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As an important learning scheme for Multi-Instance Learning (MIL), the Instance Prototype (IP) selection-
based MIL algorithms transform bags into a new instance feature space and achieve impressed classi-
fication performance. However, the number of IPs in the existing algorithms linearly increases with the
scale of the training data. The performance and efficiencies of these algorithms are easily limited by the

subspaces-based instance prototype selection method that is suitable for reducing the computation
complexity for large scale training data. In the proposed algorithm, we introduce the low-rank matrix
recovery technique to find two discriminative and clean subspaces with less noise; then present a ℓ2;1

norm-based self-expressive sparse coding model to select the most representative instances in each
subspace. Experimental results on several data sets show that our algorithm achieves superior and stable
performance but with lower dimension compared with other IP selection strategies.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

As a variant of the supervised learning framework, Multiple
Instance Learning (MIL) represents a sample with a bag of several
instances instead of a single instance. It only gives each bag, not
each instance, a discrete or real-value label. In binary classification
case, MIL assumes that all instances in a negative bag are actually
negative, while at least one positive instance in a positive bag is
actually positive. Therefore, a positive bag may contain some
negative instances. The MIL problem is firstly introduced in the
context of drug activity prediction [1]. Since then, a wide variety of
different applications have been formulated as multiple instances
learning problem, such as stock prediction [2], identification of
proteins [3], and text classification [4]. Another important emer-
ging application comes from the image understanding, in which an
image is viewed as a bag of local regions (or objects), and then the
MIL technique is used for content based image retrieval [5,9],
image categorization [6], image emotion analysis [7], and social
media [8].
bli@nlpr.ia.ac.cn (B. Li).
1.1. Related work

Past decades have witnessed great progress in learning algorithms
for MIL. They can be roughly divided into two major groups: gen-
erative model and discriminative model. Most earlier approaches,
including Axis-Parallel Rectangles (APR) [1], diverse density (DD) [2],
and EM-based diverse density (EM-DD) [10] belong to the generative
category, in which they locate a region of interest in the instance
feature space that has minimal distances from all positive instances
and maximal distances from all negative instances. The methods
belonging to the discriminative category try to transform the MIL
problem into single-instance problem and then employ the standard
discriminative learning paradigm. Citation K-nearest neighbor (KNN)
[11] extends the standard KNN classifier to MIL. mi-SVM, MI-SVM [4],
DD-SVM [2], and missSVM [12] are all variants of Support Vector
Machine (SVM) classifier for MIL. Sparse representation model
has been extended for MIL [13,14]and achieves good performance.
Recently, deep learning is also applied to solve MIL problem [28].
Other prominent classifiers have also been extended in MIL problems,
for example, Multiple Instance Boosting (MI-Boosting) [15], multi-
instance logistic regression [16], and fast bundle algorithm for
MIL [26].

Although there are many elaborate learning schemes for MIL,
Chen et al. [6] points that most of the existing algorithms are
unsuitable for tackling some specific MIL applications such as
object recognition. Because the object recognition problem cannot
strictly satisfy the original definition of MIL [1,27]. To address this
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Fig. 1. Block diagram of the proposed SubMIL algorithm.
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issue, a novel solution, instance selection-based algorithm, has
been proposed for MIL and achieves impressed performance. The
representative methods include MIL-Embedded instance Selection
(MILES) [6], MIL-Disambiguration (MILD) [17], and MIL-Instance
Selection (MILIS) [18]. The essential idea of these methods is to
map each bag into a new instance feature space based on the
distances from a subset of instances (termed as instance proto-
types, IP) selected from training bags. Therefore, a good IP selec-
tion strategy is crucial to the performance of these IP selection-
based MIL methods.

The earliest instance selection solution may be dated back to
MILES [6]. Actually, MILES does not explicitly give out the selection
of instances; instead, all the instances participate in the bag fea-
ture mapping and the selection is implicitly conducted through
feature selection based on ℓ1 norm SVM classifier. Since each
instance is used to form the bag-level feature mapping in MILES,
the dimensionality of feature vector is very high and given by the
total number of instances in training data, which in turn leads to
high complexity for both feature computation and ℓ1 norm SVM
optimization. In order to reduce the feature dimension, MILIS [18]
proposes to use a normalized probability density function (PDF) to
model all negative instances in negative bags, then select the most
positive and negative instance from each positive and negative
bag, respectively. Although MILIS selects much less IPs than MILES,
it still has following problems. (1) Since one instance must be
selected from each bag, the number of IPs in MILIS is equal to the
number of bags, which may still inevitably result in high-
dimensional feature vector when facing a large number of bags
in training set. (2) Although the most positive (negative) instances
in bags are very typical training samples, they cannot represent
the distribution of positive (negative) instances very well, and
have little effect on the real classification hyperplane. (3) The IPs
are devoid of representativeness and compactness, resulting in the
information embedded in them is easy to be redundant and sen-
sitive to noise or corruption.

1.2. Our work

In this paper, we propose a novel MIL algorithm based on
discriminative subspaces (SubMIL). The proposed algorithm is
efficient and suitable for large-scale MIL problems. The method
presented here has three major advantages. Firstly, we find two
compact and discriminative subspaces before IP selection through
the low-rank matrix recovery technique (LR) [19], one for positive
instances and the other for negative instances. So the obtained
subspaces are more robust to noise and outlier due to the noise
removal via low-rank matrix recovery. Second, the ℓ2;1 norm-
based self-expressive sparse coding model is used to select the
most representative, but not necessarily most positive/negative
instances, in each subspace. Compared with IP selection strategy in
MILIS that always extracts the most positive (negative) instances,
the selected instances from our method can represent the dis-
tribution of instances in each subspace more effectively. Thirdly,
the ℓ2;1 norm-based self-expressive sparse coding model can
guarantee the sparsity and stableness of the selected instances. In
other words, the number of the selected IPs of our algorithm is
much lower than the other method's and does not obviously
grows up with the number of bags/instances in training set. The
experiment results on both benchmark and image categorization
data sets demonstrate that the proposed approach is superior to
the state-of-the-art instance selection strategies for MIL.

The remainder of the paper is organized as follows: Section 2
presents an overview of the proposed SubMIL algorithm; Section 3
gives out the details of each step in SubMIL; the experiments and
analysis are give out in Section 4, and Section 5 concludes
our paper.
2. Preliminaries and algorithm overview

Before giving out the details of the proposed algorithm, we briefly
review the definition of MIL as following. Let χ denote the instance
space. Given a data set fðX1; y1Þ;…; ðXi; yiÞ;…; ðXN ; yNÞg, where Xi ¼ f
xi;1; xi;2;…; xi;ni

gDχ is called a bag and yAY ¼ fþ1; �1g is the label
of the bag Xi. Here xi;jARz is called an instance with feature dimen-
sion of z in the bag Xi. If there exists mAf1;…;nig such that xi;m is a
positive instance, then Xi is a positive bag and yi¼1; otherwise
yi ¼ �1. Here, the concrete value ofm is always unknown. That is, for
any positive bag, we can only know that there is at least one positive
instance in it, but cannot figure out which ones they are from.
Therefore, the goal of multi-instance learning is to learn a classifier to
predict the labels of unseen bags. With these ingredients, we give out
an overview of our proposed method in Fig. 1. It includes four
main steps.

Step 1: Initialize instance set: This step is to initialize the positive
instance set Bt

1 and negative instance set Bt
0 (t is the iteration

number) from the training set fðX1; y1Þ;…; ðXi; yiÞ;…; ðXN ; yNÞg. The
initial negative set B0

0 ¼ fxi;j jxi;jAXi \ yi ¼ �1g includes all the
instances in negative bags but ignores those potential negative
ones in positive bags. The positive instance set is initialized to be
null set B1

0 ¼∅, due to the fact that there is no instance unam-
biguously assigned as positive. The positive instance set will be
updated in the following steps

Step 2: Finding discriminative instance subspace: By stacking all
feature vectors of instances in both Bt

0 and Bt
1 column by column,

we can obtain two instance feature matrix as B0
t ARz�n0

and
B1
t ARz�n1

, where n0 and n1 are the number of instances in Bt
0 and

Bt
1. Then a novel method based on the low-rank matrix recovery

technique [19] is employed to remove the noise and find two
discriminative subspaces: A0

t for negative instance set and A1
t for

positive instance sets.
Step 3: Selecting representative instance prototypes: We select

the most representative IP subsets Pt0 and Pt
1 from both subspaces

via ℓ2;1 norm-based self-expressive sparse coding model.
Step 4: Updating positive instance set: In this step, given selected

IP sets Pt
0 and Pt

1, we fix the negative instance set Bt0, but update
the positive instance set Bt1. We set Bt0 untouched due to the fact
that all instances in negative bags are necessarily negative. The
positive set is updated through selecting the instance that is most
likely to belong to the positive subspace from each positive bag via
another sparse coding model. The algorithm proceeds between
step 2 and step 4 iteratively, until positive instance set converges.
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Step 5: Bag-level feature mapping and classifier training: After
obtaining the final IP sets Pt0 and Pt

1, we transform each bag into a
bag-level feature vector through a similarity-based feature map-
ping function, and feed all the feature vectors from the training
bags along with corresponding labels into a linear SVM to find an
optimal classifier.
〉
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3. The proposed SubMIL algorithm

3.1. Finding discriminative subspaces

The selected IPs play a key role in the success of IP selection-
based MIL. Since they should be compact, representative and
clean, it is more reliable if all IPs are selected from class-specific
and discriminative subspaces where different classes are well
separated. Therefore an effective subspace segmentation algo-
rithm must be helpful in finding suitable IPs. Despite significant
progress in subspace segmentation, most popular methods [20,21]
can only exactly solve the problem when the original data is clean
and the samples can be strictly drawn from the subspaces. All of
these method face lots of challenges when they are applied to
segment the instances in MIL into two real underlying subspaces
due to the following facts: (1) Noise or corruptions may bias the
negative instances' distribution in MIL; (2) For positive instances
in MIL, since there in no unambiguously positive label assigned to
any instance, we have to “guess” the most potentially positive
instance in each positive bag according to the instance distribu-
tion. This “guess” operation inevitably results in some fake positive
instances that interfere with subspace segmentation.

In this paper, to combat the noise and ambiguous label pro-
blems, we borrow the strength of the robust Principal Component
Analysis (robust PCA) recently proposed by Wright et al. [19] and
propose a discriminative low-rank matrix recovery model to seg-
ment the discriminative underlying instance subspaces for MIL.
The key technique of Robust PCA is low-rank matrix recovery. It
seeks to recover a low-rank matrix M from a highly corrupted
matrix D¼MþE, where M implies the clean date in a low
dimensional subspace, and E is the associated sparse noise. More
precisely, given the input data matrix D, the robust PCA model can
be formulated as [19]

min
M;E

‖M‖nþλ‖E‖1 s:t: D¼MþE; ð1Þ

where the nuclear norm ‖�‖n (sum of the singular values of a
matrix) is a convex relaxation of the matrix rank function, the ℓ1
norm ‖�‖1 is to promote sparsity, and the parameter λ40 is a
tradeoff between the two items.

In our subspace segmentation method, we decompose the
original instance matrix B0

t (or B1
t ) into a clean low-rank matrix A0

t

(or A1
t ) and a sparse error matrix E0

t (or E1
t ). In addition, to make

sure that the clean matrixes A0
t and A1

t lie in two discriminative
subspaces, we add a regularization term to promote the inco-
herence between the two low-rank matrixes, as

min
Aq
t ;E

q
t

X1
q ¼ 0

‖Aq
t ‖nþλ‖Eq

t ‖1
� �þηtr 1 A0

t

� �T
A1
t

� �
; s:t: Bq

t ¼Aq
t þEq

t ;

ð2Þ
where 1 is a n1 � n0 matrix, the second term sums up the dot
production between each pair of the low-rank matrixes A0

t and A1
t ,

and is penalized by the parameter η balancing the low-rank matrix
approximation and matrix incoherence.

Since there are two variants A0
t and A1

t to be determined, we
should fix one and optimize the other one. To the end, we rewrite
Formula (2) as a class-wise optimization problem across different
classes as

min
Aq
t ;E

q
t

‖Aq
t ‖nþλ‖Eq

t ‖1þηtr 1 A0
t

� �T
A1
t

� �
s:t: Bq

t ¼Aq
t þEq

t : ð3Þ

Without ambiguousness, we discard the iteration number t and
introduce a new parameter Zq. Thus, Formula (3) can be converted
into the following equivalent problem:

min
Aq ;Eq

‖Zq‖nþλ‖Eq‖1þηtr 1 A0
� �T

A1
� �

; s:t: Bq ¼AqþEq;Zq ¼Aq:

ð4Þ
To solve the optimization in Formula (4), we extend the Aug-

mented Lagrange Multipliers (ALM) [22] that has been widely used
for the standard low-rank problem. The Formula (4) can be solved
by the ALM method that minimizes the following augmented
Lagrange function:

L¼ ‖Zq‖nþλ‖Eq‖1þηtr 1 A0
� �T

A1
� �

þ〈Yq
1;B

q�Aq�Eq〉þ 〈Yq
2;Z

q�Aq

þμq

2
‖Bq�Aq�Eq‖2F þ‖Zq�Aq‖2F
� 	

; ð5Þ

where Yq
1 and Yq

2 are Lagrange multipliers, and μq40 is a penalty
parameter. Since the above problem is unconstrained, we firstly fix
other variables untouched and find Zq, Aq, and Eq respectively that
can minimize Formula (5); then update the Lagrange multipliers
Yq
1 and Yq

2. The inexact ALM method for discriminative instance
subspace segmentation is outlined in Algorithm 1, where the
superscript k indicates the iteration number in this algorithm.

Without loss of generality, we take the optimization of A0 as an
example and give the details of updating/solving variables in each
iteration.

Algorithm 1. Pseudo-code for instance subspace segmentation.
ut: Instance matrix B0 and B1, parameter λ and η.
Initialize ½Zq�0 ¼ ½Aq�0 ¼ 0;Y0

1 ¼ 0;Y0
2 ¼ 0;μ040;m¼ 0;

While not converged do
q¼m%2, k¼0;
While not converged do
½Zq�kþ1 ¼ argmin

Zi
LðZq; ½Aq�k; ½Eq�k; ½Yq

1�k; ½Yq
2�k; ½μq�kÞ;

½Aq�kþ1 ¼ argmin
Ai

Lð½Zq�kþ1;Aq; ½Eq�k; ½Yq
1�k; ½Yq

2�k; ½μq�kÞ;

½Eq�kþ1 ¼ argmin
Ei

Lð½Zq�kþ1; ½Aq�kþ1;Eq; ½Yq
1�k; ½Yq

2�k; ½μq�kÞ;

½Yq
1�kþ1 ¼ ½Yq

1�kþ½μq�kðBq�½Aq�kþ1�½Eq�kþ1Þ;
½Yq

2�kþ1 ¼ ½Yq
2�kþ1þ½μq�kð½Zq�kþ1�½Aq�kþ1Þ;

½μq�k ¼ ρ½μq�k;
k¼ kþ1;
End While
m¼mþ1;
End While

tput: A0 and A1.
Ou

updating ½Z0�kþ1. To update ½Z0�kþ1, we have to fixe ½A0�k and
½E0�k and solve the following problem accordingly:

½Z0�kþ1 ¼ argmin
Z

JZ0 Jnþo ½Y0
2�k;Z04

þ½μ0�k
2

ðoZ0�½A0�k;Z0�½A0�k4 Þ

½Z0�kþ1 ¼ argmin
Z

εJZ0 Jnþ1
2 jZ0�Xj2F ð6Þ

where ε¼ 1=½μ0�k and X¼ ½A0�k�½Y0
2�k=½μ0�k. As suggested by [23],
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the solution to the above problem can be solved as

½Z0�kþ1 ¼USεVT ¼UTε½S�VT ; where ðU; S;VT Þ ¼ SVDðXÞ; ð7Þ
where SVDðÞ is the singular value decomposition (SVD), S is the
singular value matrix of X. The operator Tε½S� in Eq. (7) is defined
by element-wise thresholding of S [23], i.e., Tε½S� ¼ diagð½tε½s1�; tε½
s2�;…; tε½sr ��Þ for rank of S being r, and each tε½s� is determined as

tε½s� ¼
s�ε if s4ε;
sþε if so�ε;
0 otherwise:

8><
>: ð8Þ

updating ½A0�kþ1: To update the ½A0�kþ1, we get the derivative of
L with other variants fixed and obtain the following form:

∂L
∂A0 ¼ 0

½A0�kþ1 ¼ 1
2

B0�½E0�kþ½Z0�kþ1
� �

þ½Yi
1�kþ½Yi

2�k
½μ0�k

�ηðA11Þ
½μ0�k

 !
ð9Þ

updating ½E0�kþ1: Similar to updating ½Z0�kþ1, we fixe ½A0�kþ1

and ½Z0�kþ1 and solve the following problem:

½E0�kþ1 ¼ argmin
E0

λJE0 J1�o ½Y0
1�k;E04

þ½μ0�k
2

oB0�½A0�kþ1�E0;B0�½A0�kþ1�E04
� �

½E0�kþ1 ¼ argmin
E0

σ JE0 J1þ1
2 ‖E

0�Q‖2F ð10Þ

where σ ¼ λ=½μ0�k and Q ¼ B0�½A0�kþ1þ½Y0
1�k=½μ0�k. The solution

to the above problem can be solved as [23]

½E0�kþ1 ¼ Sσ ¼ Tσ ½S�; where ðU; S;VT Þ ¼ SVDðQ Þ ð11Þ
Once A0 is obtained, we can iteratively optimize A1 using the
similar updating method. The convergence of the two matrixes
indicates the termination of the optimization process.

3.2. Selecting representative IPs

Given the obtained clean instance data lying in two low
dimensional subspaces, this section details how to select repre-
sentative IPs from each subspace. It is worth noting that there are
two necessary principles in IP selection: (1) Sparsity. Since the
number of selected IPs equals to the dimension of the final bag
feature after bag-instance feature mapping [6,18], we should select
IPs as few as possible to keep the low dimension. (2) Representa-
tiveness. The selected IPs should be representative in corre-
sponding subspace. In other words, for a liner subspace, all sam-
ples in the subspace should be able to be linearly presented by the
selected IPs.

Following the two principles and inspired by the compact
dictionary learning [24], we introduce a self-expressive sparse
coding model (SSC) with ℓ2;1 norm for IP selection. Let
Aq
t ¼ ½aq1; aq2;…; aqnq �ARz�nq , the goal of the SSC is to find a subset of

representative instances with much less number that can best
reconstruct all the instances in Aq

t . It can be formulated as

min
C

Xnq

j ¼ 1

‖aqj �Aq
t cj‖

2
2þγ‖C‖2;1;C¼ ½c1;…; cj;…cnq �;

¼min
C

‖Aq
t �Aq

t C‖
2
F þγ‖C‖2;1; ð12Þ

where cjARnq
in the coefficient matrix CARnq � nq is the recon-

struction coefficient of ajq, and the ℓ2;1 norm1‖C‖2;1, which is the
convex relaxation of ‖C‖2;0, is to promote row-sparsity of C [25]. If
let cj to be the jth row vector of C, the rows of C with higher ℓ2;1
1 For a matrix WARm�n , ‖W‖2;1 ¼
Pm

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k ¼ 1 Wj;k

� 	2q
.

norm ‖cj‖2 values imply that the corresponding instances in Aq
t are

more representative. So we reorder the instances aq1; a
q
2;…; aqnq as

aqI1 ; a
q
I2
;…; aqInq such that ‖cI1‖2Z‖cI2‖2Z⋯Z‖cInq ‖2, so we can

select πp most discriminative instances as IPs

Pq
t ¼ aqIj j jrπp

n o
ð13Þ

where πp is the number of selected positive (or negative) IPs. The
immediate advantage of this selection strategy is that the number
of selected IPs cannot linearly increase with the scale of instances
in training set, because they are only related to instance dis-
tribution, rather than instances scale.
3.3. Updating positive instance set

In this subsection, the positive instance set is subsequently
updated using the selected IPs. This can be cast as a subspace
selection problem for each instance in positive bags. The essence
of the update operation is to reselect the instance, which is most
likely to belong to extracted positive subspace, from each positive
bag to compose the updated positive instance set.

We introduce the sparse coding model again. But this time, we
represent all the instances in positive bags using the selected IPs.
In particular, we stack all the IPs in Pt

q column by column to obtain
an IP matrix as Pq

t . Given a instance xi;j from a positive bag Xi, it can
be sparsely represented as

min
αi;j

‖xi;j�Ptαi;j‖þβ‖αi;j‖1 ð14Þ

where Pt ¼ ½P0
t ;P

1
t �; the first term of Formula (14) is the recon-

struction error, and the second term is used to control the sparsity
of the coefficients vector αi;j with regularization coefficient β. We
further decompose αi;j into α0

i;j and α1
i;j that are the coefficient

vectors corresponding to P0
t and P0

t , respectively. Now the positive
instance set is updated as

B1
tþ1 ¼ xi;j jyi ¼ 1 \ xi;j ¼ argmin

xi;j AXi

di;j
� 	( )

; where di;j ¼ ‖xi;j�P1
t α

1
i;j

�‖xi;j�P0
t α

0
i;j‖ ð15Þ

It shows that the new positive instance set B1
tþ1 includes those

instances that are most likely to be near to positive subspace and
far from negative subspace.

3.4. Bag feature mapping and classification

After getting the final IPs after iterations in Fig. 1, we then
compute the bag-level feature through the similarity-based fea-
ture mapping, the same as that in MILES [6] and MILIS [18]. For a
bag Xi and the kth IP ½Pt �k, the similarity between them is defined
as

sðXi; ½Pq
t �kÞ ¼maxxij AXi

expð�φ‖xij�½Pt �k‖2Þ
� � ð16Þ

Then, the bag-level feature vector of Xi is constructed based on the
similarities between Xi and all the IPs in Pt as

f Xi
¼ sðXi; ½Pt �1Þ; sðXi; ½Pt �2Þ;…; sðXi; ½Pt �π0 þπ1 Þ

 �T ð17Þ

where π0þπ1 is the total number of selected IPs in Pt . The final
stage is to use all the bag-level feature vectors of training bags and
corresponding labels to train a linear SVM classifier to test bags'
classification.
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4. Experiments

The section is to evaluate the proposed algorithm on two dif-
ferent data sets, and compare it with other prevailing IP selection-
based and state-of-the-art MIL algorithms.

4.1. Data set

Two data sets are adopted in this paper for evaluating the
proposed algorithm. The first data set includes five benchmark
subsets that are widely used in the studies of multi-instance
learning, including Musk1, Musk2, Elephant, Fox and Tiger.
Musk1 contains 47 positive and 45 negative bags, Musk2 contains
39 positive and 63 negative bags, and each of the other three data
sets contains 100 positive and 100 negative bags. More details of
these five data subsets can be found in [1,4]. The second set is
usually used for image categorization, one of the most successful
applications of multi-instance learning. It includes two subsets,
1000-Image set and 2000-Image set, which contain ten and
twenty categories of COREL images, respectively. Each category has
100 images. Each image is regarded as a bag, and the ROIs (Region
of Interests) in the image are regarded as instances described by
nine features [6].

4.2. Experiments on benchmark sets

(1) Experiments on performance comparison: In this experiment,
we compare our SubMIL with two representative IP selection-
based MIL methods (MILES [6] and MILIS [18]) and other prevail-
ing MIL algorithms, including MI-SVM, mi-SVM [4], MissSVM [12],
PPMM kernel [11], the Diverse Density algorithm [2] and EM-DD
[10]. For each algorithm, we repeat 10-fold cross validations 10
times that follow the same procedure as many previous works and
use the average test accuracy as the final result. The parameters of
each algorithm are determined through cross validation on train-
ing data. In addition, for fair comparison, the number of IPs in
SubMIL is set to be equal to the number of training bags N, as same
as MILIS [18].

Table 1 lists the results of different algorithms. It shows that the
performance of the proposed SubMIL is pretty good. It achieves
best performance on Musk2, Elephant, Fox and Tiger sets. Fur-
thermore, the proposed SubMIL firstly promotes the performance
on Elephant set arriving at 90%. Comparing with other two IP
selection-based algorithms, the SubMIL outperforms MILIES on all
the five sets, outperforms MILIS on Musk1, and is comparable to
MILIS on Musk2. It implies that the selected IPs in SubMIL are
much more representative and discriminative than those in MILIS
and MILES.

(2) Comparison of the number of IPs: According to the results in
Table 1, the proposed SubMIL achieves better performance than
MILIS and MILES. We further compare the number of IPs used in
Table 1
Accuracy (%) on benchmark sets.

Algorithm Musk1 Musk2 Elephant Fox Tiger

SubMIL 90.2 91.3 90.0 66.2 86.3
MILIS 88.6 91.1 N/A N/A N/A
MILES 86.3 87.7 86.5 64.7 85.3

MI-Kernel 88.0 89.3 84.3 60.3 84.2
MI-SVM 77.9 84.3 81.4 59.4 84.0
mi-SVM 87.4 83.6 82.0 58.2 78.9
missSVM 87.6 80.0 N/A N/A N/A
PPMM 95.6 81.2 82.4 60.3 82.4
DD 88.0 84.0 N/A N/A N/A
EMDD 84.8 84.9 78.3 56.1 72.1
the SubMIL with those used in the MILIS in the previous experi-
ment, as shown in Fig. 2. The comparison in Fig. 2 indicates that
the number of IPs in the SubMIL is much less than the MILIS and is
no more than 50% of the number of IPs used in MILIS. Especially,
the SubMIL only uses 40 IPs in the fox set, while the MILIS should
use 200 IPs. Since the dimension of the final feature of each bag
equals to the number of IPs in both SubMIL and MILIS. The less IPs
used in SubMIL imply low dimensional features of each bag, which
also indicates high efficiency for training and test.

(3) Performance change with the Number of IPs: In order to test
the performance change with the number of selected IPs in Sub-
MIL, we set the total number of the positive and negative IPs in
SubMIL to be v% of the positive and negative bag numbers, i.e.
π0þπ1 ¼ v%� N. We try different value of v from f10;20;…;100g.
For each value of v, the average accuracies of 10 times10-fold cross
validations on the five benchmark sets are given in Fig. 3. It is very
interesting to notice that the SubMIL with 40%� N IPs can achieve
stable and high performance. The performance with v¼40 is even
comparable to MILIS and MILES. That is to say, to achieve com-
parable performance, the number of IPs in SubMIL is only 40% of
that in MILIS, which means much lower dimension and lower
computation complexity. All of these facts consistently prove that
IPs selected by our SubMIL are very discriminative and
representative.

(4) Performance comparison between with and without dis-
criminative regularization: In order to make the positive instances
and negative instances lie in two discriminative subspaces, the
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Fig. 3. Performance changes with the number of selected IPs.
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Fig. 4. Performance comparison between with and without discriminative
regularization.

Table 2
Accuracy (%) on image categorization.

Algorithm 1000-Image 2000-Image

SubMIL 83.8:[82.8,84.6] 72.4:[71.1,73.7]
MILIS 83.8:[82.5,85.1] 70.1:[68.5,71.8]
MILES 82.6:[81.4,83.7] 68.7:[67.3,70.1]

MI-Kernel 81.8:[80.1,83.6] 72.0:[71.2,72.8]
MI-SVM 74.7:[74.1,75.3] 54.6:[53.1,56.1]
DD-SVM 81.5:[78.5,84.5] 67.5:[66.1,68.9]
missSVM 78.0:[75.8,80.2] 65.2:[62.0,68.3]
Kmeans-SVM 69.8:[67.9,71.7] 52.3:[51.6,52.9]
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proposed SubMIL uses a discriminative regularization term trð1
ðA0

t ÞTA1
t Þ in Eq. (2) to separate the two subspace. To check the

effect of the discriminative regularization, we compare the per-
formance of the SubMIL with it to the performance of the SubMIL
without it (i.e. η¼ 0) on the benchmark sets. The comparison
results are shown in Fig. 4. The SubMIL with the discriminative
regularization obtains obvious performance improvements on
4 data sets, which shows that the discriminative regularization can
effectively improve the discrimination of the SubMIL.

4.3. Experiments on image categorization sets

The second experiment is conducted on those two image
categorization subsets. We use the same experimental routine as
that described in [6]. The number of IPs in this experiment is also
set as 40%� N. For each data subset, we randomly partition the
images within each category in half, and use one group for training
and leave the other one for testing. The experiment is repeated
five times with five random splits, and the average results are
recorded. The overall accuracy as well as 95% confidence intervals
is also provided in Table 2. For reference, the table also shows the
best results of some other MIL methods.

According to Table 2, the SubMIL outperforms all other algo-
rithms. Compared with MILIS, the SubMIL with much lower
dimension has comparable performance on 1000-Image set and
better performance on 2000-Image set. The confidence intervals of
the SubMIL are always much smaller than the others, which
indicates that the SubMIL has a better stableness.

5. Conclusion

Instance prototype (IP) selection has been proven to be pow-
erful for addressing high computation complexity problem in MIL.
However, noisy and redundant data, as well as high dimension
embedded in the existing IP selection-based MIL algorithms still
limit their efficiencies. In this paper, we propose a novel MIL
algorithm based on discriminative subspaces (SubMIL) that aims
to embed IP selection within subspace segmentation model. The
proposed algorithm firstly finds two compact and discriminative
subspaces based on low-rank matrix recovery technique; then the
ℓ2;1 norm based self-expressive sparse coding model is used to
select the most representative instances as IPs in each subspace;
and each bag is transformed into a bag-level feature based on
these selected IPs for final classifier training. The experiments on
both benchmark and image categorization data sets demonstrate
that the proposed approach has higher performance and lower
dimension than the state-of-the-art IP selection-based algorithms.
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