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Abstract 

Despite the routine use of general anesthesia during surgery, 
no consensus has been reached on the precise mechanisms by 
which anesthetic agents suppress consciousness. Recent 
functional magnetic resonance imaging studies have shown 
that changes in connectivity is generally observed during 
propofol-induced loss of consciousness, especially in the 
fronto-parietal association cortex. Here, we developed a novel 
feature selection approach based on linear support vector 
machine with a forward-back search strategy to investigate the 
mostly discriminative connectivity patterns of different 
consciousness states. The classification accuracy between 
wakefulness and deep sedation was up to 96.4%. Weight 
analysis further revealed that consciousness could be linked to 
functional connectivity within and across the default mode 
network, executive control network, salience network and 
cerebellum. Moreover, the angular, supplementary motor 
cortex, inferior parietal, insula, and cerebellum exhibited 
significantly larger weight, suggesting important roles in 
consciousness. In all, our study sheds light on the mechanism 
of consciousness. 

1 Introduction 

Understanding the neurobiological basis of consciousness can 
bring about a huge impact on science, medicine, and society. 
Anesthetic agents give us a viable way to study consciousness. 
Propofol is the most widely used anesthetic agent in clinic 
procedures, characterized by dose-related impairment of 
cognition and consciousness. However, the mechanism by 
which propofol functions is not yet fully acknowledged. Hence, 
to better understand the neurobiological basis of consciousness, 
more attention on this topic is urgently needed. 
At a small dose, propofol first suppresses thinking and focused 
attention. Reduced functional connectivity in the default mode 
network (DMN) was generally observed. However, intrinsic 
activities were relatively preserved [8, 10, 13]. As the dose is 

increased, functional connectivity in the fronto-parietal 
network is often reduced, which suggests that propofol breaks 
functional information integration by disrupting the interaction 
of the sensory information and high-order processing cortex [2, 
11, 14]. At an even higher dose, brain activity is widely 
suppressed, while mainly mediating at the brainstem and spinal 
levels [3, 9]. 
In recent years, increased attention has been given to large-
scale neural network functions, referred to here as intrinsic 
connectivity networks (ICNs), with distinct functions such as 
vision, hearing, sensorimotor, attention, working memory, and 
salience processing [6]. Previous studies concerning ICNs 
during altered consciousness have demonstrated that high-
order ICNs (e.g., default mode network, salience network, and 
executive control network) decreased in connectivity when 
consciousness is reduced [2, 9, 14, 18].  
The results mentioned above were mostly detected by 
univariate approaches. These studies provide valuable insight 
into the mechanism of consciousness. However they also have 
significant limitations because they ignore the fact that the 
brain actually functions in a multivariate way [12]. On the 
other hand, multivariate pattern analysis is increasingly used 
based on functional MRI data [7, 17, 20]. This method can 
complement both seed-based and univariate statistical analysis. 
Recently, Shirer et al. distinguished specific cognitive states 
with intrinsic connectivity patterns using a multivariate pattern 
analysis [15]. 
Therefore, the present study sought to classify different states 
of consciousness using intrinsic network patterns and to 
identify the related features in order to explain altered states of 
consciousness. 

2 Materials and methods 

2.1 Participants 

Sixteen (8 male; age range, 18-39 year; mean age ± SD, 25.3 ± 
7.4 year; weight range, 48-75 kg; mean weight ± SD, 58 ± 8 
kg) right-handed normal participants were recruited by local 
advertisement. All subjects had no history of psychiatric or 
neurological illness, psychiatric treatment, or drug addiction. 



The research was approved by the Medical Research Ethics 
Committee of Tiantan Hospital and all of the subjects gave 
written informed consent. 

2.2 Sedation protocol 

Subjects fasted for at least 6 hours from solids and 4 hours from 
liquids before sedation. Propofol was administrated with target 
controlled infusion (TCI) by using a TCI pump (Base Primea 
Orchestra Workstation, Fresenius SE & Co. KGaA) coupled 
with the assessment of OAA/S (observer’s assessment of 
alertness/sedation) scores. Light sedation was induced to 
achieve a plasma concentration of 1.0 μg/ml and deep sedation 
was induced to achieve a concentration of 3.0 μg/ml. Once a 
desired sedation state was reached and kept stable for another 
10 minutes, the level of consciousness was clinically evaluated 
using the OAA/S scores, and fMRI scans were performed 
subsequently for ~5 minutes. Electrocardiogram (ECG), blood 
pressure (MAP), pulse oxymetry (SpO2) and end-tidal carbon 
dioxide (etCO2) were continuously monitored throughout the 
experiment. A summary of the physiological measurements is 
presented in Table 1.  

2.3 MR data acquisition 

All MR images were acquired on a 3.0 Tesla scanner 
(Magnetom Trio, Siemens, Erlangen, Germany). The blood 
oxygenated level-dependent (BOLD) images of the whole 
brain were acquired using an echo-planar imaging sequence 
(TR/TE = 2000/30 ms; FA = 90°; FOV = 256 mm × 256 mm; 
matrix size = 64 × 64; slice thickness/gap = 4.0/0.0 mm; voxel 
size = 4.0mm × 4.0mm × 4.0 mm; 32 transversal slices; 150 
volumes). The fMRI scan were repeated during each clinical 
state. Additionally, a high resolution T1-weighted image was 
also performed for each volunteer in this study. 

2.4 Data preprocessing 

The fMRI data was preprocessed using the Data Processing 
Assistant for Resting-State fMRI (DPARSF) [5]. After 
discarding the first 5 volumes of each session to allow for 
magnetization equilibrium, the following steps were performed: 
realigning images to the first volume; co-registering the  
structural volume to  the mean functional image; removing the 
linear trend; regressing nuisance signals (6 motion parameters, 
global mean signal and average BOLD signal in white matter 
and CSF); temporal filtering (0.01-0.1 Hz), normalizing the 
anatomy volume to the MNI152 standard template; resampling 
the functional data to MNI space with the concatenated 
transformations, and spatial smoothing with a 6-mm full-width 
at half-maximum Gaussian kernel. Two volunteers did not 
finish the fMRI scanning at deep sedation and two subjects had 
excessive head movements. In total, the sample size of 
participants while awake, at light, and during deep levels of 
sedation was 15, 16 and 13, respectively. 

2.5 ROI and functional connectivity matrix creation 

First of all, we performed the ICA using FSL’s MELODIC 
software (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) on 

the group-level resting-state data for all subjects in the 
wakefulness condition and obtained 30 components. Ten 
meaningful components were identified visually as being ICNs 
based on previous reports [1, 6, 15, 16, 19], including the 
anterior default mode network (aDMN), posterior default mode 
network (pDMN), left executive control network (LECN), 
right executive control network (RECN), task-positive network 
(TPN), language network (LN), salience network (SN), 
sensorimotor network (SMN), auditory network (AN) and 
visual network (VN). Cortical representation of these ICNs are 
shown in Figure 1. Each of the ICNs was thresholded to get 
distinct moderately sized clusters. Then, we defined ROIs as 
spherical regions with a radius of 6 mm at the centre of the peak 
coordinates of the obtained clusters. This step resulted in 48 
ROIs (Figure 2). We calculated the Pearson’s correlation 
coefficient between the time series of all ROIs for each subject 
in wakefulness and the two sedation states. 

2.6 Development of SVM-FoBa 

Considering the computational advantage, greed search 
strategies generally serve in two directions: forward selection 
and backward elimination. Forward selection is a bottom-up 
analogy that starts with en empty set. In each iteration step, one 
feature is added to the current set  	to reduce the loss function 
	 . However, forward selection will yield nested sets of features, 
as features selected at step   are always included in the subset 
of step 1 . On the other hand, backward elimination is a 
top-down search model that starts with the complete set, 
removing one feature at a time so that the negative impact on 
performance would be kept minimal until the change of loss 
function  exceeds a certain threshold. Therefore, backward 
elimination also generates nested subsets. What’s more, a 
major flaw of backward elimination is the propensity for 
overfitting. 
In a word, both forward and backward strategies have their 
disadvantages. However, if we combined the forward selection 
with backward elimination, the error induced by the earlier 
steps may be adaptively corrected. Hence, we developed 
“SVM-FoBa”, a SVM-based adaptive forward-backward 
greedy algorithm. It is defined as follows: Assuming that a 
feature  is added to the feature subset  by a forward step 
at stage , a subset of   is generated, with  being the 
corresponding value of the optimization objective function. 
The decrement of the objective function is denoted as	 , so 
that 	. The backward step then locates a feature 
∈ , whose elimination induces the smallest increment in 

the objective function, denoted as . If	  0.5	 , we 
define that at least one error has occurred in the earlier forward 
steps. 
Once errors induced by the earlier forward steps are detected, 
backward elimination processes will automatically step in and 
repeat until all the errors are corrected. The pseudo-code for 
SVM-FoBa is demonstrated in Figure 3. In this study, we 
invoked the value of the optimization objective function of the 
linear SVM as the loss function  and adapted LibSVM [4] 
with SVM-FoBa algorithm to accomplish the feature selection. 
 



3 Results 

3.1 Physiological variables 

Physiological variables did not change significantly in the 
awake, light sedation, or deep sedation states. The OAA/S 
scores gradually decreased with increasing doses of propofol 
(Table 1). 

3.2 Comparison with typical feature selection methods 

To validate the effectiveness of SVM-FoBa, we tested different 
feature selection methods on public data sets. Besides SVM-
FoBa, three types of conventional feature selection methods 
were chosen, including the univariate T-test, Fisher score 
ranking and forward selection approach. For each method, we 
conducted a linear SVM binary classifier for performance 
evaluation. 
Due to our limited number of samples, public data sets with an 
approximate number of instances were intentionally chosen for 
the binary classification test. We used a leave-one-out cross-
validation strategy to estimate the generalization ability of 
classifiers. Detailed information and results are given in Table 
2. 
As a general rule, SVM-FoBa outperformed traditional feature 
selection methods in the comparison study, though the 
T-test ranking and Fisher score ranking performed similarly to 
SVM-FoBa on the “DBWorld e-mails” data set. 

3.3 Classification results 

We performed three binary classification tasks: wakefulness 
vs. light sedation, light sedation vs. deep sedation, and 
wakefulness vs. deep sedation. For each task, the former type 
was the negative class, while latter was the positive class. The 
highest accuracy rate reached 96.43% for wakefulness vs. deep 
sedation. In other words, only one subject in the deep sedation 
group was misclassified. Furthermore, the accuracy rate was 
minimum for wakefulness vs. light sedation (see Table 3 for 
details). Obviously, the differences in intrinsic network 
patterns between wakefulness and deep sedation were mostly 
stable and significant. 

 
Figure 1: Ten ICNs from the 30-components analysis of the 
subjects in normal awake state. ICNs are displayed on a surface 
of the brain (Brainnet View). (A) aDMN; (B) pDMN; (C) 
LECN; (D) RECN; (E) TPN; (F) LN; (G) SN; (H) SMN; (I) 
(AN); (J) VN. 

 

3.4 Altered resting-state functional connectivity during 
propofol-induced loss of consciousness 

In addition to classification accuracy, we were more interested 
in which functional connections contributed most to group 
discrimination. This was done by exploiting the quantitative 
advantage of the linear SVM classification model, while 
features having the greatest absolute weight could be found out. 
We denoted such important features as the “discriminant 

Parameter Wakefulness
Light 

Sedation 
Deep 

Sedation
MAP 

(mmHg) 
88 ± 8 82 ± 8 75 ± 7 

HR (bpm) 66 ±9 64 ± 7 68 ± 8 

SpO2 (%) 100 ± 0 99 ± 1 98 ± 2 

EtCO2 (%) 38.1 ± 2.4 38.9 ± 2.1 44.3± 2.7

OAA/S 5 ± 0 4 ± 0.2 2 ± 0.4

Table 1: Physiological variables and OAA/S scores 
Results are expressed as mean ± standard deviation of 
individual values in each state. 



 
Figure 2: 48 ROIs defined from 10 ICNs.  
 
 

 

Figure 3:  Pseudo-code for SVM-FoBa algorithm 
 
 
features”.  (1) The discriminant features were mostly located 
between DMN, SN, and SMN for the wakefulness 
classification with light sedation. (2) Functional connectivity 
within DMN, and DMN connectivity with SN and ECN, were 
changed from light sedation to deep sedation. (3) Functional 
connectivity within and across DMN, SN, and ECN 
contributed the most for wakefulness vs. deep sedation. Several 
regions exhibited great weights (1/2 the sum of the absolute 
weights of all the connections to and from that ROI), i.e. SMA, 
cerebellum, insula, inferior parietal, prefrontal cortex, and post 
cingulate cortex in distinguishing states of consciousness 
(Figure 4). 

4 Discussion and conclusion 

As far as we know, this study is the first to employ the pattern-
classification method in order to discriminate different states 
of consciousness induced by propofol. Brain function during 
l igh t  seda t ion  was  ma in ly  p rese rved  so  tha t  the  
discrimination of wakefulness and light sedation was the 
lowest. The accuracy reached 96.4% for wakefulness vs. deep 
sedation. Intuitively, there were stable and significant 
differences between wakefulness and deep sedation. Weight 
analysis of the selected features further revealed that propofol-
induced loss of consciousness could be linked to the 

 

DBWorld e-mails   64 instances    4,702 features 
Method      Accuracy Sensitivity Specificity No.features

SVM-FoBa 90.63 84.21 89.66 73-84 

Forward 85.94 88.57 82.76 1-3 

T-test 90.63 84.21 89.66 73-84 

Fisher score 90.63 84.21 89.66 73-84 

Colon Cancer        62 instances 2,000 features
Method      Accuracy Sensitivity Specificity No.features

SVM-FoBa 87.10 92.50 86.36 29-30 

Forward 87.10 92.50 81.82 4 

T-test 85.48 87.50 86.36 29-30 

Fisher score 87.10 87.50 86.36 29-30 

Leukemia Cancer  72 instances 7,129 features
Method      Accuracy Sensitivity Specificity No.features

SVM-FoBa 98.61 96.00 100 30-38 

Forward  95.83 96.00 100 2-3 

T-test 95.83 96.00 95.74 30-38 

Fisher score 95.83 96.00 95.74 30-38 

Table 2: Performance comparison (%) among different feature 
selection methods on three public data sets T-Test and Fisher 
score use the same number of features with that of SVM-FoBa 
for equivalent comparisons. “73-84” means equal performance 
from 73 to 84 features. The “DBWorld e-mails” data set was 
obtained from UCI Machine Learning Repository at 
http://archive.ics.uci.edu/ml; also, descriptions of “Leukemia 
Cancer” and “Colon Cancer” can be found at 
http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0
405.html. 
 

rs-fMRI FC                   1128 features 
 Awake vs. Light Light vs. 

Deep 
Awake vs. Deep 

Accuracy 74.19% 86.21% 96.43% 

Sensitivity 73.33% 87.50% 100% 

Specificity 75.00% 84.62% 92.31% 

No. features 13 10-11 18-19 

Table 3: Classification results of SVM-FoBa using the 
functional connectivity matrix. The accuracy rates were 
calculated by dividing the number of the correct predictions 
across all folds of LOOCV by the number of samples. The 
sensitivity and specificity were obtained likewise. 
 
reconfiguration of large-scale brain intrinsic networks. The 
regions with high discriminative powers were SMA, 
cerebellum, insula, inferior parietal, prefrontal cortex, and post 
cingulate cortex, indicating that these regions may play 
important roles in the neurobiological basis of consciousness. 



 
Figure 4: Axial view of the most discriminating functional 
connections and regions. (A) 13 most weight features 
identified for wakefulness vs. light sedation. (B) 10 most 
weight features identified for light sedation vs. deep sedation. 
(C) 18 most weight features identified for wakefulness vs. deep 
sedation. Regions are color-code by network. 
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