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Abstract—We propose a new method to enhance the lateral
resolution of depth maps with registered high-resolution color
images. Inspired by the theory of Compressive Sensing (CS),
we formulate the upsampling task as a sparse signal recovery
problem. With a reference color image, the low-resolution
depth map is converted into suitable sampling data (measure-
ments). The signal recovery problem, defined in a constrained
optimization framework, can be efficiently solved with variable
splitting and alternating minimization. Experimental results
demonstrate the effectiveness of our CS-based method: it
competes favorably with other state-of-the-art methods with
large upsampling factors and noisy depth inputs.
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I. INTRODUCTION

In recent years, a wide range of devices have been

developed to measure the 3D information in the real world,

such as laser scanners, structured-light systems, time-of-

flight cameras and passive stereo systems. The depth maps

(range images) captured with most active sensors usually

suffer from relatively low resolution, limited precision and

significant sensor noise. Therefore, effective depth map post-

processing techniques are essential for practical applications

such as scene reconstruction and 3D video production.

Inspired by the theory of Compressive Sensing [1], [2],

we try to recover the upsampled depth map in a sparse

signal reconstruction process. We first compute a set of

measurement data from the low-resolution depth map. The

measurement data near depth discontinuities are generated

with a cellular automaton algorithm. Then we reconstruct

the depth signal in an optimization model, with constraints

on measurements, smoothness and representation sparseness.

An efficient numerical method is provided to solve the model

with linear complexity in the number of the image pixels.

Experimental results show that, by solving the problem in a

CS-based framework, our algorithm can produce high qual-

ity depth results with relatively low resolution depth maps.

And it shows stable performance under noisy conditions.

The idea of enhancing a depth map with a coupled

color image is not new. Existing methods can be roughly

classified as either filtering-based methods [3], [4], [5], [6] or

optimization-based methods [7], [8]. Filtering-based meth-

ods employ color information with various edge-preserving

filters [9], [10]. Kopf et al. [3] use a joint bilateral filter to

refine the upsampled depth results. Yang et al. [4] instead

initialize a cost volume and iteratively smooth each cost slice

with a bilateral filter. Sub-pixel accuracy is achieved with an

interpolation scheme. Huhle el al. [6] rely on nonlocal means

filters (NLM) for depth denoising and upsampling.

More closely related to our work are the optimization-

based methods [7], [8]. In [7], Diebel and Thrun construct

a two-layer Markov Random Field model for depth map

upsampling. The color information of neighboring pixels is

encoded as edge weights of the graph. Recently, Park et

al. [8] improve this model by including a multi-cue edge

weighting scheme and a NLM energy term, which turns out

to be very effective for preserving fine structures and depth

discontinuities. Our method differs from these methods in

that we formulate the model with l1 sparseness and total

variation constraints, which shows more robust behavior

against noise and low sampling rates.

II. CS-BASED UPSAMPLING MODEL

CS builds upon a fundamental fact that many signals can

be represented or approximated with only a few coefficients

in a suitable basis [1], [2], [11]. Consider a high-resolution

depth map d ∈ R
n in column vector form, it can be linearly

represented with an orthonormal basis Ψ ∈ R
n×n and a set

of coefficients x ∈ R
n: d = Ψx,x = ΨTd. The map d

is linearly measured m times (m � n), which leads to a

set of measurements y ∈ R
m with a measurement matrix

Φ ∈ R
m×n: y = Φd. The CS theory tries to recover depth

map d from measurements y with the sparsest vector x:

min
d
‖ΨTd‖1

s.t. ‖y − Φd‖2 < ε
(1)

where ε is a bound for the underlying noise.

We incorporate an additional total variation (TV) term for

smoothing the depth map while still preserving discontinu-

ities. The TV term is defined in �1 norm:

‖d‖TV =
n∑

i=1

(|∇h(d(i))|+ |∇v(d(i))|) (2)

where ∇h,∇v denote the local horizontal and vertical gra-

dients for pixel d(i) respectively. Thus we convert our final

model into an unconstrained optimization problem:

min
d

α‖d‖TV + β‖ΨTd‖1 +
1

2
‖y − Φd‖22 (3)

where parameter α, β control the weights of the two regu-

larization terms.
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For Ψ and Φ, we follow the patterns defined in [12]:

Ψ represents a Daubechies Wavelet basis, while Φ samples

the high-resolution depth map with canonical pixel basis.

To fight against the high mutual coherence between Ψ
and φ [13], pixels around depth discontinuities should be

selected as sampling data points. Since depth borders are

not known before upsampling, we infer their positions and

the corresponding measurements with auxiliary information,

as detailed in the next section.

III. SAMPLING DATA GENERATION

This section describes how to generate the sampling data

from a low-resolution depth map Dl and a registered high-

resolution color image Ih. The sampling position informa-

tion is denoted as a mask image Mh: Mh(i, j) = 1 indi-

cates pixel (i, j) is selected as a sampling point, otherwise

Mh(i, j) = 0. The sampling values are stored in a high

resolution depth map Dh. The measurement matrix Φ and

the measurements y can be trivially constructed from Mh

and Dh. Without losing any generality, the upsampling factor

for both horizontal and vertical directions is set to be U . A

pixel (i, j) ∈ Dl corresponds to a U × U patch in the high

resolution image space.
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Figure 1. An illustration of the sampling data generation process. Sampling
data in homogeneous regions and border regions are generated with two
different schemes.

An illustration example of our sampling method is given

in Figure 1. We first detect homogeneous regions and

border regions in the original depth map Dl with a simple

thresholding scheme. A pixel p = (i, j) ∈ Dl is classified as

‘homogenous’ if its depth value Dl(p) satisfies the following

condition, otherwise it falls into the ’border’ region:

|Dl(p)−Dl(q)| < λ, ∀q ∈ N(p) (4)

where N(p) is the 4-connected neighborhood of pixel p,

and λ is a depth threshold value. We then map this region

information to the high resolution image space. Mh, Dh in

homogeneous and border regions are computed successively.

The procedure described above works well for small or

moderate upsampling factors. However, when U reaches 8
or even larger, the generated sampling points would be too

sparse in the high resolution image space, which fails to meet

the minimum measurement requirements [14]. We provide

a simple hierarchical solution for large upsampling factors.

Large U is decomposed into a set of small factors: U =
U1×U2 · · ·Um. Then starting from the low resolution depth

map, the sampling data generation process is performed m
times with small factors to get the final high resolution Mh

and Dh. In practice, U = 8, 16 are decomposed as 2×4, 4×4
respectively, such that the number of the times m is kept as

low as possible.

A. Sampling Homogeneous Regions

For a homogenous pixel (i, j) ∈ Dl, its depth value is

directly mapped to a U × U homogenous patch in Dh as

follows:

Dh(i ∗ U + s, j ∗ U + t) = Dl(i, j) s, t = 1, · · · , U (5)

From this patch, we randomly select one or several samples

with uniform distribution, and set their Mh values to 1.

As stated in [13], this random selection helps to lower the

mutual coherence between Ψ and φ.

B. Sampling Border Regions

For border pixels in Dl, their depth values are not reliable

due to the downsampling process, and directly mapping

these pixels to Dh would introduce significant sampling

errors. We instead try to fill these regions in Dh with

homogenous depth values computed in the previous step.

The color image Ih should be considered in the filling

process. This problem can be posed as an inpainting problem

with a reference color image, and it shares some similarities

with the occlusion handling problem in traditional stereo

depth estimation [15].

Here we provide a border region filling method based

on the classic Cellular Automata (CA) [16]. CA usually

work on a regular grid of cells, with finite states and

local transition rules, which are suitable for many image

processing applications [17]. Our solution is based on the

CA model proposed by Vezhnevets and Konouchine [18].

Their model can propagate two labels to the full image. We

employ this model for depth propagation. We extend the

local transition rules to respect the color distribution and

the edges in Ih, such that the propagation doesn’t generate

incorrect depth boundaries.

For each pixel p, four state variables Sp =
(Dp,Θp, Cp, Ep) are stored: depth value, local ‘transition

strength’, normalized color information, and edge informa-

tion. Θp is bounded to [0, 1], while Cp and Ep are extracted

from color image Ih. In the initial step, Θp = 1 for all the

pixels with valid depth values, otherwise Θp = 0. We apply

the Canny filter to detect edges in Ih. If p lies on an intensity

edge, Ep = 1, otherwise Ep = 0. After initialization, we

collect all the pixels in the border regions as a set P . The

CA-based region filling algorithm updates Sp(∀p ∈ P ) in

an iterative process. An iteration from time t to t + 1 is
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Algorithm 1 CA-based Border Region Filling Algorithm

Input:
State variables St

Output:
State variables St+1

1: for ∀p ∈ P do
2: Dt+1

p = Dt
p

3: Θt+1
p = Θt

p

4: for ∀q ∈ N(p) do
5: if E(p) == 0 and E(q) == 1 then
6: continue

7: end if
8: if f(Cp, Cq) ·Θq > Θp then
9: Dt+1

p = Dt
p

10: Θt+1
p = f(Cp, Cq) ·Θq

11: end if
12: end for
13: end for
14: return St+1

shown in Algorithm 1, where f is a monotone decreasing

function bounded to [0,1]:

f(C1, C2) = 1− ‖C1 − C2‖2√
3

(6)

In each iteration, the transition strength Θp is updated

with the neighboring color information. The pixels lying

on intensity edges are only allowed to propagate depth

information along the edge (Line 5 − 7 in Algorithm 1).

When no more pixel changes its state in the iteration, the

algorithm stops, and the output state variables are used to

update Dh and Mh. The pixels in P lying at intensity

edges are all selected as sampling points. Then a subset of

the remaining pixels are randomly selected with a uniform

distribution.

IV. NUMERICAL SOLUTION

In this section, we provide a first-order numerical solu-

tion for the optimization problem defined in (3). A major

difficulty in minimizing (3) is that both the TV term and

the sparseness term are non-differential �1 regularizers. We

decompose the original problem into three subproblems.

with variable-splitting and quadratic penalty techniques. For

each subproblem, efficient solution is available. Therefore,

the original problem can be solved in an alternating mini-

mization framework [19].

We introduce two auxiliary vectors u,v ∈ R
n, such that

d can be decoupled from the two terms:

min
d,u,v

α‖u‖TV + β‖v‖1 +
1

2
‖y − Φd‖22

s.t. u = d,v = ΨTd

(7)

By including two quadratic penalty terms, this problem can

be approximated by following problem with a unconstrained

optimization problem:

min
d,u,v

E(d,u,v) (8)

where E(d,u,v) = α‖u‖TV + αγ
2 ‖u− d‖2 + β‖v‖1 +

βδ
2 ‖v −ΨTd‖2 + 1

2‖y − Φd‖22 and parameter γ and δ
control the approximation penalty for u and v respectively.

Problem (8) can be solved in an alternating minimization

framework as follows:

1. For fixed v,d, the problem minu ‖u‖TV + γ
2 ‖u− d‖2

can be efficiently solved with a Split Bregman algorithm

from [20].

2. For fixed u,d, The subproblem minv ‖v‖1 +
δ
2‖v −ΨTd‖22 can solved with simple one-dimensional

shrinkage: v = max (ΨTd− 1
δ , 0) sgn(Ψ

Td)

3. For fixed u,v, The subproblem mind
αγ
2 ‖u− d‖2 +

βδ
2 ‖v −ΨTd‖2 + 1

2‖y − Φd‖22 is a least square problem

which promises a closed-form solution: d = M(αu+βΨv+

y) where M = (αγI + βδI +ΦTΦ)
−1

is a diagonal matrix.

Step 1-3 are iteratively performed until the algorithm

converges. For our upsampling problem on 1390 × 1110
images, stable results can be efficiently achieved within 200
iterations.

V. EXPERIMENTAL RESULTS

We quantitatively test our algorithm on the Middlebury

stereo datasets [21], which provide both high resolution

color images and ground truth depth maps. The datasets we

use are ’Books’, ’Dolls’, ’Moebius’ and ’Plastic’. Parameter

λ, α, β, γ, δ are chosen as 4.0, 1.0, 1.0, 32.0, 32.0, which are

kept constant for all the data sets. The upsampling factor U
varies from 2× to 16×, which covers the resolution range for

most depth sensors. For a given factor U , the ground truth

depth map is downsampled by U to create the input depth

data. We measure the accuracy of the upsampled results with

PSNR.

For comparison, four methods are selected: the bilateral-

filtering based method (denoted as Bilateral) [4], two MRF-

based methods (denoted as MRF1, MRF2) [7], [8] and

the original CS-based method (denoted as CS2) [12]. We

provide the results to show that our sampling strategy is

more suitable for the specific problem.

We first test the algorithm with ’ideal’ low resolution

depth maps without noise corruption. The PSNR results

for the five methods under various upsampling factors are

presented in Figure 2. Our algorithm works better under

large upsampling factors. It consistently outperforms other

methods with 4×, 8× and 16× upsampling.

An interesting feature of our method is that the accuracy

doesn’t necessarily go down when U increases, which is

different from other methods. In fact, for most data sets, the

best results are achieved with 4× or 8× upsampling. This
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feature can be explained by CS theory and the sampling

data generation method: first, we employ a hierarchical

sampling scheme for large Us, which means the number

of the samples is not seriously affected by U ; second, our

method generates accurate samples on boundaries with CA-

based region filling method, which is mainly controlled by

the reference color image; finally, large U values bring

more randomness to the selection of the sampling positions,

which helps to lower the mutual coherence between the

measurement matrix and the representation matrix. All these

reasons contributes to the good performance of our algorithm

under large upsampling factors. For qualitative comparison,

we present some 8× upsampled results computed by CS1,

Bilateral and MRF2 methods in Figure 3. It can be seen that

our method preserves sharp and accurate depth boundaries

during the upsampling process, which demonstrate the effect

of the �1 regularization terms.

We also test the algorithm with noisy measurements.

The noise characteristics in practical range sensors usually

depends on the distance between the sensor and the scene.

To simulate this effect, we employ a conditional Gaussian

model from [8]. The PSNR results for the five methods

are presented in Figure 4. Figure 5 provides 8× upsampled

results computed by CS1, MRF2 and Bilateral methods.

VI. CONCLUSION

We have presented a new method for depth map upsam-

pling. Based on the theory of Compressive Sensing, our

method converts the low resolution depth maps into a set

of measurements, and then formulates the upsampling task

as an constrained optimization problem. We validate our

method with the Middlebury data sets and demonstrate that

our method clearly outperforms previous methods.
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Figure 2. Upsampling PSNR results with ideal depth measurements. Our method (CS1) consistently outperforms other methods with 4×, 8× and 16×
upsampling.

(a) Ground Truth (b) CS1 (c) Bilateral (d) MRF2

Figure 3. 8× upsampled depth maps for ’Plastic’ and ’Books’ data sets. The depth results are computed with CS1, Bilateral and MRF2 respectively.
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Figure 4. Upsampling PSNR results with noisy measurements. Our method (CS1) still outperforms other methods in most cases. It shows robust behavior
in noisy conditions.

(a) Ground Truth (b) CS1 (c) Bilateral (d) MRF2

Figure 5. 8× upsampled depth maps with noisy measurements for ’Dolls’ and ’Moebius’ data sets. The depth results are computed with CS1, Bilateral
and MRF2 respectively.
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