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Abstract—The aim of this work is to localize a query mobile
photograph by utilizing surveillance images, which naturally
provide location information. We cast this cross-device visual
localization problem as a classification task. By exploiting the
surveillance network to collect reference images, the data acqui-
sition process is significantly facilitated. However, the discrep-
ancy between mobile images and surveillance images makes the
training samples difficult to be used directly, and the scarcity
of training samples caused by the immobility of surveillance
cameras further degrades the performance. In contrast to most
traditional domain adaptation problems and semi-supervised
problems, the scarce labeled data and plentiful unlabeled data
exist in different domains. Our location recognition method
first exploits the unsupervised subspace alignment to weaken
the discrepancy between the two domains, and then adopts the
semi-supervised Laplacian SVM to reinforce the discriminant
information utilizing the unlabeled mobile images. Experimental
results show that our location recognition method significantly
outperforms other related methods.

I. INTRODUCTION

With the prevalence of smart mobile phones, the mobile
visual location recognition [1]–[6] has attracted more and more
attention. They are particularly useful for indoor localization
or the cases where GPS signal is unavailable.

The basic idea of mobile visual location recognition meth-
ods is to take a photo of a location and query the database
of reference images. The result is given by the location
corresponding to the best matched image. Therefore, the per-
formance of these methods critically depends on the coverage
of candidate locations, and a considerable number of labeled
images are necessary for high accuracy. Since both taking
photos and assigning labels (locations) for the photos are
expensive and time-consuming, the methods are difficult to
be applied in practice. Besides, to follow the variation of
environment, the database has to be updated once in a while
manually, which is also impractical.

To solve the problems mentioned above, we consider
exploiting the surveillance cameras to collect the reference
images, which benefits from the following advantages. First,
the surveillance cameras spread almost everywhere in the city
and can naturally provide reference images with adequate cov-
erage of the city without the time-consuming data acquisition
process. Second, since the location of each surveillance camera
is fixed and known, the surveillance network indeed constructs
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Fig. 1. Illustration of our strategy for mobile visual location recognition.
Digital numbers on the sketch are locations of surveillance cameras, the
rose color covered area is the visible location of a surveillance camera.
Some example images from two locations are shown under the sketch, which
are captured by surveillance cameras (first row) and mobile phone cameras
(second row) individually. Images inside one rounded rectangle are captured
at the same location. Taking a query photo at one location by the mobile
phone, if a classifier trained with labeled surveillance images can find out the
right surveillance camera that covers this location, then based on the location
of the surveillance camera, we can know where we are.

a complete geographic coordinate system. The location infor-
mation can be obtained directly from the coordinate and we
do not need to spend time assigning the labels. At last, since a
surveillance camera works during the whole day, it can capture
any variation of the environment and the database can always
keep up to date.

Accordingly, we propose a new mobile visual location
recognition method utilizing the surveillance network in indoor
scenes, as shown in Fig.1. After taking a query photo of the
location with a mobile phone, the location is identified by find-
ing out which surveillance camera covers this location. This
location recognition process can be solved as a classification
problem where the classifier is trained using the surveillance
images labeled with locations. Then the location of the query
mobile image is given by the classifier taking that image as
a test sample. To the best of our knowledge, this is the first
attempt to implement a location recognition by jointly utilizing
these two mediums.

To realize the cross-device visual location recognition,
there are two problems to solve since the performance is usu-
ally poor by directly training the classifier using surveillance
images. On one hand, there exists obvious discrepancy between
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(a) Original data (b) Domain adaptation (c) Laplacian SVM

Fig. 2. Illustration of our model to incorporate the domain adaptation and
semi-supervised learning for cross-domain mobile visual location recognition.
(a) The two class data captured at two locations by different device. The
red data points are labeled surveillance images, the blue data points are
unlabeled mobile images. (b) A better separation hyperplane is learned after
the surveillance data has been aligned to the mobile data by domain adaption.
(c) Our final location recognition result with a Laplacian SVM classifier
utilizing the intrinsic structure of aligned unlabeled mobile data.

the data acquired by the two devices as shown in Fig.1, which
will affect the classification accuracy. On the other hand, due
to its immobility, few differences exist between the photos
taken by one surveillance camera except a bit of illumination
variation as shown in Fig.1, and thus the number of valid
labeled training samples for each class is indeed very small. As
a result, the classifier learned from only surveillance images is
incapable to represent the variety of the mobile images, which
seriously deteriorates the performance of location recognition
as illustrated on Fig. 2a.

In the perspective of machine learning, the first problem
caused by the differences between two devices is a domain
adaptation problem where the surveillance images and mobile
images constitute a source domain and target domain respec-
tively, and the classifier learned in the source domain should
be adapted to the target domain. The second problem caused
by the scarcity of labeled samples is usually solved by the
semi-supervised learning since there are a lot of unlabeled data
available from user’s queries. However, our problem obviously
differs from the traditional domain adaption or semi-supervised
learning problems in that the scarce labeled data and the
plentiful unlabeled data are in different domains. In other
words, the domain adaptation and semi-supervised learning are
twisted in our problem, which makes the problem complex.

In this paper, instead of directly learning a classifier in
the source domain, we first apply an unsupervised domain
adaptation based on subspace alignment [7] to the data so that
the labeled samples in the source domain are adapted to the
target domain. By this process, the adapted labeled data and
unlabeled data are aligned in the target domain as shown in
Fig. 2b and the classification accuracy is improved. Then we
adopt the semi-supervised Laplacian SVM [8] which naturally
utilizes the unlabeled samples to learn a more accurate classi-
fier by discovering the intrinsic structure of data, as shown in
Fig. 2c. In this way, the variety of unlabeled samples in target
domain is well incorporated into the classifier learned from the
labeled samples in source domain.

The rest of the paper is organized as follows. Section
II is devoted to the presentation of our location recognition
method. Section III provides experimental details and shows
the benefits of our method, and the paper is concluded in
Section IV.

II. THE SEMI-SUPERVISED CROSS-DEVICE LOCATION

RECOGNITION

In this section, we present our cross-device location recog-
nition method in detail. After the problem definition with
some necessary notations, we elaborate the subspace alignment
based domain adaptation approach for weakening the data
discrepancy between two kinds of devices in II-B, and the
semi-supervised Laplacian SVM classifier to overcome the
scarcity of labeled training samples in II-C respectively. At
last, the whole algorithm flow is presented in II-D.

A. Problem Definition and Notations

As explained above, since the surveillance images and
mobile images constitute the source domain and target domain
respectively, we use X s = {(xs

i , y
s
i )}ns

i=1 and X t = {xt
i}nt

i=1
to denote the sample sets of the source domain and target
domain respectively, where ysi is the label of xs

i indicating its
location. Then the objective of location recognition is to learn
a classifier using the surveillance images X s and predict the
label (location) yti for each mobile image xt

i.

Using the notations above, the first problem of our location
recognition is that the classifier learned using X s cannot
be directly applied to X t due to the discrepancy between
the distributions of samples. The second problem is that the
training samples corresponding to the same label are all similar
to each other, i.e., xs

i ≈ xs
j , ∀ysi = ysj , while the test samples

corresponding to the same label may be very different. This
makes the training samples incapable to capture the variety
of test samples. In the following parts, we exploit the domain
adaptation method and semi-supervised method to solve the
problems.

B. Subspace Alignment Based Domain Adaptation

For the same location, images collected from a surveillance
camera are different from those taken by a mobile phone cam-
era due to the differences of devices perspectives, illumination-
s, etc. This results in the discrepancy between source domain
(surveillance camera) and target domain (mobile phone), and
the classifier trained on X s will likely fail to classify X t

correctly. In order to build a robust classifier, it is necessary
to take into account the shift of distributions between the two
domains, which is referred as domain adaptation (DA).

There already exist many studies on this topic in the field
of computer vision, and subspace based DA has demonstrated
a good performance in recent years. For example, Wang [9]
aligns the two domains from two different manifolds so that
they can be projected to a common subspace. In [10], data
of the source domain are transformed into an intermediate
representation by low-rank reconstruction technology, and then
each transformed source sample can be linearly reconstructed
by the target samples. In order to model the distribution shift
process, both Gopalan [11] and Gong [12] explore the idea
of using geodesic flows to derive intermediate subspaces that
interpolate between the source and target domains.

Since there is no label information available in the target
domain, we select an unsupervised subspace alignment based
domain adaptation (SADA) method [7] in our method. Since
X s and X t are captured at the same locations by different
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devices, they should follow the related marginal distributions.
In order to learn the transformation of distributions between
these two domains rather than working on the original data di-
rectly, the SADA suggests a more robust representation of X s

and X t in their principal subspaces defined by the projection
matrices Ss, St ∈ R

D×d, whose columns are composed of the
d principal components of X s and X t respectively.

The SADA assumes that the subspaces of the source
domain and the target domain are related by a linear transfor-
mation. Because the strategy of other DA methods mentioned
above is projecting the data to a common subspace, this may
lead to information loss in both source and target domains [7].
The SADA method projects xs

i and xt
i to their respective

subspaces by the operations S�s xs
i and S�t xt

i. Then, a linear
transformation matrix is learned to align the bases of the two
subspaces. Denoting M as the transformation matrix from Ss

to St, the subspace alignment is equivalent to solving the
minimization problem

M∗ = argminM‖SsM − St‖2F,
where ‖.‖F is the Frobenius norm.

By simple matrix algebra calculations, the optimal solution
of M has a closed form M∗ = S�s St, which implies that the
space of the new target-aligned source domain is spanned by
the columns of Sa = SsM

∗ = SsS
�
s St. Projecting the source

data X s using Sa into the target-aligned source subspace
and the target data X t into the target subspace using St,
we can obtain the new representations X̃ s = {(x̃s

i , y
s
i )}ns

i=1

where x̃s
i = S�a xs

i and X̃ t = {x̃t
i}nt

i=1 where x̃t
i = S�t xt

i

of the original data. Since X̃ s and X̃ t have been aligned in
the common subspace, a classifier trained on the former is
expected to have a better performance for the latter.

C. Semi-supervised Laplacian SVM for Classification

When the data of the two domains have been aligned,
there still exists a problem that only a few valid training
samples in X̃ s are available for each class (location). Thus
even if X̃ s and X̃ t are aligned, the classifier learned using X̃ s

still gives unsatisfactory recognition accuracy on X̃ t because
the scarce training samples are incapable to reflect the true
distribution. However, with the increasing number of visual
location recognition users, there will be more and more un-
labeled samples from mobile phone cameras. Although there
is no label information, they can help to discover the true
marginal distribution of X̃ t. Thus, we consider to exploit these
unlabeled images to enhance the accuracy of the classifier.

This idea is known as semi-supervised learning, which has
attracted considerable attention in recent years. Some cluster
assumption based methods mainly focus on looking for an
optimal separation boundary that lies in the low density region
of the data space, such as the TSVM [13] and S3VM [14].
Some manifold assumption based methods mainly consider
the marginal distribution of data lying on a low-dimensional
manifold embedded in a high-dimensional space. Some trans-
ductive semi-supervised learning algorithms [15]–[17] have
been proposed based on the manifold assumption, but the
model has to be retrained for each new test sample. In the
mobile location recognition problem, retraining the classifier
for each query costs too much time, and thus we focus on the

Laplacian SVM (LapSVM) algorithm [8], [18], which supports
a natural out-of-sample extension to novel examples and has
proved to perform well in many semi-supervised classification
problems.

The Laplacian SVM is based on the manifold assump-
tion [8]: if two points x1,x2 ∈ X are close in the intrinsic
geometry of PX (i.e., with respect to geodesic distance on
manifold), the conditional distributions P(y|x1) and P(y|x2)
should be similar (i.e., should have the same label). In other
words, the P(y|x) should vary smoothly along the geodesics
in the intrinsic geometry of PX. As a result, the LapSVM uses
these geometric intuitions to extend the classical SVM, and the
classifier of our location recognition problem is learned from

f∗ = argmin
f∈HK

1

l

l∑

i=1

max(1−ysi f(x̃
s
i ), 0)+γA‖f‖2K+γI‖f‖2I .

(1)

In the above objective function, the first part is the hinge
loss encouraging a large margin from samples to the separating
plane, the regularization γA‖f‖2K imposes smoothness condi-
tions on possible solutions, and γI‖f‖2I reflects the intrinsic
structure of PX and penalizes f along the manifold that the
probability distribution is supported on.

An appropriate choice for ‖f‖2I is
∫
x∈M ‖∇Mf‖2dPX(x),

which is empirically estimated by the graph Laplacian [19]
associated with labeled and unlabeled examples. Since the
labeled surveillance samples and unlabeled mobile samples are
united to construct ‖f‖2I , we join them into one training set
with totally ns + nt samples defined by

x̃i =x̃s
i , ∀i = 1, . . . , ns;

x̃i =x̃t
i−ns

, ∀i = ns + 1, . . . , ns + nt.
(2)

Then the manifold based regularization can be formulated as

‖f‖2I =
1

(ns + nt)2

ns+nt∑

i,j=1

(f(x̃i)− f(x̃j))
2Wij

=
1

(ns + nt)2
f�Lf ,

where Wij are edge weights in the data adjacency graph,
f = [f(x̃1), ..., f(x̃ns+nt

)]�, L = D − W is the graph
Laplacian matrix, and the diagonal matrix D is given by

Dii =
ns+nt∑
j=1

Wij .

According to Theorem 2 of [8], the optimal solution to
problem (1) in HK is

f∗(x) =
ns+nt∑

i=1

αiK(x̃i,x),

where coefficients αis are parameters of the LapSVM classifier
and K(·, ·) is the kernel function. We choose the RBF kernel
in our experiments.

Once the parameters are solved, the label of any unlabeled
query sample can be obtained by y(xt

i) = sign(f∗(x̃t
i)).

Additionally, since there are multiple classes in our problem,
we extend LapSVM to the one-vs-one multi-class classifier.
Furthermore, the newly enquired samples always enrich the
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unlabeled dataset, which further improves the performance
of location recognition. Therefore, our location recognition
method can update the unlabeled data once a period to balance
the computing load and recognition accuracy.

D. Algorithm Flow

We have introduced our cross-device visual location recog-
nition utilizing the SADA and LapSVM to solve the two main
problems in the recognition process. The algorithm flow of our
method is presented in Algorithm 1.

Algorithm 1 Our location recognition

Input: ns labeled images {(xs
i , y

s
i )}ns

i=1 captured by surveil-
lance cameras, nt unlabeled images {xt

i}nt
i=1 captured by

mobile phone cameras.
Output: Predict the locations {yti}nt

i=1.
1: Subspace generation: Ss ← PCA({xs

i}), St ←
PCA({xt

i}).
2: Subspace alignment: Sa = SsS

�
s St; x̃s

i = S�a xs
i , x̃t

i =
S�t xt

i.
3: Construct data adjacency graph with xs

i and xt
i by KNN,

and choose heat kernel for edge weights Wij .
4: Compute graph Laplacian matrix L = D −W .
5: Choose a kernel function K(x,y). Compute the Gram ma-

trix Kij = K(x̃i, x̃j) where x̃i are obtained by combining

X̃ s and X̃ t as (2).
6: Choose γA and γI .
7: Solve {α∗} using the method proposed by [18].

8: Output yti ← sign(f∗(x)) = sign(
∑ns+nt

j=1 α∗jK(x̃i,xj))

III. EXPERIMENTS

In this section, our proposed method is evaluated on real
datasets. After the introduction of the datasets and data prepa-
ration, we experimentally validate the existence of the two
problems to apply a mobile visual location recognition using
surveillance images. Then, we evaluate the influences on the
performance of applying the SADA and LapSVM respectively
to prove their effectiveness. Finally, the location recognition
accuracy of our method is presented.

A. Datasets and Data Preparation

Because there is no public dataset for cross-device visual
location recognition, we construct a dataset by collecting
images on a floor of our building. We select 6 distinguishable
locations among the covered areas of 10 surveillance cameras
shown in Fig.1, including elevator room (under camera1),
working area1 (under camera4), meeting room (under cam-
era5), corridor (under camera6), working area2 (under cam-
era8) and coffee room (under camera7). Images captured by
surveillance cameras and mobile phones are denoted by S and
M respectively. Limited by the space of an indoor scene, we
cannot take too many representative photos at one location.
Thus we randomly select 60 frames in a two hours long video
of every surveillance camera, and the size of S is 360. A total
of 80 images are captured by the camera of a mobile phone
at one location, and the size of M is 480.

To prepare the experimental data, we resize all images to
320 × 240 and extract two types of features. The first is

TABLE I. LOCATION RECOGNITION ACCURACY USING AN SVM
CLASSIFIER.

Method BoW GIST

M →M 98.33 95.00

S →M 53.33 43.33

the bag-of-visual-words (BoW, [20]) feature based on SIFT
descriptors. To extract such a feature, the SIFT features are
extracted from the images, and a codebook of size 300 is
generated by k-means clustering on S. Then the images from S
and M are represented by a 300 bin histogram corresponding
to the codebook. For the second type of feature, each image is
directly represented by a 512-dimensional GIST feature [21],
which models a holistic representation of the location.

B. Experimental Validation of the Two Problems

We denote the strategy of our visual location recognition
by S → M , where the training images and test images are
from S and M respectively. Similarly, we denote the general
visual location recognition by M → M , where both training
and test images are from M . There are 60 training samples and
20 test samples for each of the 6 locations. Preliminarily, we
compare the performance of our strategy and the general visual
location recognition method by measuring the classification
precision in one randomized trial, where an RBF kernel
based SVM classifier is used and the results are shown in
TABLE I. The performance of mobile location recognition is
significantly degraded by using surveillance images instead of
mobile images as training samples. Thus, there may exist some
problems if a classifier trained on S is directly used on M .

In order to further explore the problems existing in our
location recognition method, the number of valid labeled
training samples is first evaluated in Fig. 3. Along with the
increasing of training samples, the number of query images
that are located accurately starts to level off when the number
of training samples for each location is greater than 2 (resp. 11)
using the GIST (resp. BoW) feature. It indicates that there are
only a few valid labeled samples in S, which are incapable
to represent the variety of the mobile images and seriously
deteriorate the performance of location recognition.

Second, we randomly select one data sample from S and
60 data samples from M for each location. By embedding the
GIST data in a low-dimensional manifold with the Laplacian
Eigenmaps [19], we present a visual example of data distri-
bution between S and M in Fig.4a. Ideally, if a surveillance
image s ∈ S and a mobile image m ∈M are captured at one
location and generated from the same marginal distribution,
they are more liable to lie on the same manifold. However, as
shown in Fig.4a, the surveillance images in S (represented by
pentagrams) are far away from their corresponding manifold
generated by the mobile images in M at the same location
(points with the same color as the pentagram), especially
for camera 4 and camera 8. This phenomenon proves the
discrepancy between the distributions of S and M , which
makes a classifier trained on S perform poorly on M .

C. Evaluation of SADA and LapSVM Individually

We now empirically study the influence on performance
by introducing SADA or LapSVM individually. First, the
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Fig. 3. Location recognition results on different number of training images
using the SVM classifier.

Fig. 5. Location recognition accuracy on different number of unlabeled
images using a LapSVM classifier.

effect of SADA on eliminating the data differences between
S and M is evaluated. We also use the experimental setup
outlined in the previous section and present the results in
Fig. 4. While most surveillance images are far away from
the manifold corresponding to the same location in Fig.4a,
both the surveillance images and mobile images of the same
location lie on the one manifold in Fig.4b. In addition, most
of the manifolds are smoother and more compact after SADA,
which is also helpful for the following LapSVM learning. More
numerical experimental results will be shown in Section III-D.

We then experiment with LapSVM when adding more
and more unlabeled images from M to training set S. This
process indeed simulates the situation that there are more and
more mobile users uploading query images to the server for
location recognition. For each location, we randomly select one
labeled image from S and different numbers (from 0 to 60)
of unlabeled images from M , and then apply the LapSVM
classification. The average location recognition accuracy of
LapSVM over 50 random trials is shown in Fig.5. It is notable
that when the number of unlabeled images from M is 0, the
LapSVM degrades to the baseline SVM that training sets are
only consisted of images from S. The recognition accuracy
of LapSVM is improved gradually while there are more and
more unlabeled mobile images in training set. Thus, if there are
enough unlabeled samples in M , the LapSVM is an effective
way to solve the problem that there are only a few valid labeled
training samples in S.

TABLE II. LOCATION RECOGNITION PERFORMANCE COMPARISON.

Method BoW GIST

SVM 56.87 ± 0.7 47.97 ± 0.5

SADA + SVM 62.01 ± 0.8 52.14 ± 0.7

LapSVM 67.21 ± 0.8 55.44 ± 1.8

SADA + LapSVM 75.52± 0.9 65.92± 1.2

D. Location Recognition Result

To evaluate the performance of our location recognition
method, we compare against a number of baselines described
below.

• SVM : An RBF kernel based SVM classifier trained
using only the original samples in S.

• SADA+ SVM : An RBF kernel based SVM classi-
fier trained using the aligned samples in S by SADA.

• LapSVM : A Laplacian SVM classifier trained using
both the original labeled samples in S and original
unlabel samples in M .

Additionally, our method trains a LapSVM classifier using
both the labeled samples in S and unlabeled samples in M
after SADA, denoted by SADA+ LapSVM. The algorithm
hyperparameters for all methods include dimension d for
SADA, number of nearest neighbors k in graph construction,
γA = 10−5 and γI = 1.0 for LapSVM. The parameters for
GIST feature are d = 20 and k = 2, while d = 17 and k = 5
for BoW feature. Because there are very few valid training
data in S, we randomly select one labeled example for each
location in our experiments. This means that there are a total
of only 6 labeled examples available in the training set.

We randomly select 60 unlabeled examples from M for
each location as historical queries existing in the recognition
system, and the rest are considered as new queries. For each
method, the model is learned using surveillance images as
labeled data and the historical mobile queries as unlabeled
data. Then the locations of the new queries are recognized by
each method, and the average accuracy over 50 random trials
is shown in TABLE II.

In TABLE II we observed that both SADA+ SVM
and LapSVM give a better performance than the simple
SVM over different representation of images. Meanwhile, it
is interesting to note that the performance improvement of
SADA+ SVM is not as obvious as LapSVM. This is to
be expected since there are only a few valid training samples
to learn a classifier. However, as mentioned above, the SADA
is helpful for semi-supervised LapSVM learning. As a result,
our location recognition method has significant performance
increase over other methods. This again validates that the two
problems do exist in our location search method.

IV. CONCLUSION

In this paper, we presented a new visual location recog-
nition method which jointly uses the surveillance cameras
and mobile phone cameras. By unifying a subspace alignment
based domain adaption and the Laplacian SVM, we effectively
solved the twisted domain adaptation and semi-supervised
learning problem where the scarce labeled data and plentiful
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(a) Before SADA (b) After SADA

Fig. 4. Comparison of data distributions before and after SADA (best viewed in color). Each color corresponds to one location, and pentagrams represent
surveillance images while others represent the mobile images.

unlabeled data exist in different domains. Experimental results
showed the superiority of our method over other related
methods. For the future work, we will consider the situation
that there are foreground moving targets in the scene, and the
more difficult outdoor location recognition.
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