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Abstract

Visual domain adaptation aims to adapt a model learned
in source domain to target domain, which has received
much attention in recent years. In this paper, we propose
a uniform low-rank representation based unsupervised do-
main adaptation method which captures the intrinsic rela-
tionship among the source and target samples and mean-
while eliminates the disturbance from the noises and out-
liers. In particular, we first align the source and target sam-
ples into a common subspace using a subspace alignmen-
t technique. Then we learn a domain-invariant dictionary
with respect to the transformed source and target samples.
Finally, all the transformed samples are low-rank represent-
ed based on the learned dictionary. Extensive experimen-
tal results show that our method is beneficial to reducing
the domain difference, and we achieve the state-of-the-art
performance on the widely used visual domain adaptation
benchmark.

1. Introduction

Visual domain adaptation is devoted to addressing the
problem originated from a distribution mismatch between
the source (training) and target (testing) data, which has
long been one of the challenging problems in computer vi-
sion. Domain adaptation is crucial for the success of adapt-
ing a model learned in the source domain to the target do-
main, which presents significant value both in theory and
practice. Taking the object recognition task for example,
the distribution mismatch problem is usually caused by the
situation that training and test samples are acquired under d-
ifferent sets of background, lighting, view point, resolution
conditions, etc. As a consequence, the performance of the
model learned in the source domain degrades considerably
on the target domain.

In the last few years, many solutions for visual do-
main adaptation have been proposed to overcome that prob-
lem. We roughly divide them into three categories. One

kind of approach is to learn a new domain-invariant fea-
ture representation by exploring a common projection s-
pace [14, 1, 19, 10, 16, 18]. Methods like manifold-
alignment [20, 21] and Maximum Mean Discrepancy (M-
MD) [7] are also introduced to learn that new representa-
tion. Another kind of approach, sample re-weighting [11]
or selection [4, 2], devotes to assigning the optimal weights
to the source samples so as to minimize the difference be-
tween the target and weighted source distribution. In anoth-
er approach, to capture the intrinsic domain shift between
the source and target domains, a mapping function [3] be-
tween the source and target subspaces or a set of intermedi-
ate subspaces [0, 5, 9] is learned to link the two domains.

The previous proposals typically reduce the domain dis-
tribution difference by exploiting the source and target sam-
ples separately without accounting for the mutual depen-
dency among them. This may cause the adapted distribu-
tion to be arbitrarily scattered and the structure informa-
tion among the samples in both source and target domains
may become undermined. In addition, most of them blindly
learn the adapted distribution based on all the samples in-
cluding the noises and possible outliers. Thus, it is hard for
them to learn an optimal adaptation so that the source mod-
el can be applied in the target domain without significant
performance degradation.

In this paper, we propose a uniform low-rank representa-
tion based visual domain adaptation method which not on-
ly tries to explore the intrinsic structure information of the
samples in the source and target domains but also is robust
to the influence from the noises and outliers. Work [12] is
the most related to ours. However, it is specially designed
for semi-supervised classification task while our method is
unsupervised. First, we project both source and target sam-
ples into a common subspace using a subspace alignment
technique, which can preliminarily reduce the domain dif-
ference. Then we learn a domain-invariant dictionary based
on the transformed samples. After that, both the trans-
formed source and target samples can be linearly recon-
structed based on the common dictionary. Upon this linear
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Figure 1. Pipeline of our method. Best viewed in color.

reconstruction, we adopt a low-rank structure to capture the
intrinsic relationship among the source and target samples
and meanwhile eliminate the disturbance from the noises
and outliers. The whole procedure of learning the low-rank
representation is unsupervised because we do not utilize any
label information. Extensive experimental results demon-
strate that our method is beneficial to reducing the domain
difference, and shows the state-of-the-art performance on
the widely used domain adaptation benchmark dataset.

2. Proposed method

In this section, we will present our uniform low-rank rep-
resentation based domain adaptation method in detail. The
pipeline of our method is summarized in Figure 1. In order
to generate the low-rank representation which not only cap-
tures the intrinsic structure information of the source and
target samples but also eliminates the disturbance from the
noises and outliers, we firstly project both source and target
samples into an aligned subspace so that we can obtain a
domain-invariant dictionary. Then the transformed source
and target samples are reconstructed in the low-rank sub-
space based on the dictionary. The rest of this section will
describe our method step by step.

2.1. Subspace alignment and dictionary generation

In order to obtain a domain-invariant dictionary, we first
project both source and target samples into an aligned sub-
space, which can also preliminarily reduce the distribution
difference between the source and target domains. Denote
a set of ny samples in source domain as Xg € RDxmns
and a set of n; samples in target domain as X € RDxnt
where D is the dimension of the feature vector, and each
column of Xg or Xp represents a sample. Inspired by the
work [3], using PCA, we project Xg and X7 to their re-

spective subspaces by the operations P;— Xg and P} Xp
(Ps, Pr € RP*4) where Pg and Pr consist of d eigenvec-
tors corresponding to the d largest eigenvalues. Then, we
aim to find a linear transformation matrix so that the bases
of the two subspaces are aligned. Denoting M as the trans-
formation matrix from Pg to Pr, our subspace alignment is
equivalent to solving the following minimization problem

M* = argmmMEHMHF + §||PSM - Pr|#,

where ||.|| is the Frobenius norm and A is the tradeoff pa-
rameter to avoid overfitting.

Since the above formulation is a least-square problem,
it is simple to get the optimal solution M* = (A +
PJ Ps)~'PJ Pr. Projecting the source data X g and target
data X7 into the aligned subspace using PgM* and Pr re-
spectively, we can get the new representations of the trans-
formed source data Xg = (PsM*)" Xg and target data
Xr = P} Xr.

The subspace alignment presented above can reduce the
domain difference in some degree. However, the mutual
dependency among source and target samples has not been
taken into account. Thus, as shown in Figure 1, a domain-
invariant dictionary D is generated, which would be bene-
ficial to exploring the intrinsic structure information among
the samples. Here, we get the dictionary D using K-Means
clustering on the new representation X g and X in the do-
main invariant space. Finally, D € R¥X consists of the K
clusters.

2.2. Low-rank representation for unsupervised do-
main adaptation

In this section, we aim to capture the intrinsic structure
information among the source and target samples and mean-



while eliminate the disturbance from the noises and outlier-
s. Assuming each observed sample to be composed of the
clean sample reconstructed with D and the noise, the aim
becomes to the estimation of both the parts. To this end,
we firstly try to find a low-rank reconstruction coefficien-
t matrix Z so that the transformed source and target sam-
ples reconstructed with the common dictionary D are high-
ly correlated. This naturally establishes a link between the
representations of the related source and target samples. As
a consequence, it can capture the intrinsic structure infor-
mation among all the source and target samples. Secondly,
with respect to the clean dictionary D, we are devoted to de-
composing the noise and outlier information in both source
and target domains into an error matrix £. Since only a s-
mall number of the source and target samples are noises or
outliers in practice, it is reasonable to ensure that the col-
umn vectors of E are as sparse as possible.

To summarize in mathematical, we formulate the estima-
tion of the representations and noises as the following rank
minimization problem:

min rank(Z) + o||E|l, ,,
Z,E B 7 (1)
st. X=DZ+ F,

where X = [Xg Xr], Z = [Zs Zr] and E = [Eg Er),
rank(-) denotes the rank of a matrix, [|El[, , denotes the
{0 norm, which is adopted to encourage the column spar-
sity of the error term F, and « is the tradeoff parameter. The
optimal solution of variable Z is the lowest-rank representa-
tion of the transformed data X with respect to the domain-
invariant dictionary D. It captures the intrinsic structure
information among all the source and target samples, and
meanwhile it is robust to the noises and outliers.

However, the optimization problem (1) is hard to solve
due to the discrete nature and the non-convexity of the rank
function and the 5 o norm. As suggested in [13], we can
replace the rank function in (1) with the nuclear norm and
relax the 5 o norm to the {5 ; norm, resulting in the follow-
ing approximate convex optimization problem:

min [ Z]. + a[| Ell;
Z,E - @)
st. X=DZ+E.
The problem (2) can be solved by the Inexact ALM algo-
rithm, which is detailed in [13], and omitted here due to
the limit of space. The solution to (2) is a good surrogate
solution to (1). _ o
Once we obtain the optimal solution Z = [Zg Zy] for
variable Z = [Zg Zr], we can learn a source classifica-
tion model based on the new source representation Z s. S-
ince the model captures the intrinsic structure information
among the source and target samples and meanwhile elimi-
nates the disturbance from the noises and outligrs, it would
perform well on the new target representation Zp.

3. Experiments

In this section, we evaluate our method on the widely-
used Office-Caltech benchmark [ 1, 2, 3, 5, 6, 4] for unsuper-
vised and semi-supervised cross-domain object recognition.
We compare the proposed method with several competitive
ones. Experimental results show that our method is effec-
tive for cross-domain object recognition, and we achieve the
state-of-the-art performance.

3.1. Dataset and data preparation

The widely-used Office-Caltech dataset for cross-
domain image recognition is composed of four domains:
Amazon (denoted by A), DSLR (denoted by D), Webcam
(denoted by W) and Caltech (denoted by C). The first three
domains are from the Office dataset [17], and share 31 com-
mon object categories, while the Caltech domain is intro-
duced in [8] and there are 10 common classes among the
four domains. The number of images per class ranges from
8 to 151. As suggested by the standard protocol present-
ed in previous studies [17, 5, 4], each image is represented
by SURF features encoded with a visual dictionary of 800
words, which were computed via K-means on a subset of
Amazon images.

3.2. Parameter settings

In our method, there are 2 key parameters need to be
evaluated. First, the dimensionality d for subspace align-
ment. Second, the number of clusters K for generating the
common dictionary. We take two representative domains A
(with clean background) and C (with complex background)
for example, and set the two parameters in turn by 5-fold
cross-validation. We first evaluate the parameter d based
on our subspace alignment method and an one-vs-all SVM
with linear kernel. The corresponding experimental results
on two pairs (A — C and C — A) of cross-domain object
recognition are shown in Figure 2(a). According to these re-
sults, we set d = 128 which performs best on both domain
pairs. Then we fix the parameter d, and evaluate the param-
eter K based on our proposed method with a similar pro-
cedure. The recognition accuracies with respect to different
K are shown in Figure 2(b). While K = 32, our method
shows the best performance on both domain pairs. For sim-
plicity, we set d = 128 and K = 32 for all the domain pairs
under an unsupervised domain adaptation setting.

3.3. Experiment on unsupervised domain adapta-
tion

In this section, we focus on the unsupervised domain
adaptation setting (no labeled target sample is available
while learning the classification model) among the four do-
mains. Since there are only a few samples in DSLR, it is not
used as a source domain in most of the previous work. In
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Figure 2. Recognition performance under different parameter settings: (a) dimension of subspace for subspace alignment, (b) number of

clusters for the common dictionary.

[ Method [ A-C[A—-D [ AW [C—»A [C»D [ C—W [ WA [ W—C [ W=D |
Baseline 417 [414 [342 [518 [541 [468 [311 [315 [707
GFS [6] 392 | 363 |336 |[436 |408 |363 |335 |309 |757
GFK [5] 422 | 427 | 407 | 445 | 433 | 447 | 318 | 308 | 75.6
LMS [4] 455 | 471 | 461 | 567 | 573 | 495 | 402 |354 | 752
DIP [ 1] 474 | 503 | 475 |557 | 605 |583 |426 |342 |885
DIP-CC[1] | 472 |49.0 |478 |[587 |612 |580 |409 |[372 |917
SIE [2] 48.2 | 49.1 | 481 567 |612 |580 |427 |386 |93.0
SIE [2] 476 | 490 | 478 |576 |612 |573 | 424 362 |930
Only SA [435 [440 [424 [549 [579 [478 [385 [360 [866
Only LRR | 452 | 47.1 | 495 |585 |6l.1 |566 |414 |401 |892
Our method | 477 | 51.6 | 52.9 | 60.6 | 649 | 583 |434 |40.7 |93.0

Table 1. Recognition accuracies on 9 pairs of unsupervised cross-domain object recognition. We evaluate on the 10 common classes using

the standard experimental protocol of [5].

this paper, we also focus on the remaining 9 pairs of source
(S) and target (T) domains. We denote a cross-domain im-
age recognition problem by the notation S — T. The recog-
nition accuracies on the 10 common classes are shown in
Table 1.

The first set of results in Table | are quote directly from
their papers. It is worth noting that the baseline method
is a classification model trained with source data only, i.e.,
without the domain adaptation.

The second set of results in Table 1 report the recogni-
tion performance of our method and its two variants. We
use the one-vs-all SVM with linear kernel as the classifier
for cross-domain image recognition. The recognition accu-
racies of only our subspace alignment (SA) based domain
adaptation method are presented in the first row, which are
comparable to most of the previous reported performance.
In the second row, we report the experimental results of on-
ly our low-rank representation (LRR) based domain adapta-
tion method which learns the dictionary with respect to the
original source and target samples, i.e., our method with-
out the SA part. The recognition accuracies are much bet-
ter than the results of the only SA based domain adaptation

method, and comparable to the state-of-the-art. It means
that the LRR based domain adaptation method has the ben-
efits of capturing the intrinsic structure information among
all samples and eliminating the disturbance from the noises
and outliers. In the last row, our method shows the best per-
formance on most of the domain pairs, which validates the
effectiveness of the low-rank representation on solving the
domain adaptation problem.

3.4. Experiment on semi-supervised domain adap-
tation

In this section, we evaluate our method in the semi-
supervised way (only a few labeled target samples are avail-
able while learning the classification model). We follow
the standard experimental protocol from [17, 12, 15], and
use the Office dataset consisting of three domains: A, D
and W. There are 31 common object categories among the
three domains.

In order to learn the classification models, we random-
ly select 20 samples per category from the source domain
A and 8 samples per category from D orW as the source
domain while 3 labeled target samples per category are ran-



| Method | W=D A—W D—W
Bascline 49.6£0.03 | 50.7+0.03 | 49.6+0.03
Metric [17] 48.140.60 | 345£0.70 | 36.9+0.80
RDALR [17] 32.941.20 | 50.7+0.80 | 36.941.90
GFS [6] 61.0+£0.50 | 37.4+0.50 | 55.240.60
GFK [5] 66.310.40 | 46.4+0.50 | 61.310.04
H-L2L(LP-) [15] | 67.840.05 | 58.840.03 | 66.0£0.03
Our method 71.040.02 | 59.1+0.02 | 69.1+0.02

Table 2. Recognition accuracies on 3 pairs of semi-supervised
cross-domain object recognition over 31 categories.

domly selected. We evaluate our method based on 10 ran-
dom splits across all domain adaptation pairs. The average
cross-domain image classification accuracies and the stan-
dard deviation are reported in Table 2. For all the domain
adaptation pairs, we set parameters d = 256 and K = 128
in a similar cross-validation way introduced before.

In Table 2, the classification model (linear-SVM) of the
baseline method is directly trained with the labeled source
and target samples, i.e, without domain adaptation method.
The recognition results of the compared methods are direct-
ly quoted from their papers. Compared with other methods,
the proposed method shows the best performance on all the
three domain pairs, which validates the effectiveness of our
method once again.

4. Conclusion

In this paper, we have presented a novel domain adap-
tation method. The proposed method captures the intrin-
sic structure information among all samples and meanwhile
eliminates the disturbance from the noises and outliers us-
ing the uniform low-rank representation, which is beneficial
to reducing the domain difference. Extensive experiments
have proved the effectiveness of our method on the cross-
domain object recognition. Experimental results show that
our method achieve the state-of-the-art performance on the
widely used visual domain adaptation benchmark.
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