated by switching angles I in Table V.

Fig. 8. FFT results of the line voltage shown in Fig. 7.

lowest order of the surplus harmonics in the line voltage is 29th.
The experiment THDs calculated up to 49th harmonic for these
four groups of switching angles are 69.72%, 67.50%, 67.11%,
and 64.11%, respectively, which show a good consistency with
the theoretical THDs that both the solution IV has the lowest
THD.

Fig. 9. Phase voltage generated by switching angles II in Table V.

Fig. 10. Line voltage generated by switching angles II in Table V.

Fig. 11. FFT results of the line voltage shown in Fig. 10.

TABLE VI
FOUR GROUPS OF SWITCHING ANGLES FOR 13-LEVEL INVERTER (m = 0.7)

α1 α2 α3 α4 α5 α6 THD

I 6.714◦ 14.62◦ 24.00◦ 37.33◦ 58.15◦ 89.84◦ 4.28%
II 6.648◦ 14.73◦ 35.65◦ 37.71◦ 58.15◦ 83.79◦ 4.04%
III 6.614◦ 23.71◦ 37.12◦ 45.30◦ 58.14◦ 74.79◦ 4.37%
IV 14.80◦ 23.69◦ 37.16◦ 53.53◦ 58.02◦ 66.64◦ 4.46%

B. Three-Phase 13-Level Inverter

The modulation index is set to m = 0.7 and there exist four
groups of solutions which are listed in Table VI, and the last
column are the theoretical THDs which are calculated up to
49th harmonics. Figs. 12 and 13 are the phase voltage and
its FFT results for the second solutions, respectively. Figs. 14
and 15 are the phase voltage and its FFT results for the third
solutions, respectively. It can be seen that the aimed 5th, 7th,
11th, 13th, and 17th harmonics are eliminated very well from
the phase voltage and the lowest order of the surplus nontriplen
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Fig. 12. Phase voltage generated by switching angles II in Table VI.

Fig. 13. FFT results of the phase voltage shown in Fig. 12.

Fig. 14. Phase voltage generated by switching angles III in Table VI.

Fig. 15. FFT results of the phase voltage shown in Fig. 14.

harmonics is 19th. The experiment THDs calculated up to 49th
harmonic for these four groups of switching angles are 5.41%,
5.26%, 5.51%, and 5.60%, respectively, which show a good
consistency with the theoretical THDs that both the solution II
has the lowest THD.

VII. CONCLUSION

In this paper, an algebraic method which is based on the
Groebner bases and symmetric polynomial theory is proposed
to solve the SHE problem. With this method, the multivariate
high-order SHE equations are converted to two univariate high-
order equations and a set of univariate linear equations, thus
the solving procedure is simplified dramatically. This method
can be used for two-level, three-level, and multilevel converters
(not only the cases of single switching per dc level but also the
cases of multiple switching per dc level). Compared with the
numerical and random searching methods, the main advantages
of this method are that it has no requirement on choosing initial
values and can find all the solutions; compared with the existing
algebraic methods, the efficiency is improved and the maximum
solvable switching angles is increased to nine. The experiments
on three-phase two-level and 13-level inverters show that all
the solutions solved by this method can eliminate the aimed
harmonics very well.
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