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Abstract- In this paper, an sEMG-driven musculoskeletal 
model of human shoulder and elbow joints is built based on 
time delay neural network (TDNN). Six principal muscles of 
the upper arm and forearm are included, and the experiment 
was conducted under isometric contractions with the aid of 
a planar haptic interface. Both force amplitude and direction 
were regulated continuously, and the experiment results proved 
the effectiveness and performance of this modeling method. 
The model was proved to have less overfitting risk than the 
most-used basic multilayer forward netwokrs, and the isometric 
model was proved to be still effective in estimation of slow 
movement cases. 

1. INTRODUCTION 

H UMAN musculoskeletal system is highly nonlinear and 
subject dependent, and many researches have been 

conducted to investigate the relationship between neural 
commands and voluntary efforts. The increasing popularity 
of human machine interface (HMI) calls for more effective 
and simple human musculoskeletal model [1], [2]. 

Electromyography (EMG) reflects the electrical activities 
produced by skeletal muscles, and can be easily acquired 
from the skin surface (surface EMG, sEMG) or within 
the muscle using different electrodes and sensors. EMG is 
promising to be used as an effective HMI input which reflects 
the subject's motion intention for the high correlation and 
electromechanical delay characteristics between EMG and 
muscle force [3]. 

As shown in Fig. 1, EMG signals can be simply seen as 
the motor commands from CNS (central nervous system), 
and map to the movements through muscle activation dy­
namics, muscle contraction dynamics, joint geometry, and 
joint dynamics [4], where joint geometry represents the 
corresponding moment arm of each muscle. Meanwhile, 
muscle contraction dynamics is influenced by joint angles 
and joint angular velocities through the force-length (F-L) 
and force-velocity (F-V) relationships, and muscle moment 
arms also depend on joint angles [5]. 

Two kinds of models could be found in literature: Hill-type 
models [4], [6], [7] and black-box models like ANN etc [8], 
[9], [10]. Compared with the Hill-type models, where all the 
dynamic processes of each muscle are built one by one [5], 
ANN treats the musculoskeletal system as a whole system 
with EMG as the input and voluntary efforts or limb motions 
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Fig. 1. Schematic diagram of the neuromusculoskeleton model (8 is joint 
angle, and iJ is joint angular velocity). 

as the output. Therefore, ANN model is more appropriative 
for applications like HMIs, which doesn't need to investigate 
the physiological characteristics of each muscle. 

As the human voluntary efforts under dynamic conditions 
are difficult to obtain in vivo, most previous studies focused 
on isometric [11] or isokinetic contractions [12]. Besides, 
as the structure of the human shoulder is very complex, 
complete upper limb model was difficult to build and used. 
Therefore, most previous studies focused on the elbow 
joint [13] or 2-dimensional movements of the shoulder and 
forearm [14]. 

In this paper, we built an sEMG-driven musculoskeletal 
model of the should and elbow joints based on ANN under 
isometric contractions in horizontal plane. Unlike in the 
previous studies where subjects contracted their muscles 
with different loads in hand [14], in this study the subjects' 
voluntary efforts were regulated continuously with the aid 
of an haptic interface which was designed for post-stoke 
rehabilitation. 

Besides, in order to model the dynamics in musculoskele­
tal system, time-delay neural network (TDNN) was used, 
in stead of the most-used multilayer feedforward neural 
networks (MFNN) [8], [15]. MFNN model could fit the 
samples well, but it's a static model, and could not represent 
the dynamic processes in the musculoskeletal model, and 
MFNN model was proved to have larger risk of overfitting 
than TDNN model in the experiment. 

Though the model was built under isometric conditions, 
in this sudy the model was proved to be also effective to 
estimate the human voluntary efforts in slow movement con­
ditions. Therefore, this model could be used for static muscle 
force evaluation, and also can be used for neuromuscular 
interface in slow rehabilitation training [16] or exoskeleton 
robot manipulation [6]. 

The rest of this paper is organized as follows: Section 
II demonstrates the experiment procedure, which includes 
experiment setup, signal acquisition and preprocessing. Sec-



tion III presents the ANN model development procedures in 
detail, and the results are presented in Section IV. Finally, 
Section V contains some discussions and concludes this 
paper. 

II. EXPERIMENT 

Three healthy volunteers participated in this study, and 
informed consent was obtained from all individual partici­
pants. All procedures performed in studies involving human 
participants were in accordance with the ethical standards of 
the institutional research committee. 

A. Experiment Setup 

As shown in Fig. 2, the experiment was conducted with 
the aid of a planar 2-DOF (degree of freedom) robot, which 
features high stiffness and low inertial and friction. The force 
exerted to the subject at the handle can be regulated by 
controlling the motor torques, and the maximal force output 
of the robot is higher than 30 N with in the 500 mmx418 
mm workspace. 

EMG Sensors lMU Sensors 

Fig. 2. Experiment setup, where sEMG sensors were used for EMG 
acquisition, and IMU sensors recorded the postures of the forearm and upper 
arm. 

As the muscle contraction dynamics and muscle moment 
arms are effected by joint angles, sEMG signals were ac­
quired at nine different positions within the workspace, which 
represented different configurations of the upper limb. 

In order to obtain samples which can represent the overall 
characteristics of the related muscles, the robot regulated the 
the amplitude and direction of the force output continuously 
in the manner of Archimedes spiral (shown in Fig. 3) as: 

r=a+be (1) 

where r and f) are the amplitude and direction of the force, 
respectively, and real numbers a and b control the shape of 
the spiral. In this study, a = 0, and b = 1/27r, hence the 
distance between successive turnings was 27rb = 1 N. 
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Fig. 3. Illustration of Archimedes spiral, where r and () are the amplitude 
and direction of the force respectively. 

The direction of the force varied with a constant speed � 
rad/s: 

f) = "!.-t 2 
(2) 

As a result, the amplitude of the force also varied linearly 
with time: 

r=a+bf) 
= -.l x !it r7r 2 = 4t 

(3) 

In the experiment, the maximum force amplitude was 15 
N. According to (3) , the robot force regulation lasted for 60 
s at each position. 

The force outputs were displayed on the screen, and the 
subjects were required to contract their muscles to resist the 
robot and stay still, and the voluntary force of the subject at 
the handle was: 

F = -F = _ [ Fx ] = _ [ rc?sf) ] h r F rsmf) y 
(4) 

where Fr is the robot's force output, and Fh is the human 
reactive force. 

B. Slow Movement Experiment 

Besides the isometric conditions at a static position, we 
also acquired some experiment samples under slow move­
ment conditions. The robot were controlled to move along a 
circle (diameter: 160 mm) with a small velocity of 10° / s. 

The robot's position was controlled in the Cartesian space 
with a PD ( proportional plus derivative) controller: 

where Kp and Kd are the proportional and derivative factor 
matrix respectively, and Xr and xr are the reference trajec­
tory and velocity vector, which are defined as: 

Kp= [ 20
0
0 0  

Kd= [ 2
0
0 

o 
20 0 0  

(6) 

(7) 



and 

x(t) = 0.16 * [ C?S(l&�t) ] 
sm( 180 t) (8) 

The static experiment data were used to train the neural 
network model, while the slow movement data were used 
to test if the isometric model could be used to estimate the 
force of slow movement case. 

C. Data Acquisition 

During the experiment, sEMG signals of six principal mus­
cles (pectoralis major, deltoid, infraspinatus, biceps brachii, 
triceps brachii, brachioradialis) relevant to the should-elbow 
motions were acquired. 

A self-designed 6-channel sEMG amplifier (gain: 1000, 
built-in filter: 20-500 Hz) was used for sEMG acquisition, 
and two MEMS inertial measurement units (lMU) were 
used to record the posture of the upper arm and forearm 
respectively. The filtered sEMG signals were saved in the 
computer using a 16-bit DAQ card (USB6211 by NI, USA) 
at a sample rate of 2 kHz, and the lMU outputs were sent 
to the computer via bluetooth at an update rate of 40 Hz. 

A representative data acquisition result is shown in Fig. 4. 
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", 2g � -20 '-----------'-----------'------'----------'--------'---=----' 
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Fig. 4. Representative recordings of sEMG of six muscles and forces 
exerted by the robot at the handle. 

D. Data Preprocessing 

The complete flowchart of sEMG preprocessing is shown 
in Fig. 5. 

In order to obtain smooth EMG amplitude signals, the raw 
sEMG outputs were full-wave rectified and passed a low­
pass fourth-order Butterworth filter with a cutoff frequency 
of 3 Hz. The joint angles of the shoulder and elbow were 
calculated based on the lMU outputs. Then both the EMG 
amplitude signals and joint angles were averaged over 50 
ms moving windows, and the EMG amplitude signals were 
normalized to the maximal isometric activations. 

III. ANN MODEL DEVELOPMENT 

The development processes of the ANN model were con­
ducted based on MATLAB Neural Network Toolbox (Version 
8.0, The MathWorks, Inc., USA). 
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Fig. 5. Preprocessing flowchart of sEMG. 

A. ANN Model Structure 

As we have mentioned before, musculoskeletal system has 
very complicated nonlinear dynamics. In this study, we built 
a time-delay neural network (shown in Fig. 6) to represent 
this dynamic relationship. 

EMGl(t) 
EMG2(t) 
EMG3(t)_ 
EMG4(t)_ 
EMG5(t) 
EMG6(t) 

e(t)I---� )"----F. 

input layer hidden layer output layer 

Fig. 6. Structure of the TDNN model used in this study with time delay 
d. n is the number of the input features, m is the number of the hidden 
layer, w is the weight, and b is the bias. 

As shown in Fig. 6, the EMG amplitude samples of recent 
several steps and joint angles were used as the input, and the 
voluntary efforts at the hand were the output. As a result, 
the TDNN model worked as an NMA (nonlinear moving 
average) poster filter of the EMG signals. 

In this study, the activation functions of input and output 
neurons were linear, and the activation function of the hidden 
layer were sigmoid, which are defined as below: 

fin(X) = H!-x (10) 

where W is the weight and f is the activation function. 
The time delay d in TDNN was set to 3 in this study, 

which means all the sEMG samples of last 150 ms were 
used in ANN building. As a result, the TDNN model has 
26 inputs (EMG: 4 stepsx6 channels, joint angles: 2) and 2 
outputs (Fx, Fy). 

B. ANN Training 

The experimental samples were divided into 3 subsets 
randomly: the training subset (70%),  the validation subset 
(15%),  and the test subset (15%).  The network was adjusted 



according to the training set errors, and the validation error 
measured the network generalization during the training 
process, and halted the training process when the network 
generalization stopped to improve. The test subset had no 
effect on the training but provided an independent measure 
of network performance during and after training [17]. 

The network performance function was mean square error 
(MSE, the average squared error between the network outputs 
and the target outputs): 

1 N 2 1 N 2 MSE = 
N L (ei) = 

N L (ti - ai) (11) 
i=l i=l 

where a is the network output and t is the target output. The 
training method was Levenberg-Marquardt backpropagation: 

Xk+1 = Xk - [JT J + p,Ij-l JT e (12) 
where J is the Jacobian matrix that contains first derivatives 
of the network errors with respect to the weights and biases, 
e is a vector of network errors, I is the identity matrix, and 
p, is a non-negative damping factor which is adjusted at each 
iteration [17]. 

Besides the experiment samples, we generated some addi­
tional zero-EMG training samples, where the EMG features 
of each muscle were zero, and the shoulder and elbow joint 
angles averagely spanned the joint angle space (shoulder 
joint: 50 values among 0-80°, elbow: 50 values among 0-
130°). As the EMG features were zero, the force samples 
were zero, too. These samples were used with the experiment 
samples for ANN training, and worked as the zero boundary 
condition. 

IV. RESULTS 

In this section, training result and estimation performance 
of the TDNN model are presented. Besides, the performance 
of MFNN model and TDNN model are compared, and 
slow movement samples are used to test TDNN model's 
generalization ability. 

A. Training Result 

Based on the TDNN structure, the complexity of the 
network increased with the increase of the number of hidden 
neurons. The MSEs of the training samples and test samples 
changed by adjusting the number of hidden neurons. In this 
experiment, the network was trained 5 times with different 
random initial conditions, and the training MSEs had no 
obvious decreases after the number of hidden neurons was 
above 25. Since there was a risk of overfitting when the 
network was set more complicated, the scale of the hidden 
layer was set 25. 

Besides the number of hidden neurons, the number of 
training iterations was also a factor that affected the result. 
Fig. 7 shows the relationship between the number of iteration 
and the MSEs of the training, validation, and test samples. 
As shown in Fig. 7, the validation error decreased during 
the initial phase of training, as did the training set error. 
However, when the network began to overfit the sample, 
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the MSE of the validation set began to rise. In order to 
avoid overfitting, a method named early stopping supported 
by MATLAB was used. When the MSE of validation set 
increased for a specified number of iterations (default: 6) , 
the training process was stopped, and the weights and biases 
at the minimum of the validation error were returned [17]. 
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Fig. 7. Typical MSEs changes of the TDNN model with training iterations. 

B. Estimation Performance 
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Fig. 8. Comparison of the force estimation and the actual force samples. 

Fig. 8 presents a typical estimation result of the TDNN 
model we have built, where the output of the model could 
fit the targets well most of the time, except at small-value 
samples. We can see from Fig. 4 that sEMG of these 
samples were weak, and the existing noise might cause larger 
estimation errors than at other samples. 

Table I shows the RMSE (root mean square error), and the 
relative estimation error between the estimation value and 
the target value of the model of each subject. The estimation 
results of both the training set and test set are given, and 
the average estimation error of the training set across three 
subjects was 0.72 ± 0.18 N. 

C. TDNN vs. MFNN 

Basic multilayer forward neural networks are the most­
used networks in isometric contractions. However, MFNN is 



TABLE I 

ESTIMATION PERFORMANCE OF THE TDNN MODEL ACROSS ALL 
SUBJECTS. 

Training set Test set 

Force range RMSE Relative RMSE Relative 
Subject N N error N error 

A 0-15 0.70 4.7% 1.30 8.7% 
B 0-15 0.91 6.1% 1.02 6.8% 
C 0-15 0.55 3.7% 0.90 6.0% 

Mean 0-15 0.72 4.8% 0.99 7.2% 
Standard 0 0.18 1.2% 0.31 1.4% deviation 

RMSE=v'MSE; Relative error = RMSElForce range. 

a kind of static network, while the musculoskeletal system 
has complicated dynamics, even in isometric conditions, and 
electromechanical delay is a well-known result of muscu­
loskeletal dynamics. In order to compare these two types of 
neural networks, we built a basic MFNN model (shown in 
Fig. 9) , and then trained with the same experimental samples 
and zero-EMG samples. 

EMG6(t) 

B(t) 

input layer hidden layer output layer 

Fig. 9. Structure of the MFNN model used in this study. m is the number 
of the hidden layer, w is the weight, and b is the bias. 

After training, the MFNN model could achieve a esti­
mation precision of 0.66 N, which was comparable with 
that of TDNN model. In order to test their generalization 
performance, we calculated the error autocorrelation function 
of MFNN and TDNN model respectively. For a perfect 
estimation model, there should only be one nonzero value 
at zero lag (this is the MSE), which means the estimation 
errors were completely uncorrelated with each other (white 
noise) [17]. 

As shown in Fig. lO(a) , there were significant correlations 
within 0-3 lag (0-150 ms) , which means the MFNN model 
we built could not represent this dynamic process well, and 
had large risk of overfitting. 

On the contrary, as shown in Fig. 1O(b), the error autocor­
relation function of the TDNN model was small except at 
o and 1 lag. Compared with the case of MFNN model, the 
TDNN model had less overfitting risk. On the other hand, the 
error autocorrelation had no more improvement if the time 
delay was set above 3. 
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Fig. 10. Error autocorrelation function of (a) MFNN model and (b) TDNN 
model (95% confidence limits). 

D. Test Result with Slow Movement Samples 

As we had proved the effectiveness of TDNN model to 
estimate voluntary efforts in isometric contraction, we turned 
to test if this model can estimate voluntary efforts accurately 
in slow movement. 

The EMG and joint angle samples acquired in slow circle 
movements were fed into the TDNN model we had built, and 
the network outputs were compared with the force samples 
to test the generalization performance of the model. 

As shown in Fig. 11, though the estimation error was high­
er than training error of isometric contractions (MSE: 19.4) , 
the model could detect the variation trend of the force in 
both directions, and part of the error might attribute to the 
neglection of the inertial force of the robot and human limb. 

Fig. 11. Estimation result of the TDNN model, where (a) and (b) are the 
result of Fx and Fy respectively. 



V. DISCUSSIONS AND CONCLUSIONS 

In this study, an sEMG-driven musculoskeletal model of 
the shoulder and elbow joints under isometric contractions 
was developed based on TDNN. The sEMG and force sam­
ples were acquired with the aid of a 2-DOF robot with force 
feedback abilities, where both the magnitudes and directions 
of the force were regulated continuously. The TDNN model 
was shown to be able to fit the training samples well, and 
the average estimation error was 0.72 ± 0.18 N. 

The TDNN model was shown to have less risk of over­
fitting than the commonly used MFNN model. Though in 
the isometric experiment, the subjects had no movements, 
the related muscles contracted to resist the force exerted 
by the robot. As shown in Fig.l, there are two dynam­
ics between EMG and muscle contraction force: muscle 
activation dynamics and muscle contraction dynamics, and 
the electromechanial delay is a well known result of these 
dynamics. 

Though MFNN model could fit the experiment samples 
well, it's an static networks, where the output only depends 
on the current EMG sample, and cannot represent the inher­
ent complicated dynamics. The autocorrelation function in 
this study has proved that MFNN model had larger risk of 
overfitting. On the contrary, the TDNN model included sever­
al steps of EMG samples, and worked as a nonlinear moving 
average (NMA) filter, which was a nonlinear counterpart of 
the linear moving average filter. 

Besides, the TDNN model we built in isometric conditions 
could be used to estimate voluntary efforts in slow move­
ments. As we have mentioned before, the musculoskeletal 
model under dynamic conditions are difficult to built, as the 
voluntary efforts cannot be measured in vivo, and estimation 
methods are not accurate enough for some applications 
like robot control [18]. On the other hand, there are many 
applications where the muscles are in isometric contractions 
(like in muscle force evaluation) or in slow movements (like 
in rehabilitation training or exoskeletal robots). 

Though the TDNN model in this study was built under 
isometric conditions, the experiment results have proved its 
power to be used in slow movement cases. Though the 
estimation error was higher than that of training samples, the 
model is accurate enough for motion intention detection and 
perform a closed-loop control, where the subject can regulate 
its EMG outputs to adapt to the numerical model [19]. 
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