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Abstract—In this paper, a pattern classification task was 

regarded as a sample selection problem where a sparse subset of 

sample from the labeled training set was chosen. We proposed an 

adaptive learning algorithm utilizing the least square function to 

address this problem. Using these selected samples, which we call 

informative vectors, a classifier capable of recognizing the test 

samples was established. This novel algorithm is a combination of 

searching strategies that, not only based on forward searching 

steps, but adaptively takes backward steps to correct the errors 

introduced by earlier forward steps. We experimentally 

demonstrated on face image and text dataset that classifier using 

such informative vectors outperformed other methods. 
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vector; sparse representation; face recognition; text categorization 

I. INTRODUCTION 

Given a training set X of a number of samples {x1, x2, …, xn} 
with known labels {y1, y2, …, yn}, the goal of a classification 
algorithm is to infer a decision function y = d(x) from the 
labeled training set. The decision function should predict the 
correct output value for any valid input object x. In order to 
measure the quality of the decision function, a loss 
function L(x) is defined. In the current paper, we limit 
ourselves to the least square function: 

𝐿(𝑥, 𝑋) = Min
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Where w=[w1,…,wn], is the weight vector of all training 
samples in the sample space and x is a test sample. It is known 
that the least square often yields a poor 
generalization performance because the solution w overfits the 
data. To solve this issue, a small group of samples should be 
selected from the training samples to build a sparse decision 
function. A celebrated instantiation is in learning the prediction 
function of Support Vector Machine (SVM) [1], which only 
utilizes a limited subset of support vectors to characterize the 
decision boundary between two classes, rather than directly use 
all training examples. In practice, it is often difficult to infer a 
sparse decision function from training examples, since we may 
not be clever enough to find the sparse representation of model. 
L0-norm regularization is a good learning method for sparse 

solution in learning a target function of model, which 
corresponds to the non-convex function:                              
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However, a fundamental difficulty with this method is the 
computational cost, because the number of subsets of {1, … ,n} 
of cardinality k (corresponding to the nonzero components of w) 
is exponential in k. It can be shown that the solution of this 
method is NP-hard[2]. In the current, there are no efficient 
algorithms to solve NP-hard problem. Due to computation 
difficulty, l0-norm regularization is replaced by l1-norm that is 
the closet convex approximation. It is known that l1 
regularization is of lead to sparse solutions. A promising 
technique called the lasso was proposed by Tibshirani[3] as 
follow: 

     

  (3) 

 

L1 regularization is often applied to solving the problem of 
feature selection. John et al. employed l1-regularizaion to 
selecting the relevant training samples for the recognition of 
face image[4]. In order to generate a sparse solution, a large 
regularization parameter is required. However, the l1 penalty 
not only shrinks the irrelevant variable to zero, but shrink 
relevant variables to zero[5]. Instead, greedy search strategies 
are known by experimentalists to be computational 
advantageous and less prone to overfitting [6]. In this study, we 
proposed an adaptive learning algorithm to select a sparse 
subset of informative vectors that together recognize each test 
example.  

II. ADAPTIVE LEARNING ALGORITHM  

The selected samples, called informative vectors henceforth, 
are used to establish a classifier. Based on square error, we 
proposed an adaptive learning algorithm that combines forward 
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searching steps and backward adjusting steps. Unlike SVM, 
instead of choosing support vectors for all the test samples at 
once, a group of informative vectors for each test example is 
drawn in the current algorithm. 

First, starting with the null model without any training 
example, the pattern xi , for which L(F∪{xi}) is the smallest 
(i.e., xi decreases squared error the greatest), is added to the 
current set F by forward steps to aggressively reduce the 
squared error at each step. This process keeps going on until 
the decrement of squared error falls below a given threshold ε 
(0.005 in this study). However, such procedure has a main 
shortcoming, that the selected subsets of samples is nested, 
where the subset Fk selected in step k is always included by the 
subset Fk+1. This implies that the errors caused in earlier 
forward steps would never have a chance to be removed. 
Consequently, backward elimination steps should be carried 
out to rectify these errors. The key design of this combination 
is to balance the forward and backward steps. The backward 
steps should not only fix the errors induced by earlier forward 
steps, but also keep as many achievements as possible. The 
pseudocode of the adaptive learning algorithm follows. 

Input:        X = [x1, … , xn] ∈ Rm×n for k classess  

                    a test sample x 

Initialize: the column of X was linearly scaled to [0,1] 

                    S = [1, … , n], F = ∅, w = ∅, k = 0, 

                    ε = 0.005 and J0 = ∞ 

Output: F, w 

while lengh(S) > 0 

{ 

 k = k + 1; 

[ik, wk, Jk] = argmini∈S||x, X(: , F ∪ {i})||2; 

δ+ = Jk − Jk−1; 

     if (δ+ < ε) 

     { 

        k = k − 1; 

        break; 

     } 

    F = F ∪ {ik}; 

    S = S − {ik}; 

    w = wk; 

    while (k > 1) 

    { 

        [jk, wk
−, Jk

−] = argminj∈F||x, X(: , F − {j})||2 

        δ− = Jk
− − Jk; 

        if (δ− < 0.5 ∗ δ+) 

        { 

            S = S ∪ {jk}; 

     F = F − {jk}; 

            w = wk
−; 

            k = k − 1; 

        }else 

            break; 

  } 

} 

Note that backward steps were only carried out when the 
squared error increment δ− is no more than half of the squared 
error decrement in the earlier corresponding forward step δ+. 
This means that as long as n forward steps have been 
performed, no matter how many backward steps occur in this 
procedure, square error will decrease by at least nε/2, which 
implies that the algorithm will automatically terminate after 
finite forward steps.  

Together with informative vectors F and weight w, a sparse 
decision function D(x) can be derived. Thus, we define the 
decision function as follow: 

                                                                   

             (4) 

Where Fi is the subset of informative vectors that belong to 
the ith class, and wi corresponds to their weights, respectively. 
To classify a test sample 𝑥 into a class, the decision function 
minimizes the residual between 𝑥 and all informative vectors 
from this class. 

 

III. EXPERIMENT RESULTS  

     A number of classification experiments were implemented 

on three publicly available databases to estimate the efficacy 

of the proposed classification algorithm and meanwhile 

compare it with other machine learning algorithms. The three 

databases considered are: (1) Extended Yale B database, (2) 

CMU Face database, (3) Db world e-mails database (see 

TABLE I ). 

 
TABLE I 

 The Extended Yale B database consists of 2,414 frontal-face images of 38 
individuals[7]. The cropped and normalized 192×168 face images were 

captured under various laboratory-controlled lighting conditions[8]. CMU 

Face and Db word e-mail datasets from the UCI machine learning repository 
( http://archive.ics.uci.edu/ml/datasets.html) 

 

Data set Types Instances Features Classes 

Extended Yale B Database Images 2,414 32,256 38 

CMU Face Images 640 3,840 20 

Db world e-mails Text 64 4,702 2 

 

Separating data into training and testing sets is crucial for 

evaluating prediction models. Typically, when partitioning a 
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data set into a training set and testing set, most of the data is 

used for training, and a smaller portion of the data is used for 

testing. In order to avoid the possible bias introduced by 

relying on any one particular division into test and train 

components, a leave-one-out (LOO) cross-validation is used to 

split the p patterns into a training set of size p-1 and a test of 

size 1 and average the classification error on the left-out 

pattern over the p possible ways of obtaining such a partition. 

The advantage is that all the data can be used for training - 

none has to be held back in a separate test set. The results in 

TABLE II demonstrated that our method outperformed linear 

SVM and k-nearest-neighbor algorithm (KNN) on three 

different dataset. 

 
TABLE Ⅱ 

Comparison of different learning algorithm: due to the high-dimensionality 

feature (32,256) of images from extended Yale B dataset, f-score feature 
selection was used to select top 3,000 discriminative features on this dataset 

for speeding the computation [9]. 

 

Methods Extended Yale B 

Database 

CMU Face Db world 

KNN 79.99% 99.19% 87.5% 

*SVM (linear kernel) 95.23% 99.19% 57.8% 

Our method 99.01% 100% 89.06% 

 

* Nonlinear SVMs employ sophisticated kernel functions to classify data sets with complex decision 

surfaces. Determining the right parameters of such functions is not only computationally expensive, the 

resulting models are also susceptible to overfitting due to their large Vapnik Chervonenkis (VC) 

dimensions[10]. Instead of  nonlinear kernel, the use of linear kernel makes it possible to directly 

compare between different algorithms working in the same feature space 

 

Scaling them before dealing these dataset is very important. 

The main advantage is to avoid attributes in greater numeric 

ranges dominate those in smaller numeric ranges. Another 

advantage is to avoid numerical difficulties during the 

calculation. Because the least square error usually depend on 

the inner products of feature vectors. In this study, each 

attribute of all dataset were linearly scaled to the range [0, 1]. 

IV. CONCLUSION  

In this paper, pattern classification was deemed as a 

problem of selecting informative vectors from training 

samples. We proposed an adaptive learning algorithm to 

choose a sparse subset of informative vectors for classifying 

each test sample. Different from SVMs, the proposed 

algorithm is instance-based learning that, instead of 

performing explicit generalization, compare new problem 

instances with instances seen in training, which have been 

stored in memory. One advantage of this algorithm is that it 

has zero empirical risk and infinite VC dimension. Unlike 

KNN that require the orthogonality assumptions about 

samples, our algorithm utilizes mutual information between 

samples. We showed experimentally on three different 

databases that taking into account mutual information between 

samples in the informative vectors selection process impacts 

classification performance and yielded better classification 

than conventional learning algorithms. Beyond pattern 

classification, an intriguing question for future work is 

whether this model can be applied for object detection 
. 
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