
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015 1577

Generalized Policy Iteration Adaptive Dynamic
Programming for Discrete-Time

Nonlinear Systems
Derong Liu, Fellow, IEEE, Qinglai Wei, Member, IEEE, and Pengfei Yan

Abstract—This paper is concerned with a novel generalized
policy iteration algorithm for solving optimal control prob-
lems for discrete-time nonlinear systems. The idea is to use
an iterative adaptive dynamic programming algorithm to obtain
iterative control laws which make the iterative value functions
converge to the optimum. Initialized by an admissible control
law, it is shown that the iterative value functions are mono-
tonically nonincreasing and converge to the optimal solution of
Hamilton–Jacobi–Bellman equation, under the assumption that
a perfect function approximation is employed. The admissibility
property is analyzed, which shows that any of the iterative con-
trol laws can stabilize the nonlinear system. Neural networks are
utilized to implement the generalized policy iteration algorithm,
by approximating the iterative value function and computing
the iterative control law, respectively, to achieve approximate
optimal control. Finally, numerical examples are presented to
verify the effectiveness of the present generalized policy iteration
algorithm.

Index Terms—Adaptive critic designs, adaptive dynamic
programming (ADP), approximate dynamic programming,
generalized policy iteration, neural networks, neuro-dynamic pro-
gramming, nonlinear systems, optimal control, reinforcement
learning.

I. INTRODUCTION

REINFORCEMENT learning, one of the most active
research areas in artificial intelligence, is a computa-

tional approach to learning whereby an agent tries to opti-
mize the total amount of reward it receives when interacting
with its environment [1]–[4]. Associated with reinforcement
learning methods and optimal control, adaptive dynamic pro-
gramming (ADP), proposed by Werbos [5], [6], overcomes
the curse of dimensionality problem in dynamic program-
ming (DP) by approximating the performance index function
forward-in-time and becomes an important brain-like intel-
ligent method of approximate optimal control for nonlinear

Manuscript received February 9, 2014; revised August 19, 2014 and
November 26, 2014; accepted March 14, 2015. Date of publication May 20,
2015; date of current version November 13, 2015. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grants 61034002, 61233001, 61273140, 61304086, and 61374105, in part by
the Beijing Natural Science Foundation under Grant 4132078, and in part
by the Early Career Development Award of the State Key Laboratory of
Management and Control for Complex Systems. This paper was recommended
by Associate Editor A. H. Tan.

The authors are with the State Key Laboratory of Management and Control
for Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: derong.liu@ia.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2015.2417510

systems [7]–[15]. In [16] and [17], ADP approaches were
classified into several main schemes which were heuristic
DP (HDP), dual HDP (DHP), globalized DHP (GDHP), and
their action-dependent versions.

Iterative methods are primary tools in ADP to obtain the
approximate solution of the Hamilton–Jacobi–Bellman (HJB)
equation and have received more and more attention [18]–[25].
The previous iterative ADP algorithms can be classified
into two main schemes which are based on value and
policy iterations, respectively [26], [27]. The value iter-
ation algorithm for optimal control of nonlinear systems
was first given in [27] and [28]. In [29], the conver-
gence of discrete-time value iteration algorithm was proven.
In [30], the value iteration algorithm was applied to solve
optimal tracking control problems for nonlinear systems.
In [31], the value iteration algorithm was applied by
DHP. In [32], the value iteration ADP is implemented by
GDHP. Policy iteration algorithms for optimal control of
continuous-time systems were given in [33] and [34]. In [35],
the policy iteration algorithm was successfully applied to
solve continuous-time complex-valued systems. In [36], a
discrete-time policy iteration was developed with conver-
gence and stability proofs. Based on the framework of
value and policy iteration algorithms, many investigations
of iterative ADP algorithms have been developed, such
as iterative θ -ADP algorithm [37], [38], ε-optimal con-
trol [39], [40], ADP with constraints [41]–[43], zero-sum
and nonzero-sum games [44]–[48], finite-approximation-error-
based ADP [49]–[52], ADP with unknown and partially-
unknown systems [53]–[55], online ADP [56], [57], mul-
tiagent optimal control [58], [59], integral reinforcement
learning [60], [61], and dual critic network design [62].

In [4], a generalized policy iteration algorithm, which con-
tained policy iteration and value iteration as special cases, was
constructed as a new iterative ADP algorithm to solve optimal
control problems. Generalized policy iteration algorithms
for continuous-time systems were studied in [63] and [64].
The stability and convergence properties of continuous-time
generalized policy iteration algorithms were analyzed in [65].
The sketch of the generalized policy iteration algorithm for
discrete-time nonlinear systems was described in [4] and [26],
respectively. In [4], it was pointed out that most of the discrete-
time reinforcement learning methods could be described as
generalized policy iteration algorithms. Hence, the investiga-
tions of the generalized policy iteration algorithms are impor-
tant for the development of ADP. However, the generalized

2168-2216 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

policy iteration algorithms have inherent differences from the
value and policy iteration algorithms. This makes the property
analysis of value and policy iteration algorithms invalid for
generalized policy iteration algorithms. Till now, the discus-
sions on the properties of the generalized policy iteration
algorithms for discrete-time control systems were very scarce.
To the best of the authors’ knowledge, only in [66], the
properties of the generalized policy iteration algorithms were
analyzed, while the stability property of the system under the
iterative control law in [66] cannot be guaranteed. Hence, it
is important to establish a new generalized policy iteration
algorithm with new analysis methods. This motivates our
research.

In this paper, inspired by [4], [26], and [66], a generalized
policy iteration algorithm is developed to solve the approx-
imate optimal control problems of discrete-time nonlinear
systems. First, the detailed iteration procedure of the gener-
alized policy iteration algorithm for discrete-time nonlinear
systems is presented. Second, the properties of the general-
ized policy iteration algorithm are developed. Initialized by
an arbitrary admissible control law, it proves that the general
framework of the generalized policy iteration algorithm will
converge to the optimal performance index function and the
optimal control law, under the strictly-hypothetical assump-
tion that a perfect function approximation is available. It
shows that the iterative value function is monotonically non-
increasing and converges to the optimal performance index
function. We emphasize that any of the iterative control laws
is proven to stabilize the nonlinear systems. Next, some effec-
tive methods are developed to overcome the difficulties of
obtaining the initial conditions for the generalized policy iter-
ation algorithm, which make the present generalized policy
iteration algorithm more suitable in applications. Neural net-
works are used to make an approximation implementation of
the generalized policy iteration algorithm, where the approxi-
mate optimal performance index function and control law are
obtained. Simulation results will illustrate the effectiveness of
the present algorithm.

This paper is organized as follows. In Section II, prelim-
inaries and assumptions of the generalized policy iteration
algorithm are presented. In Section III, the monotonicity
and convergence properties of the iterative value function of
the generalized policy iteration algorithm are developed. The
admissibility property of the iterative control laws is also
analyzed in this section. In Section IV, the neural network
implementation for the generalized policy iteration algorithm
is discussed. In Section V, simulation results and compar-
isons are given to demonstrate the effectiveness of the present
algorithm. Finally, in Section VI, the conclusion is drawn.

II. PRELIMINARIES AND ASSUMPTIONS

In this paper, we consider a class of discrete-time nonlinear
systems described by

xk+1 = F(xk, uk), k = 0, 1, . . . (1)

where xk ∈ R
n is the state vector and uk ∈ R

m is the control
vector. Let x0 be the given initial state and let F(xk, uk) denote
the system function, which is known. For any k = 0, 1, . . . ,

let uk = {uk, uk+1, . . .} be an arbitrary sequence of controls

from k to ∞. The performance index function for state x0
under the control sequence u0 = {u0, u1, . . .} is defined as

J
(
x0, u0

) =
∞∑

k=0

U(xk, uk) (2)

where U(xk, uk) > 0, ∀ xk, uk �= 0, is the utility function.
We will study the optimal control problems for (1). The

goal of this paper is to find an optimal control scheme which
stabilizes the system (1) and simultaneously minimizes the
performance index function (2). For convenience of anal-
ysis, the results of this paper are based on the following
assumptions.

Assumption 1: The system (1) is controllable on a compact
set �x ⊂ R

n containing the origin, and the function F(xk, uk)

is Lipschitz continuous on �x.
Assumption 2: The system state xk = 0 is an equilibrium

state of system (1) under the control uk = 0, i.e., F(0, 0) = 0.
Assumption 3: The feedback control u(xk) satisfies

u(xk) = 0 for xk = 0.
Assumption 4: The utility function U(xk, uk) is a continu-

ous positive definite function of xk and uk.
For a given control law μ, the map from initial state to

the value of
∑∞

k=0 U(xk, μ(xk)) is called a performance index
function Jμ(x0). The optimal performance index function is
denoted by

J∗(x0) = inf
μ

Jμ(x0). (3)

According to Bellman’s principle of optimality, for all xk ∈ �x,
J∗(xk) satisfies the discrete-time HJB equation

J∗(xk) = inf
uk

{
U(xk, uk) + J∗(xk+1)

}

= inf
uk

{
U(xk, uk) + J∗(F(xk, uk))

}
. (4)

Define the optimal control law as u∗(xk) =
arg infuk{U(xk, uk) + J∗(F(xk, uk))}. Then for all xk ∈ �x, the
HJB equation can be written as

J∗(xk) = U
(
xk, u∗(xk)

) + J∗(F
(
xk, u∗(xk)

))
. (5)

Remark 1: Generally, the optimal performance index func-
tion J∗(xk) is a nonanalytical nonlinear function. It is nearly
impossible to obtain J∗(xk) for all xk ∈ �x by solving the
HJB equation. To overcome this problem, a new generalized
policy iteration-based ADP algorithm is developed to obtain
the approximate solution of the HJB equation iteratively and
the neural network implementation of the present algorithm
will be given.

III. GENERALIZED POLICY ITERATION ALGORITHM

STARTING WITH ADMISSIBLE CONTROL LAW

In this section, a generalized policy iteration algorithm is
developed to obtain the optimal control law for discrete-time
nonlinear systems. The present generalized policy iteration
algorithm starts with an admissible control law, which makes
it different from [66]. Both algorithms involve updating the
value functions and control laws. The present algorithm guar-
antees all control laws from the iterative process are admissible
(and stable). However, the algorithm developed in [66] starts

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1579

with a positive semi-definite function as the initial value func-
tion, which has no guarantee to produce stable (or admissible)
control law until the iterative value function converges to the
optimum.

The goal of the present generalized policy iteration algo-
rithm is to construct an iterative control law vi(xk), which
moves the system state from an arbitrary initial state x0 to the
equilibrium 0, and simultaneously makes the iterative value
function reach the optimum. Under the strictly-hypothetical
assumption that the perfect function approximation is avail-
able, convergence and admissibility proofs will be given to
show that the value function will converge to the optimum
and any of the iterative control laws can stabilize the nonlinear
system.

A. Derivation of the Generalized Policy Iteration Algorithm

For the optimal control problems, the present control
scheme must not only stabilize the control systems, but also
make the performance index function finite, i.e., the control
law must be admissible [29].

Definition 1: A control law u(xk) is defined to be admis-
sible with respect to (2) on a compact set �u, if u(xk) is
continuous on �u, u(0) = 0, u(xk) stabilizes (1) on �u,
and ∀x0 ∈ �x, J(x0) is finite.

Define Au as the set of the admissible control laws for
system (1) with respect to (2). The present generalized pol-
icy iteration algorithm contains two iteration procedures,
which are i- and j-iterations, respectively. We introduce two
iteration indices i and ji and both of the iteration indices
increase from 0. Then, the detailed generalized policy iteration
algorithm can be described as follows.

For i = 0, let v0(xk) ∈ Au be an arbitrary admissible control
law. For all xk ∈ �x, let V0(xk) be an iterative value function
constructed by v0(xk), that satisfies the following generalized
HJB (GHJB) equation:

V0(xk) = U(xk, v0(xk)) + V0(F(xk, v0(xk))). (6)

Let {N1, N2, . . .} be an arbitrary sequence, where Ni ≥ 0,
i = 1, 2, . . . , is an arbitrary nonnegative integer. Then, for
i = 1 and all xk ∈ �x, the iterative control law is improved by

v1(xk) = arg min
uk

{U(xk, uk) + V0(xk+1)}
= arg min

uk
{U(xk, uk) + V0(F(xk, uk))}. (7)

Let j1 increase from 0 to N1. For all xk ∈ �x, we update the
iterative value function by

V1,j1+1(xk) = U(xk, v1(xk)) + V1,j1(F(xk, v1(xk))) (8)

where

V1,0(xk) = min
uk

{U(xk, uk) + V0(F(xk, uk))}
= U(xk, v1(xk)) + V0(F(xk, v1(xk))). (9)

For all xk ∈ �x, define the iterative value function

V1(xk) = V1,N1(xk). (10)

For i = 2, 3, . . . and all xk ∈ �x, the generalized policy iter-
ation algorithm can be expressed by the following two iteration
procedures.

1) i-iteration

vi(xk) = arg min
uk

{U(xk, uk) + Vi−1(xk+1)}
= arg min

uk
{U(xk, uk) + Vi−1(F(xk, uk))}. (11)

2) j-iteration

Vi,ji+1(xk) = U(xk, vi(xk)) + Vi,ji(F(xk, vi(xk))) (12)

where the iteration index ji increasing from 0 to Ni and

Vi,0(xk) = min
uk

{U(xk, uk) + Vi−1(F(xk, uk))}
= U(xk, vi(xk)) + Vi−1(F(xk, vi(xk))). (13)

For all xk ∈ �x, define the iterative value function

Vi(xk) = Vi,Ni(xk). (14)

From the above generalized policy iteration algorithm, we
can see that for each i-iteration, based on the iterative value
function Vi(xk) for some control law, we can always use it to
find another policy that is better, or at least no worse. This
iteration procedure is known as “policy improvement” proce-
dure. In this iteration procedure, the control law is updated.
For each j-iteration, it computes the iterative value function
of the control law vi(xk), which tries to solve the following
GHJB equation:

Vi,ji(xk) = U(x, vi(xk)) + Vi,ji(F(xk, vi(xk))). (15)

This iteration procedure is called “policy evaluation” proce-
dure [4], [26]. In this iteration procedure, the iterative value
function Vi,ji(xk) is updated, while the control law keeps
unchanged.

Remark 2: There are two special cases we can identify for
the present generalized policy iteration algorithm (6)–(14).

1) For i = 1, 2, . . . , if we let Ni ≡ 0, then the algorithm is
reduced to a value iteration algorithm [27], [28].

2) For i = 1, 2, . . . , if we let Ni → ∞, then the algorithm
becomes a policy iteration algorithm [36].

An obvious difference is that in value iteration algo-
rithms [27], [28] and policy iteration algorithms [36], there
is only one iteration index. However, in the present gen-
eralized policy iteration algorithm, there are two iteration
procedures which are i- and j-iteration. In [66], a generalized
policy iteration algorithm initialized by an arbitrary positive
semi-definite function is developed, while the stability prop-
erty of the system under the iterative control law in [66] cannot
be guaranteed. In this paper, the present generalized policy
iteration algorithm is initialized by an admissible control law
v0(xk), which is obviously different from the algorithm in [66].
Hence, new analysis methods will be needed to analyze the
present algorithm.

Remark 3: Although the time indices k and k+1 are used to
indicate the states and actions in two successive time steps, we
note that there is no iteration loop for time index k in the gen-
eralized policy iteration algorithm (6)–(14), which means that
the algorithm does not iterate according to the time sequence.
In the present generalized policy iteration algorithm, we say

1580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

that the iterative value function Vi,ji(xk) and the iterative con-
trol law vi(xk) are updated for all xk ∈ �x, according to the two
iteration indices i = 0, 1, . . . and ji = 1, 2, . . . , Ni. We need
to keep the time index this way due to the need of state x at
two different time instances as in (7) and it is more clear later
of the need in cases like (31) where multiple time instances
of state x are involved in an equation.

Remark 4: In the generalized policy iteration algo-
rithm (6)–(14), the iterative value function and iterative control
law are improved under the strictly-hypothetical assumption
that the perfect function approximation is available. In the
next section, the properties of the generalized policy itera-
tion algorithm under the strictly-hypothetical assumption will
be developed. On the other hand, we can see that the perfect
function approximation in (6)–(14) requires Vi,ji(xk) and vi(xk)

to be exactly solved for all xk ∈ �x with an infinite number
of points. It is nearly impossible to implement due to finite
memory storage and finite time. Hence, in Section IV, approx-
imate structures will be employed to obtain the approximate
optimal solutions of the optimal control problem.

B. Properties of the Generalized Policy Iteration Algorithm

Next, we will prove that for any Ni ≥ 0 and for all xk ∈ �x,
the iterative value function Vi,ji(xk) will converge to J∗(xk) as
i → ∞, under the assumption of perfect function approxi-
mation. We will also show the admissibility property of the
iterative control law vi(xk) under the same assumption.

Theorem 1: Let v0(xk) ∈ Au be an arbitrary admissible
control law which satisfies (6). For i = 0, 1, . . . and for all
xk ∈ �x, let the iterative control law vi(xk) and the itera-
tive value function Vi,ji+1(xk) be obtained by (6)–(14). Let
{N1, N2, . . .} be an sequence, where Ni ≥ 0, i = 1, 2, . . . , is
an arbitrary nonnegative integer. Then, we have the following
properties.

1) For i = 1, 2, . . . , ji = 0, 1, . . . , Ni and for all xk ∈ �x

Vi,ji+1(xk) ≤ Vi,ji(xk). (16)

2) For i = 1, 2, . . . , let ji and j(i+1) be arbitrary constant
integers which satisfy 0 ≤ ji ≤ Ni and 0 ≤ j(i+1) ≤ Ni+1,
respectively. Then, for all xk ∈ �x

Vi+1,j(i+1)
(xk) ≤ Vi,ji(xk). (17)

Proof: The theorem can be proven in two steps. We first
prove that (16) holds by mathematical induction. Let i = 1.
According to (6) and (9), for all xk ∈ �x

V1,0(xk) = U(x, v1(xk)) + V0(F(xk, v1(xk)))

= min
uk

{U(xk, uk) + V0(xk+1)}
≤ U(xk, v0(xk)) + V0(F(xk, v0(xk)))

= V0(xk). (18)

For j1 = 0

V1,1(xk) = U(xk, v1(xk)) + V1,0(F(xk, v1(xk)))

≤ U(xk, v1(xk)) + V0(F(xk, v1(xk)))

= V1,0(xk). (19)

Assume that (16) holds for j1 = l1 − 1, l1 = 1, 2, . . . , N1.
Then for j1 = l1 and for all xk ∈ �x

V1,l1+1(xk) = U(xk, v1(xk)) + V1,l1(F(xk, v1(xk)))

≤ U(xk, v1(xk)) + V1,l1−1(F(xk, v1(xk)))

= V1,l1(xk). (20)

Hence, (16) holds for i = 1. Next, let i = 2. According to (72),
the iterative control law v2(xk) can be expressed by

v2(xk) = arg min
uk

{U(xk, uk) + V1(F(xk, uk))} (21)

where V1(xk) = V1,N1(xk). According to (13) and (14), for all
xk ∈ �x, we can get

V2,0(xk) = U(xk, v2(xk)) + V1(F(xk, v2(xk)))

= min
uk

{U(xk, uk) + V1(F(xk, uk))}
≤ U(xk, v1(xk)) + V1(F(xk, v1(xk)))

= V1,N1+1(xk)

≤ V1,N1(xk)

= V1(xk). (22)

For j2 = 0 and for all xk ∈ �x

V2,1(xk) = U(xk, v2(xk)) + V2,0(F(xk, v2(xk)))

≤ U(xk, v2(xk)) + V1(F(xk, v2(xk)))

= V2,0(xk). (23)

So, (16) holds for j2 = 0. Assume that (16) holds for
j2 = l2 − 1, l2 = 1, 2, . . . , N2. Then for j2 = l2 and for all
xk ∈ �x

V2,l2+1(xk) = U(xk, v2(xk)) + V2,l2(F(xk, v2(xk)))

≤ U(xk, v2(xk)) + V2,l2−1(F(xk, v2(xk)))

= V2,l2(xk). (24)

Then, (16) holds for i = 2. Assume that (16) holds for i = r,
r = 1, 2, . . . , that is

Vr,jr+1(xk) ≤ Vr,jr (xk). (25)

Then for i = r + 1 and for all xk ∈ �x, the iterative control
law can be updated by

vr+1(xk) = arg min
uk

{U(xk, uk) + Vr(F(xk, uk))} (26)

where Vr(xk) = Vr,Nr (xk). According to (13) and (14), for all
xk ∈ �x, we can get

Vr+1,0(xk) = U(xk, vr+1(xk)) + Vr(F(xk, vr+1(xk)))

= min
uk

{U(xk, uk) + Vr(xk+1)}
≤ U(xk, vr(xk)) + Vr(F(xk, vr(xk)))

≤ Vr,Nr (xk)

= Vr(xk). (27)

For jr+1 = 0 and for all xk ∈ �x

Vr+1,1(xk) = U(xk, vr+1(xk)) + Vr+1,0(F(xk, vr+1(xk)))

≤ U(xk, vr+1(xk)) + Vr(F(xk, vr+1(xk)))

= Vr+1,0(xk). (28)

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1581

So, (16) holds for jr+1 = 0. Assume that (16) holds for
jr+1 = lr − 1, lr+1 = 1, 2, . . . , Nr+1. Then for jr+1 = lr+1

Vr+1,lr+1+1(xk)

= U(xk, vr+1(xk)) + Vr+1,lr+1(F(xk, vr+1(xk)))

≤ U(xk, vr+1(xk)) + Vr+1,lr+1−1(F(xk, vr+1(xk)))

= Vr+1,lr+1(xk). (29)

Hence, (16) holds for i = 1, 2, . . . and ji = 0, 1, . . . , Ni. The
mathematical induction is completed.

Next, we will prove inequality (17). For i = 1, let
0 ≤ j1 ≤ N1 and 0 ≤ j2 ≤ N2. According to (18)–(24), for
all xk ∈ �x{

V1(xk) = V1,N1(xk) ≤ V1,j1(xk) ≤ V1,0(xk) ≤ V0(xk)

V2(xk) = V2,N2(xk) ≤ V2,j2(xk) ≤ V2,0(xk) ≤ V1(xk)

(30)

which shows that (17) holds for i = 1. Using mathematical
induction, it is easy to prove that (17) holds for i = 1, 2,

The proof is completed.
Remark 5: In [66], it is proven that the iterative value func-

tion Vi,ji(xk) is convergent as i → ∞, while the monotonicity
property of the iterative value function is not guaranteed.
Theorem 1 of this paper shows an important monotonicity
property of the present generalized policy iteration algorithm.
Given an arbitrary initial admissible control law v0(xk) ∈ Au
which satisfies (6), we have that the iterative value function
Vi,ji(xk) is monotonically nonincreasing for i = 1, 2, . . . and
for ji = 0, 1, . . . , Ni. From the monotonicity property, the
admissibility and convergence properties can be derived.

Lemma 1: Suppose that Assumptions 1–4 hold. For
i = 1, 2, . . . and for ji = 0, 1, . . . , Ni, the iterative value
function Vi,ji(xk) is a positive definite function for xk.

Proof: Let v0
k = {v0(xk), v0(xk+1), . . .}. As v0(xk) ∈ Au

is admissible, according to (2) and (6), for all xk ∈ �x, the
iterative value function

V0(xk) = J
(

xk, v0
k

)
=

∞∑

l=0

U(xk+l, v0(xk+l)) (31)

is finite. For xk = 0, we have v0(xk) = 0. According to
Assumptions 2 and 3, we can get xk+1 = F(x0, v0(xk)) = 0.
By mathematical induction, for l = 0, 1, . . . , we have
xk+l = 0. According to (31) and Assumption 4, we can get
V0(xk) = 0. On the other hand, by Assumption 1, as system (1)
is controllable and v0(xk) is admissible, for all xk ∈ �x,
V0(xk) is finite. According to Assumption 4, V0(xk) → ∞,
as xk → ∞. As U(xk, uk) > 0 for all xk �= 0, V0(xk) > 0
for all xk �= 0. Hence, V0(xk) is a positive definite function.
According to (6)–(14), using mathematical induction we can
easily obtain that Vi,ji(xk) is positive definite.

Theorem 2: For i = 1, 2, . . . and ji = 0, 1, . . . , Ni, let the
iterative control law vi(xk) and the iterative value function
Vi,ji(xk) be obtained by (6)–(14). If for i = 1, 2, . . . , we let
Ni → ∞, then for all xk ∈ �x the iterative value function
Vi,ji(xk) is convergent as ji → ∞, that is

Vi,∞(xk) = U(x, vi(xk)) + Vi,∞(F(xk, vi(xk))) (32)

where

Vi,∞(xk) := lim
ji→∞ Vi,ji(xk). (33)

Proof: According to (16), for i = 1, 2, . . . and for all
xk ∈ �x, the iterative value function Vi,ji(xk) is monotonically
nonincreasing as ji increases from 0 to Ni. On the other hand,
according to Lemma 1, Vi,ji(xk) is a positive definite func-
tion for i = 1, 2, . . . and ji = 0, 1, . . . , Ni, i.e., Vi,ji(xk) > 0,
∀xk �= 0. This means that the iterative value function Vi,ji(xk)

is monotonically nonincreasing and lower bounded. Hence, for
all xk ∈ �x, the limit of Vi,ji(xk) exists when ji → ∞. Then,
we can obtain (32) directly.

Corollary 1: For i = 1, 2, . . . and ji = 0, 1, . . . , Ni, let the
iterative control law vi(xk) and the iterative value function
Vi,ji+1(xk) be obtained by (6)–(14). Then, for i = 1, 2, . . . and
for all xk ∈ �x, the iterative control law vi(xk) is admissible.

Proof: Let N∞
i = {Ni + 1, Ni + 2, . . .}. For j̄i = Ni + 1,

Ni + 2, . . . and for all xk ∈ �x, we construct a value function
Vi,j̄i(xk) as

Vi,j̄i(xk) = U(xk, vi(xk)) + Vi,j̄i−1(F(xk, vi(xk))) (34)

where Vi,Ni(xk) = Vi,Ni(xk). According to (34), we can obtain

Vi,j̄i(xk) =
j̄i−Ni−1∑

l=0

U(xk+l, vi(xk+l)) + Vi,Ni

(
xk+j̄i−Ni

)
. (35)

According to Theorem 2, for all xk ∈ �x, the iterative value
function Vi,∞(xk), which is expressed by

Vi,∞(xk) = lim
j̄i→∞

j̄i−Ni−1∑

l=0

U(xk+l, vi(xk+l)) + lim
j̄i→∞

Vi,Ni

(
xk+j̄i−Ni

)

(36)

is finite. According to Assumption 4, the utility function
U(xk, vi(xk)) > 0, ∀xk �= 0. Then, lim

k→∞ U(xk, vi(xk)) = 0,

which shows xk → 0 as k → ∞. On the other hand,
according to Lemma 1, Vi,Ni(xk) = Vi,Ni(xk) is positive def-
inite. Thus, we can get limj̄i→∞ Vi,Ni(xk+j̄i−Ni

) = 0. As
∑Ni

l=0 U(xk+l, vi(xk+l)) is finite, we obtain

∞∑

l=0

U(xk+l, vi(xk+l)) =
Ni∑

l=0

U(xk+l, vi(xk+l)) + Vi,∞(xk+Ni+1)

(37)

also finite. The proof is completed.
Remark 6: In [36], it shows that for i = 0, 1, . . . and for all

xk ∈ �x, the iterative control law vi(xk) is admissible for the
policy iteration algorithm. This property can be well verified
for the present generalized policy iteration for ji → ∞. For
the generalized policy iteration, it proves that for an arbitrary
nonnegative integer Ni, the iterative control law vi(xk) is also
admissible. On the other hand, for i = 0, 1, . . . , in the pol-
icy iteration algorithm, it requires to solve a GHJB equation
to obtain the iterative value function. In the present general-
ized policy iteration algorithm, solving the GHJB equation is
effectively avoided. Hence, we say that the present general-
ized policy iteration algorithm possesses more potential for
applications.

In the following, the convergence property of the gener-
alized policy iteration algorithm will be presented. As the
iteration index i increases to ∞, we will show that the opti-
mal performance index function and the optimal control law

1582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

can be achieved using the present generalized policy itera-
tion algorithm. Before the main theorem, some lemmas are
necessary.

Lemma 2: If a monotonically nonincreasing sequence {an},
n = 0, 1, . . . , contains an arbitrary convergent subsequence,
then sequence {an} is convergent [67].

Lemma 3: For i = 1, 2, . . . , let the iterative value function
Vi(xk) be defined as in (14). Then, for i = 1, 2, . . . , the iter-
ative value function Vi(xk) is a monotonically nonincreasing
and convergent sequence.

Proof: It can be proven according to Theorem 1 and the
proof details are omitted here.

Theorem 3: For i = 0, 1, . . . and for all xk ∈ �x, let Vi,ji(xk)

and vi(xk) be obtained by (6)–(14). If Assumptions 1–4 hold,
then for any Ni ≥ 0, the iterative value function Vi,ji(xk) con-
verges to the optimal performance index function J∗(xk), as
i → ∞, that is

lim
i→∞ Vi,ji(xk) = J∗(xk) (38)

which satisfies the HJB equation (4).
Proof: Define a sequence of the iterative value function as

{
Vi,ji(xk)

}
:= {

V0(xk), V1,0(xk), V1,1(xk), . . . , V1,N1(xk)

V1(xk), V2,0(xk), . . . , V2,N2(xk), . . .
}
. (39)

If we let

{Vi(xk)} := {V0(xk), V1(xk), . . .} (40)

then {Vi(xk)} is a subsequence of {Vi,ji(xk)}. According to
Lemma 3, the limit of {Vi(xk)} exists. From Lemma 2, we can
get that if the sequence {Vi(xk)} is convergent, then {Vi,ji(xk)}
is convergent. As a sequence {Vi,ji(xk)} can converge to at most
one point [67], the sequence {Vi,ji(xk)} and its subsequence
{Vi(xk)} possess the same limit, that is

lim
i→∞ Vi,ji(xk) = lim

i→∞ Vi(xk). (41)

Thus, in the following, we will prove:

lim
i→∞ Vi(xk) = J∗(xk). (42)

The statement (42) can be proven in three steps.
Step 1: Show that the limit of the iterative value function

Vi(xk) satisfies the HJB equation, as i → ∞.
According to Lemma 3, for all xk ∈ �x, we can define

the value function V∞(xk) as the limit of the iterative value
function Vi(xk), that is

V∞(xk) = lim
i→∞ Vi(xk). (43)

According to (14) and (16)

Vi(xk) ≤ Vi,0(xk)

= U(xk, vi(xk)) + Vi−1(F(xk, vi(xk)))

= min
uk

{U(xk, uk) + Vi−1(F(xk, uk))}. (44)

Then, we can obtain

V∞(xk) = lim
i→∞ Vi(xk) ≤ Vi(xk)

≤ min
uk

{U(xk, uk) + Vi−1(F(xk, uk))}. (45)

Let i → ∞. For all xk ∈ �x, we can obtain

V∞(xk) ≤ min
uk

{U(xk, uk) + V∞(F(xk, uk))}. (46)

Let ε > 0 be an arbitrary positive number. Since Vi(xk) is
nonincreasing for i ≥ 0 and lim

i→∞ Vi(xk) = V∞(xk), there exists

a positive integer p such that

Vp(xk) − ε ≤ V∞(xk) ≤ Vp(xk). (47)

Hence, we can get

V∞(xk) ≥ U(xk, vp(xk)) + Vp(F(xk, vp(xk))) − ε

≥ U(xk, vp(xk)) + V∞(F(xk, vp(xk))) − ε

≥ min
uk

{U(xk, uk) + V∞(F(xk, uk))} − ε. (48)

Since ε > 0 is arbitrary, for all xk ∈ �x, we have

V∞(xk) ≥ min
uk

{U(xk, uk) + V∞(F(xk, uk))}. (49)

Combining (46) and (49), for all xk ∈ �x, we can obtain

V∞(xk) = min
uk

{U(xk, uk) + V∞(F(xk, uk))}. (50)

Next, for all xk ∈ �x, let μ(xk) be an arbitrary admissible
control law, and define a new value function P(xk), which
satisfies

P(xk) = U(xk, μ(xk)) + P(F(xk, μ(xk))). (51)

Then, we can declare the second step of the proof.
Step 2: Show that for an arbitrary admissible control law

μ(xk), the value function P(xk) ≥ V∞(xk).
The statement can be proven by mathematical induction. As

μ(xk) is an admissible control law, for all xk ∈ �x, xk → 0 as
k → ∞. Without loss of generality, let xN = 0 where N → ∞.
According to (51)

P(xk) = lim
N→∞{U(xk, μ(xk)) + U(xk+1, μ(xk+1)) + · · ·

+ U(xN−1, μ(xN−1)) + P(xN)} (52)

where xN = 0. If we define

v∞(xk) = arg min
uk

{U(xk, uk) + V∞(xk+1)} (53)

then according to Corollary 1, v∞(xk) is admissible. According
to (50), the iterative value function V∞(xk) can be expressed as

V∞(xk) = U(xk, v∞(xk)) + U(xk+1, v∞(xk+1))

+ · · · + U(xN−1, v∞(xN−1)) + V∞(xN)

= min
uk

{
U(xk, uk)

+ min
uk+1

{
U(xk+1, uk+1) + · · ·

+ min
uN−1

{U(xN−1, uN−1) + V∞(xN)}
}}

.

(54)

As v∞(xk) is an admissible control law, we can get xN = 0
where N → ∞, which means V∞(xN) = P(xN) = 0.

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1583

For N − 1, according to (50), we can obtain

P(xN−1) = U(xN−1, μ(xN−1)) + P(xN)

≥ min
uN−1

{U(xN−1, uN−1) + P(xN)}
= min

uN−1
{U(xN−1, uN−1) + V∞(xN)}

= V∞(xN−1). (55)

Assume that the statement holds for k = l + 1, l = 0, 1,

Then for k = l

P(xl) = U(xl, μ(xl)) + P(xl+1)

≥ min
ul

{U(xl, ul) + P(xl+1)}
≥ min

ul
{U(xl, ul) + V∞(xl+1)}

= V∞(xl). (56)

Hence, for all xk ∈ �x, the inequality

P(xk) ≥ V∞(xk) (57)

holds. Mathematical induction is completed.
Step 3: Show that the value function V∞(xk) equals to the

optimal performance index function J∗(xk).
According to the definition of J∗(xk) in (3), for i = 0, 1, . . .

and for all xk ∈ �x, Vi(xk) ≥ J∗(xk). Let i → ∞, and then we
can obtain V∞(xk) ≥ J∗(xk).

On the other hand, for an arbitrary admissible control law
μ(xk), (57) holds. For all xk ∈ �x, let μ(xk) = u∗(xk),
where u∗(xk) is an optimal control law. Then, we can get
V∞(xk) ≤ J∗(xk). Hence, we have (38) holds. The proof is
completed.

Remark 7: In [66], initialized by a positive semi-definite
function, it is proven that the iterative value function con-
verges to the optimal performance index function. However,
in [66], the updated iterative control law in i-iteration cannot
guaranteed to be admissible. This makes the policy evalua-
tion in j-iteration is not sure to implement for Ni iterations
to improve the iterative value function by the iterative control
law. In this paper, initialized by an arbitrary admissible control
law, it is proven that the iterative value function is monotoni-
cally nonincreasing and converges to the optimal performance
index function. We emphasize that any of the iterative con-
trol laws is admissible, which stabilizes the system. Thus, the
policy evaluation in j-iteration is guaranteed to implement for
Ni iterations by the obtained iterative control law. This is a
merit of the present generalized policy iteration algorithm in
this paper. Hence, if an admissible control law is obtained, the
present generalized policy iteration algorithm in this paper is
preferred. In the next section, the method for obtaining the
initial admissible control law will be discussed.

C. Relaxing the Initial Condition of the Generalized
Policy Iteration Algorithm

In the previous section, the monotonicity, convergence, and
admissibility properties of the generalized policy iteration
algorithm have been analyzed. From the generalized policy
iteration algorithm (6)–(14), we can see that to implement our
algorithm, it requires an admissible control law v0(xk) ∈ Au
to construct the initial value function V0(xk) that satisfies (6).
Usually v0(xk) ∈ Au and V0(xk) are difficult to achieve, which

Algorithm 1 Policy Evaluation Algorithm for Initial Value
Function
Initialization:

Choose randomly an array of system states xk in �x, i.e.,
Xk = (x(1)

k , x(2)
k , . . . , x(p)

k), where p is a large positive
integer;
Choose an arbitrary positive semi-definite function
�(xk) ≥ 0;
Give the initial admissible control law v0(xk).

Iteration:
1: Let the iteration index j0 = 0 and let V0,0(xk) = �(xk);
2: For all xk ∈ �x, update the control law v j0

1 (xk) by

v j0
1 (xk) = arg min

uk

{
U(xk, uk) + V0,j0(F(xk, uk))

}
, (58)

and improve the iterative value function by

Vj0
1,0(xk) = min

uk

{
U(xk, uk) + V0,j0(F(xk, uk))

}

= U
(

xk, v j0
1 (xk)

)
+ V0,j0

(
F
(

xk, v j0
1 (xk)

))
; (59)

3: For all xk ∈ �x, if Vj0
1,0(xk) − V0,j0(xk) ≤ 0, goto Step 6.

Else goto Step 4;
4: For all xk ∈ �x, update the iterative value function by

V0,j0+1(xk) = U(xk, v0(xk)) + V0,j0(F(xk, v0(xk))); (60)

5: Let j0 = j0 + 1 and goto Step 2;
6: return V0,j0(xk) and v j0

1 (xk). Let v1(xk) = v j0
1 (xk) and

V1,0(xk) = Vj0
1,0(xk).

makes the present algorithm difficult to implement. In this sec-
tion, some effective methods will be presented to relax the
initial value function of the algorithm.

First, we consider the situation that the admissible control
law v0(xk) is known. We develop a policy evaluation algo-
rithm to relax the initial value function V0(xk). The detailed
implementation of the algorithm is expressed in Algorithm 1.

Lemma 4: For all xk ∈ �x, let �(xk) ≥ 0 be an arbi-
trary positive semi-definite function. Let v0(xk) be an arbitrary
admissible control law and let V0,j0(xk) be the iterative value
function updated by (58)–(60), where V0,0(xk) = �(xk). We
obtain that V0,j0(xk) is convergent as j0 → ∞.

Proof: According to (60), for all xk ∈ �x

V0,j0+1(xk) − V0,j0(xk) = U(xk, v0(xk)) + V0,j0(xk+1)

− (
U(xk, v0(xk)) + V0,j0−1(xk+1)

)

= V0,j0(xk+1) − V0,j0−1(xk+1). (61)

According to (61), we can get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V0,j0+1(xk) − V0,j0(xk) = V0,1
(
xk+j0

) − V0,0(xk+j0)

V0,j0(xk) − V0,j0−1(xk) = V0,1(xk+j0−1) − V0,0
(
xk+j0−1

)

...

V0,1(xk) − V0,0(xk) = V0,1(xk) − V0,0(xk).

(62)

1584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

Algorithm 2 Policy Improvement Algorithm for Initial Value
Function
Initialization:

Choose randomly an array of system states xk in �x, i.e.,
Xk = (x(1)

k , x(2)
k , . . . , x(p)

k), where p is a large positive
integer;

Iteration:
Let ς0 = 0.

1: Choose arbitrarily a large positive definite function
�̄ς0(xk) ≥ 0 and let Vς0

0,0(xk) = �̄ς0(xk);
2: For all xk ∈ �x, update the control law vς0

1 (xk) by

vς0
1 (xk) = arg min

uk

{
U(xk, uk) + �̄ς0(F(xk, uk))

}
, (65)

and for all xk ∈ �x, improve the iterative value function by

Vς0
1,0(xk) = min

uk

{
U(xk, uk) + Vς0

0,0(F(xk, uk))
}

= U
(
xk, vς0

1 (xk)
) + Vς0

0,0

(
F
(
xk, vς0

1 (xk)
)); (66)

3: For all xk ∈ �x, if the inequality

Vς0
1,0(xk) − �̄ς0(xk) ≤ 0 (67)

holds, then goto Step 4. Else let ς0 = ς0 + 1 and goto
Step 1;

4: return Vς0
0,0(xk) and vς0

1 (xk). Let v1(xk) = vς0
1 (xk) and

V1,0(xk) = Vς0
1,0(xk).

Then, we have

V0,j0+1(xk) =
j0∑

l=0

U(xk+l, v0(xk+l)) + �
(
xk+j0+1

)
. (63)

Let j0 → ∞. We can obtain

lim
j0→∞V0,j0+1(xk) =

∞∑

l=0

U(xk+l, v0(xk+l)). (64)

As v0(xk) is an admissible control law,
∑∞

l=0 U(xk+l, v0(xk+l))

is finite. Hence lim
j0→∞ V0,j0(xk) is finite, which means

V0,j0+1(xk) = V0,j0(xk), as j0 → ∞.
Using the admissible control law v0(xk), according to

Lemma 4, V0,j0+1(xk) = V0,j0(xk) holds as j0 → ∞. It
means that there must exist N0 > 0 which satisfies V1(xk) ≤
V0,N0(xk). Hence if we obtain an admissible control law, then
we can construct the initial value function by policy evaluation,
where the value function V0(xk) in (6) can be relaxed. On the
other hand, we can see that Algorithm 1 requires an admissible
control law v0(xk) to implement. Usually, the admissible con-
trol law of the nonlinear system is also difficult to obtain. To
overcome this difficulty, a policy improvement algorithm can
be implemented by experiment. The details of the algorithm
can be seen in Algorithm 2.

Theorem 4: For all xk ∈ �x, let the iterative control law
vς0

1 (xk) be expressed as in (65) and let the iterative value func-
tion Vς0

1,0(xk) be expressed as in (66). If the iterative value
functions satisfy (67), then the convergence properties (16)
and (17) hold for i = 1, 2, . . . and ji = 0, 1, . . . , Ni.

Algorithm 3 Generalized Policy Iteration Algorithm
Initialization:

Choose randomly an array of system states xk in �x, i.e.,
Xk = (x(1)

k , x(2)
k , . . . , x(p)

k), where p is a large positive
integer;
Choose a computation precision ε;
Construct a sequence {Ni}, where Ni ≥ 0, i = 1, 2, . . . , is
an arbitrary nonnegative integer.

Iteration:
1: Let the iteration index i = 0. Obtain V1,0(xk) and v1(xk)

by Algorithm ϒ , ϒ = 1, 2;
2: Let j1 increase from 0 to N1. For all xk ∈ �x, update the

iterative value function by

V1,j1+1(xk) = U(xk, v1(xk)) + V1,j1(F(xk, v1(xk)));
3: Let i = i + 1. For all xk ∈ �x, do Policy Improvement

vi(xk) = arg min
uk

{U(xk, uk) + Vi−1(F(xk, uk))};
4: Let ji increase from 0 to Ni. For all xk ∈ �x, do Policy

Evaluation

Vi,ji+1(xk) = U(xk, vi(xk)) + Vi,ji(F(xk, vi(xk)));
5: Let Vi(xk) = Vi,Ni(xk);
6: For all xk ∈ �x, if Vi−1(xk) − Vi(xk) < ε, then

the approximate optimal performance index function and
the approximate optimal control law are obtained. Goto
Step 7. Else goto Step 3;

7: return vi(xk) and Vi,ji(xk).

Proof: Let i = 1 and j1 = 0. As v1(xk) = vς0
1 (xk) and

V1,0(xk) = Vς0
1,0(xk), according to (8) and (67), we have

V1,1(xk) = U(xk, v1(xk)) + V1,0(F(xk, v1(xk)))

= U(xk, vς0
1 (xk)) + Vς0

1,0

(
F
(
xk, vς0

1 (xk)
))

≤ U
(
xk, vς0

1 (xk)
) + Vς0

0,0

(
F
(
xk, vς0

1 (xk)
))

= V1,0(xk). (68)

Using the idea from (18)–(30), the convergence proper-
ties (16) and (17) hold for i = 1, 2, . . . and ji = 0,
1, . . . , Ni.

Remark 8: From Algorithm 2, we can see that the admis-
sible control law v0(xk) in Algorithm 1 is avoided. This is a
merit of Algorithm 2. However, in Algorithm 2, we should
find a positive definite function �̄ς0(xk) that satisfies (67).
As �̄ς0(xk) is randomly chosen, it may take a lot of iter-
ations to determine �̄ς0(xk). This is a disadvantage of the
algorithm.

D. Generalized Policy Iteration Algorithm

We are now in a position to summarize the generalized
policy iteration ADP algorithm (see Algorithm 3).

IV. NEURAL NETWORK IMPLEMENTATION

Results so far have shown the convergence of iterative value
function Vi,ji(xk) and iterative control law vi(xk). Under ideal
conditions, they will converge to their corresponding optimal

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1585

Fig. 1. Structure diagram of the algorithm.

functions. The results given in Sections II and III are under
the condition that for i = 0, 1, . . . and ji = 0, 1, . . . , Ni,
the functions Vi,ji(xk) and vi(xk) can accurately be obtained
for all xk ∈ �x. In this section, back-propagation (BP) neu-
ral networks are introduced to approximate the iterative value
function and iterative control law, respectively.

Assume that the number of hidden layer neurons is denoted
by �̃. The weight matrix between the input layer and hidden
layer is denoted by Y . The weight matrix between the hidden
layer and output layer is denoted by W. Let b denote the
threshold vector of the neural network. Then, the output of
three-layer BP network is expressed by

F̂(X, Y, W, b) = WTσ
(
YTX + b

)
(69)

where σ(YTX) ∈ R�̃, [σ(z)]i = (ezi − e−zi)/(ezi + e−zi), i =
1, . . . �̃, are the activation functions. There are two networks,
which are critic and action networks, respectively. Both neural
networks are chosen as three-layer feedforward network. The
whole structure diagram is shown in Fig. 1.

A. Critic Network

The critic network is used to approximate the iterative value
function Vi,ji(xk). For all xk ∈ �x, the output of the critic
network is denoted as V̂l

i,ji
(xk) = Wl

c(i,ji)
σ (Yl

c(i,ji)
xk + b l

c(i,ji)
),

l = 0, 1, The target iterative value function can be
written as

Vi,ji(xk) = U
(
xk, v̂i(xk)

) + V̂i,ji−1
(
F(xk, v̂i(xk))

)
. (70)

Then, we define the error function for the critic network as
el

c(i,ji)
= V̂l

i,ji
(xk)−Vi,ji(xk). The objective function to be mini-

mized in the critic network is El
c(i,ji)

= (1/2)(el
c(i,ji)

)2. So, the
gradient-based weight update rule [68] for the critic network
is given by

wl+1
c(i,ji)

= wl
c(i,ji) − αc

∂El
c(i,ji)

∂wl
c(i,ji)

= wl
c(i,ji) − αc

∂El
c(i,ji)

∂V̂l
i,ji

(xk)

∂V̂l
i,ji

(xk)

∂wl
c(i,ji)

= wl
c(i,ji) − αcel

c(i,ji)

∂V̂l
i,ji

(xk)

∂wl
c(i,ji)

(71)

where αc > 0 is the learning rate of critic network and
wl

c(i,ji)
is the weight matrix of the critic network which can

be replaced by Wl
c(i,ji)

, Yl
c(i,ji)

, and b l
c(i,ji)

.

Remark 9: In (70), the expression of the target iterative
value function Vi,ji(xk) is given, where the information of
the value function V̂i,ji−1(F(xk, v̂i(xk))) in previous iteration
is required. For i = 0, 1, . . . , and ji = 1, 2, . . . , Ni, the value
functions V̂i,ji−1(F(xk, v̂i(xk))) are obtained by the critic net-
work approximation in the previous iteration. Thus, we say that
the function V̂i,ji−1(F(xk, v̂i(xk))) is known and the gradient-
based weight update rule in (71) can be implemented. On
the other hand, besides the gradient-based neural networks
method, we say that the Galerkin method [69] and stochastic
approximation [70] are also effective approximators to recon-
struct the iterative function Vi,ji(xk) with good convergence
performance. The corresponding detailed approximation and
analysis methods can be seen in [71] and [72]. As the property
analysis of function approximation is not the main research
topic of this paper, it is omitted here.

B. Action Network

In the action network, the state xk ∈ �x is used as input
to the network. The output can be formulated as v̂l

i(xk) =
Wl

aiσ(Yl
aixk + b l

ai), l = 0, 1, For i = 1, 2, . . . , the target
of the output of the action network is given by

vi(xk) = arg min
uk

{
U(xk, uk) + V̂i−1(F(xk, uk))

}
. (72)

So, we can define the output error of the action network as
el

ai = v̂l
i(xk) − vi(xk). The weights of the action network are

updated to minimize the following performance error mea-
sure El

ai = (1/2)(el
ai)

Tel
ai. The gradient-based weight update

rule [68] for the action network is given by

wl+1
ai = wl

ai − βa
∂El

ai

∂wl
ai

= wl
ai − βa

∂El
ai

∂el
ai

∂el
ai

∂ v̂l
i(xk)

∂ v̂l
i(xk)

∂wl
ai

(73)

where βa > 0 is the learning rate of action network and wl
ai is

the weight matrix of the critic network which can be replaced
by Wl

ai, Yl
ai, and b l

ai.
Remark 10: From Theorems 1–3, we can see that the

convergence and admissibility properties of the present gen-
eralized policy iteration algorithm are independent of the
approximation structures, such as neural networks. Hence, we
say that the present generalized policy iteration algorithm and
the corresponding proofs possess theoretical significance. On
the other hand, implementing our algorithm by neural net-
works, approximation errors of neural networks inherently
exist. Hence, we declare that an approximate optimal solution
of the HJB equation (4) is actually obtained instead of the
exact optimal one. To make the iterative value functions and
iterative control laws closer to their optimal ones, it requires
collecting enough training data and enhancing the training
precisions of the neural networks.

V. SIMULATION STUDY

In this section, two simulation examples are used to show
the performance of the present generalized policy itera-
tion algorithm for solving the approximate optimal control
problems.

1586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

(a) (b)

(c) (d)

Fig. 2. Iterative value functions Vi,ji (xk) for i = 0, 1, . . . , 10 and xk = x0.
Vi,ji (xk) for (a) {N1

i }, (b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

Example 1: First, let us consider the following
spring-mass-damper system [73]:

M
d2y

dt2
+ b

dy

dt
+ κy = u

where y is the position and u is the control input. Let
M = 0.1 kg denote the mass of object. Let κ = 2 kgf/m be
the stiffness coefficient of spring and let b = 0.1 be the wall
friction. Let x1 = y and x2 = (dy/dt). Discretizing the system
function with the sampling interval �t = 0.1 s leads to

[
x1(k+1)

x2(k+1)

]
=

[
1 �T

− κ

M
�T 1 − b

M
�T

][
x1k
x2k

]
+

[
0

�T

M

]

uk.

(74)

Let the initial state be x0 = [1,−1]T . Let the performance
index function be expressed by (2). The utility function is
expressed as U(xk, uk) = xT

k Qxk + uT
k Ruk, where Q = I1,

R = I2, and I1 and I2 denote the identity matrix with suitable
dimensions.

Let the state space be �x = {xk | − 1 ≤ x1k ≤ 1,−1 ≤
x2k ≤ 1}. We randomly choose the p = 5000 states in �x to
implement the generalize policy iteration algorithm to obtain
the optimal control law. Neural networks are used to imple-
ment the present generalized value iteration algorithm. The
critic network and the action network are chosen as three-layer
BP neural networks with the structures of 2–8–1 and 2–8–1,
respectively. Define the two neural networks as group “NN1.”
For system (74), we can obtain an admissible control law
u(xk) = Kxk, where K = [0.13,−0.17]T . Let �(xk) = xT

k P0xk,

where P0 =
[

80 1
1 2

]
. As the initial admissible control law K

is known, policy evaluation in Algorithm 1 is implemented. It
can be seen that it takes three iterations to obtain v1(xk) and
V1,0(xk) and the simulation results for the initial iteration is
displayed in Fig. 2 (see the trajectories of the iterative value
functions for i = 0). Let iteration index i = 10. To illustrate

Fig. 3. Iterative value functions Vi(xk), for i = 0, 1, . . . , 10. Vi(xk) for
(a) {N1

i }, (b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

the effectiveness of the algorithm, we choose four different
iteration sequences {Nγ

i }, γ = 1, 2, 3, 4. For γ = 1 and
i = 0, 1, . . . , 10, we let N1

i = 0. For γ = 2, iteration sequence
is chosen as {N2

i } = {2, 3, 3, 0, 1, 1, 2, 2, 1, 3}. For γ = 3, iter-
ation sequence is chosen as {N3

i } = {5, 0, 8, 2, 4, 6, 4, 3, 0, 2}.
For γ = 4 and i = 0, 1, . . . , 10, let N4

i = 20. Train the critic
and the action networks under the learning rate 0.01 and set
the neural network training errors as 10−6. Under the iteration
indices i and ji, the trajectories of iterative value functions
Vi,ji(xk) for xk = x0 are shown in Fig. 2. The curves of the
iterative value functions Vi(xk) are shown in Fig. 3, where
we let “In” denote initial iteration and “Lm” denote limiting
iteration.

For {N1
i } = 0, the generalized policy iteration algorithm

is reduced to value iteration algorithm [27], [28]. From
Figs. 2(a) and 3(a), we can see that the iterative value
function converges to the approximate optimum which jus-
tifies the effectiveness of our algorithm. For {N4

i } = 20,
we can see that for i = 1, . . . , 10, the iterative value func-
tion Vi,ji(xk) is convergent for ji. The generalized policy
iteration algorithm is transformed into the policy iteration
algorithm [36], where the convergence property can be jus-
tified. For arbitrary sequence {Ni}, such as {N2

i } and {N3
i },

From Figs. 2(b) and (c) and 3(b) and (c), the iterative value
function can also converge to the approximate optimum.
Hence, we can say that value and policy iteration algorithms
are special cases of the present generalized policy iteration
algorithms and the convergence properties of our algorithm
can be justified. The stability property of system (74) under
the iterative control law vi(xk) is shown in Figs. 4 and 5,
respectively.

From the above simulation results, we can see that for
i = 0, 1, . . . , the iterative control law vi(xk) is admissible.
For linear system (74), we know that the optimal performance
index function J∗(xk) = xT

k P∗xk. According to the discrete

algebraic Riccati equation, we know that P∗ =
[

26.61 1.81
1.81 1.90

]

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1587

(a)

(c)

(b)

(d)

Fig. 4. Trajectories of iterative control law vi(xk), i = 0, 1, . . . , 10.
vi(xk) for (a) {N1

i }, (b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

(a)

(c)

(b)

(d)

Fig. 5. Trajectories of system state. State trajectories for (a) {N1
i }, (b) {N2

i },
(c) {N3

i }, and (d) {N4
i }.

and the effectiveness of the present algorithm can be justified
for linear systems.

On the other hand, we know that the structure of the neural
networks is important for its approximation performance. To
show the influence of the neural network structure, we change
the structures of the critic and action networks to 2–4–1 and
2–4–1, respectively, and other parameters of the neural net-
works are kept unchanged. Define the two neural networks
as group “NN2.” Choose {N2

i } for the j-iteration. Implement
our algorithm for i = 10 iterations. The iterative value func-
tions by NN1 and NN2 are shown in Fig. 6(a). We can see
that if the number of hidden layer is reduced, the approximate

Fig. 6. Simulation results for i = 0, 1, . . . , 10 and {N2
i }. (a) Value function

at x = x0 for NN1 and NN2. (b) Vi(xk) by NN2. (c) Iterative control law by
NN2. (d) System states by NN2.

performance of the neural networks may decrease. The plot
of Vi(xk) is shown in Fig. 6(b). The corresponding trajectories
of iterative states and control are shown in Fig. 6(c) and (d),
respectively. We can see that if the structure of the neural net-
works is not set appropriately, the performance of the control
system will be decreased.

Example 2: We now examine the performance of our
algorithm in a torsional pendulum system [36], [68] with
modifications. The dynamics of the pendulum is given as
follows:

⎧
⎪⎨

⎪⎩

dθ

dt
= ω

J
dω

dt
= u − Mgl sin θ − fd

dθ

dt
where M = 1/3 kg and l = 2/3 m are the mass and length of
the pendulum bar, respectively. Let J = 4/3Ml2 and fd = 0.2
be the rotary inertia and frictional factor, respectively. x1 = θ

and x2 = ω. Let g = 9.8 m/s2 be the gravity and the sampling
time interval
T = 0.1 s. Then, the discretized system can be
expressed by
[

x1(k+1)

x2(k+1)

]
=

[
0.1x2k + x1k

−0.49 sin(x1k) − 0.1fdx2k + x2k

]
+

[
0

0.1

]
uk.

(75)

Let the initial state be x0 = [1,−1]T and let the utility
function be the same as the one in Example 1.

Neural networks are also used to implement the general-
ized policy iteration algorithm, where the structures of the
critic network and the action network are the same as the
ones in Example 1. We choose p = 10000 states in �

to implement the generalized value iteration algorithm. For
nonlinear system (75), the initial admissible control law is
difficult to obtain. Thus we implement policy improvement
algorithm in Algorithm 2, and we can obtain the initial value

function �̄ς0(xk) = xT
k P̄0xk, where P̄0 =

[
145.31 8.43
8.43 28.42

]
.

1588 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

(a)

(c)

(b)

(d)

Fig. 7. Iterative value functions Vi,ji (xk) for i = 0, 1, . . . , 30 and xk = x0.
Vi,ji (xk) for (a) {N1

i }, (b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

Fig. 8. Iterative value functions Vi(xk), i = 0, 1, . . . , 30. Vi(xk) for (a) {N1
i },

(b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

Let iteration index i = 30. To illustrate the effectiveness of
the algorithm, we choose four different iteration sequences
{Nγ

i }, γ = 1, 2, 3, 4. For γ = 1 and ∀ i = 0, 1, . . . , 30, we
let N1

i = 0. For γ = 2, let N2
i , i = 1, 2, . . . , 30, be arbitrary

nonnegative integer that satisfies 0 ≤ N2
i ≤ 4. For γ = 3,

let N3
i , i = 1, 2, . . . , 30, be arbitrary nonnegative integer that

satisfies 0 ≤ N3
i ≤ 10. For γ = 4 and ∀ i = 0, 1, . . . , 30, let

N4
i = 20. Train the critic and the action networks under the

learning rate 0.01 and set the neural network training errors
as 10−6. Under the iteration indices i and ji, the trajectories
of iterative value functions Vi,ji(xk) for x = x0 are shown in
Fig. 7. The curves of the iterative value functions Vi(xk) are
shown in Fig. 8.

From Figs. 7 and 8, we can see that given an arbitrary
nonnegative integer sequence {Ni}, i = 0, 1, . . . , the iterative

(a)

(c)

(b)

(d)

Fig. 9. Trajectories of system state. State trajectories for (a) {N1
i }, (b) {N2

i },
(c) {N3

i }, and (d) {N4
i }.

(a)

(c)

(b)

(d)

Fig. 10. Trajectories of iterative control law vi(xk). vi(xk) for (a) {N1
i },

(b) {N2
i }, (c) {N3

i }, and (d) {N4
i }.

value function Vi,ji(xk) is monotonically nonincreasing and
converges to the approximate optimum using the present gen-
eralized policy iteration algorithm. The convergence property
of the present generalized policy iteration algorithm for non-
linear systems can be justified. The convergence properties
of value and policy iteration algorithms can also be justified
by our algorithm. The stability property of system (74) under
the iterative control law vi(xk) is shown in Figs. 9 and 10,
respectively.

We can see that for i = 0, 1, . . . , the iterative control law
vi(xk) is admissible, and hence the effectiveness of the present
algorithm can be justified for nonlinear systems.

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1589

Fig. 11. Simulation results for i = 0, 1, . . . , 30 and {N2
i }. (a) Value function

at xk = x0. (b) Vi(xk) by ELM. (c) Iterative control law by ELM. (d) System
states by ELM.

Remark 11: One property should be pointed out. From
Figs. 7(a) and 8(a), as Ni ≡ 0, for i = 1, 2, . . . , 30, we can
see that it takes 15 i-iterations to make the iterative value
function converge to the optimal performance index function.
From Figs. 7(d) and 8(d), as Ni is large, i.e., Ni = 20 for
i = 1, 2, . . . , 30, we can see that it only takes four i-iterations
to make the iterative value function converge to the opti-
mum which is much less than the situation for Ni ≡ 0.
In each i-iteration, however, it has to take 20 j-iterations to
make Vi,ji(xk) convergent. Thus, if we want to obtain the opti-
mal performance index function by the least times of policy
improvement, then we can enlarge the number of j-iteration.
On the other hand, if we want to obtain the optimal perfor-
mance index function by the least times of policy evaluation,
then reducing the number of j-iteration can be an effec-
tive method. For value and policy iteration algorithms, the
numbers of j-iteration are fixed at 0 and ∞, respectively, which
means the convergence of value and policy iteration algo-
rithms is nonregulatable. For the present generalized policy
iteration algorithm, we can regulate the convergence property
of the iterative value function by defining a suitable sequence
{Ni}. This is another merit of the generalized policy iteration
algorithm.

In the above simulations, BP neural networks are used to
implement our algorithm. We have also tried extreme learning
machine (ELM) [74], [75] to show the effectiveness of the
present algorithm. For j = 1, 2, . . . , p, let Ñ be the number of
hidden nodes. The standard ELM is expressed by

fL
(

x(j)
k

)
=

Ñ∑

i=1

βih
(

x(j)
k

)
=

Ñ∑

i=1

βih
(

w̃ix
(j)
k + bi

)
(76)

where w̃i is the weight vector connecting the ith hidden node
and the input nodes. Let βi be the vector connecting the ith
hidden node and the output nodes and let bi be the threshold

of the ith hidden node. Let w̃i and βi be random matrices
with suitable dimensions. Choose Ñ = 500 and h(·) = σ(·).
We use ELM [74], [75] to approximate the iterative value
function and the iterative control law to implement the present
generalized policy iteration algorithm. Choose {N2

i } for the j-
iteration. Implement our algorithm for i = 30 iterations. The
iterative value functions Vi(x0) by ELM and BP network are
shown in Fig. 11(a). We can see that using ELM training, the
value function can also converge to its optimum. The plot of
Vi(xk) is shown in Fig. 11(b). By ELM, it takes 1267.49 s
to complete implementing the algorithm, while the running
time is 5254.84 s by BP network (standard BP algorithm).
Using ELM, the initial weights of neural networks are solved
directly by Moore–Penrose generalized inverse method (see
[17, eq. (21)]), which may lead to faster convergence. The
corresponding trajectories of iterative states and control are
shown in Fig. 11(c) and (d), respectively.

VI. CONCLUSION

A generalized policy iteration algorithm is developed for
solving infinite horizon approximate optimal control problems
of discrete-time nonlinear systems. The present iterative ADP
algorithm is initialized by an arbitrary admissible control law.
Under the assumption of perfect function approximation, it
is proven for the first time that the iterative value function
of the generalized policy iteration algorithm is monotoni-
cally nonincreasing and converges to the optimal performance
index function. Admissibility of the iterative control law is
also established. Effective methods are given to relax the ini-
tial value function of the present algorithm. Neural networks
are employed to implement the generalized policy iteration
algorithm to obtain the approximate optimal solution of the
HJB equation. Finally, two simulation examples are utilized
to illustrate the performance of the present algorithm.

As is known, approximation errors inherently exist during
the neural network implementation. We say that the con-
verged iterative value function and iterative control law are
approximations to the optimal ones. The property analysis of
approximation errors based on iterative θ -ADP algorithm has
been investigated in [19]. Hence, the property analysis of the
present algorithm with approximation errors will be our future
research topic.

REFERENCES

[1] K. S. Hwang, Y. J. Chen, and C. J. Wu, “Fusion of multiple behav-
iors using layered reinforcement learning,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 42, no. 4, pp. 999–1004, Jul. 2012.

[2] T. Landelius, “Reinforcement learning and distributed local model
synthesis,” Ph.D. dissertation, Dept. Electr. Eng., Linkoping Univ.,
Linkoping, Sweden, 1997.

[3] H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal con-
trol of partially-unknown constrained-input continuous-time systems,”
Automatica, vol. 50, no. 1, pp. 193–202, Jan. 2014.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[5] P. J. Werbos, “Advanced forecasting methods for global crisis warn-
ing and models of intelligence,” General Systems Yearbook, vol. 22,
pp. 25–38, 1977.

[6] P. J. Werbos, “A menu of designs for reinforcement learning over
time,” in Neural Networks for Control, W. T. Miller, R. S. Sutton, and
P. J. Werbos, Eds. Cambridge, MA, USA: MIT Press, 1991, pp. 67–95.

1590 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 12, DECEMBER 2015

[7] T. Dierks, B. Brenner, and S. Jagannathan, “Neural network-based
optimal control of mobile robot formations with reduced informa-
tion exchange,” IEEE Trans. Control Syst. Technol., vol. 21, no. 4,
pp. 1407–1415, Jul. 2013.

[8] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy gradi-
ents,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 42, no. 6,
pp. 1291–1307, Nov. 2012.

[9] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar,
“A deterministic improved Q-learning for path planning of a mobile
robot,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 43, no. 5,
pp. 1141–1153, Sep. 2013.

[10] Y. Jiang and Z. P. Jiang, “Robust adaptive dynamic programming with an
application to power systems,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 7, pp. 1150–1156, Jul. 2013.

[11] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission con-
trol scheme for CDMA cellular networks,” IEEE Trans. Neural Netw.,
vol. 16, no. 5, pp. 1219–1228, Sep. 2005.

[12] H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10,
pp. 1513–1525, Oct. 2013.

[13] D. Molina, G. K. Venayagamoorthy, J. Liang, and R. G. Harley,
“Intelligent local area signals based damping of power system
oscillations using virtual generators and approximate dynamic pro-
gramming,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 498–508,
Jan. 2013.

[14] H. Xu and S. Jagannathan, “Stochastic optimal controller design for
uncertain nonlinear networked control system via neuro dynamic pro-
gramming,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 3,
pp. 471–484, Mar. 2013.

[15] H. Zhang and F. L. Lewis, “Adaptive cooperative tracking control of
higher-order nonlinear systems with unknown dynamics,” Automatica,
vol. 48, no. 7, pp. 1432–1439, Jul. 2012.

[16] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.

[17] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, D. A. White and D. A. Sofge, Eds. New York,
NY, USA: Van Nostrand Reinhold, 1992, ch. 13.

[18] S. Bhasin et al., “A novel actor-critic-identifier architecture for approx-
imate optimal control of uncertain nonlinear systems,” Automatica,
vol. 49, no. 1, pp. 82–92, Jan. 2013.

[19] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[20] Q. Wei and D. Liu, “Adaptive dynamic programming for optimal track-
ing control of unknown nonlinear systems with application to coal gasi-
fication,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 4, pp. 1020–1036,
Oct. 2014.

[21] Q. Wei, H. Zhang, and J. Dai, “Model-free multiobjective approximate
dynamic programming for discrete-time nonlinear systems with gen-
eral performance index functions,” Neurocomputing, vol. 72, nos. 7–9,
pp. 1839–1848, Mar. 2009.

[22] Q. Wei, D. Liu, G. Shi, and Y. Liu, “Multibattery optimal coordination
control for home energy management systems via distributed iterative
adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 62,
no. 7, pp. 4203–4214, Jul. 2015.

[23] Q. Wei, D. Liu, and G. Shi, “A novel dual iterative Q-learning
method for optimal battery management in smart residential environ-
ments,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2509–2518,
Apr. 2015.

[24] X. Xu, Z. Hou, C. Lian, and H. He, “Online learning control using
adaptive critic designs with sparse kernel machines,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 24, no. 5, pp. 762–775, May 2013.

[25] Q. Wei, D. Liu, and Y. Xu, “Policy iteration optimal tracking control
for chaotic systems by adaptive dynamic programming approach,” Chin.
Phys. B, vol. 24, no. 3, Mar. 2015, Art. ID 0305021.

[26] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement learn-
ing and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Syst., vol. 32, no. 6,
pp. 76–105, Dec. 2012.

[27] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Scientific, 1996.

[28] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Belmont, MA, USA: Athena Scientific, 2007.

[29] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[30] H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the
greedy HDP iteration algorithm,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 38, no. 4, pp. 937–942, Jul. 2008.

[31] H. Zhang, Y. Luo, and D. Liu, “The RBF neural network-based near-
optimal control for a class of discrete-time affine nonlinear systems
with control constraint,” IEEE Trans. Neural Netw., vol. 20, no. 9,
pp. 1490–1503, Sep. 2009.

[32] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based
optimal control for a class of unknown discrete-time nonlinear systems
using globalized dual heuristic programming,” IEEE Trans. Autom. Sci.
Eng., vol. 9, no. 3, pp. 628–634, Mar. 2012.

[33] M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network HJB
approach,” Automatica, vol. 41, no. 5, pp. 779–791, May 2005.

[34] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32,
no. 2, pp. 140–153, May 2002.

[35] R. Song, W. Xiao, H. Zhang, and C. Sun, “Adaptive dynamic program-
ming for a class of complex-valued nonlinear systems,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 9, pp. 1733–1739, Sep. 2014.

[36] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[37] Q. Wei and D. Liu, “A novel iterative θ -adaptive dynamic program-
ming for discrete-time nonlinear systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 4, pp. 1176–1190, Oct. 2014.

[38] Q. Wei and D. Liu, “Numerical adaptive learning control scheme for
discrete-time nonlinear systems,” IET Control Theor. Appl., vol. 7,
no. 11, pp. 1472–1486, Jul. 2013.

[39] F. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
ε-error bound,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 24–36,
Jan. 2011.

[40] Q. Wei and D. Liu, “An iterative ε-optimal control scheme for a class of
discrete-time nonlinear systems with unfixed initial state,” Neural Netw.,
vol. 32, pp. 236–244, Aug. 2012.

[41] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained
nonlinear optimal control using single network adaptive critics,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 24, no. 1, pp. 145–157, Jan. 2013.

[42] X. Yang, D. Liu, and Y. Huang, “Neural-network-based online optimal
control for uncertain nonlinear continuous-time systems with control
constraints,” IET Control Theor. Appl., vol. 7, no. 17, pp. 2037–2047,
Nov. 2013.

[43] D. Liu, D. Wang, and X. Yang, “An iterative adaptive dynamic program-
ming algorithm for optimal control of unknown discrete-time nonlinear
systems with constrained inputs,” Inf. Sci., vol. 220, pp. 331–342,
Jan. 2013.

[44] K. G. Vamvoudakis and F. L. Lewis, “Multi-player non-zero-sum
games: Online adaptive learning solution of coupled Hamilton–Jacobi
equations,” Automatica, vol. 47, no. 8, pp. 1556–1569, Aug. 2011.

[45] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-sum
differential games of continuous-time nonlinear systems using single-
network ADP,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 206–216,
Feb. 2013.

[46] H. Zhang, Q. Wei, and D. Liu, “An iterative adaptive dynamic pro-
gramming method for solving a class of nonlinear zero-sum differential
games,” Automatica, vol. 47, no. 1, pp. 207–214, Jan. 2011.

[47] D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for
discrete-time nonlinear systems via iterative adaptive dynamic program-
ming algorithm,” Neurocomputing, vol. 110, pp. 92–100, Jun. 2013.

[48] D. Liu, H. Li, and D. Wang, “Online synchronous approximate optimal
learning algorithm for multiplayer nonzero-sum games with unknown
dynamics,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44, no. 8,
pp. 1015–1027, Aug. 2014.

[49] Q. Wei and D. Liu, “Data-driven neuro-optimal temperature control of
water gas shift reaction using stable iterative adaptive dynamic pro-
gramming,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6399–6408,
Nov. 2014.

[50] Q. Wei and D. Liu, “Stable iterative adaptive dynamic programming
algorithm with approximation errors for discrete-time nonlinear sys-
tems,” Neural Comput. Appl., vol. 24, no. 6, pp. 1355–1367, May 2014.

LIU et al.: GENERALIZED POLICY ITERATION ADP FOR DISCRETE-TIME NONLINEAR SYSTEMS 1591

[51] Q. Wei and D. Liu, “Neural-network-based adaptive optimal tracking
control scheme for discrete-time nonlinear systems with approximation
errors,” Neurocomputing, vol. 149, no. 3 pp. 106–115, Feb. 2015.

[52] Q. Wei, F. Wang, D. Liu, and X. Yang, “Finite-approximation-error
based discrete-time iterative adaptive dynamic programming,” IEEE
Trans. Cybern., vol. 44, no. 12, pp. 2820–2833, Dec. 2014.

[53] H. Modares and F. L. Lewis, “Linear quadratic tracking control of
partially-unknown continuous-time systems using reinforcement learn-
ing,” IEEE Trans. Autom. Control, vol. 59, no. 11, pp. 3051–3056,
Nov. 2014.

[54] B. Kiumarsi and F. L. Lewis, “Actor-critic based optimal tracking for
partially unknown nonlinear discrete-time systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 1, pp. 140–151, Jan. 2015.

[55] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and
M. B. Naghibi-Sistani, “Reinforcement Q-learning for optimal track-
ing control of linear discrete-time systems with unknown dynamics,”
Automatica, vol. 50, no. 4, pp. 1167–1175, Apr. 2014.

[56] D. Liu, D. Wang, F. Y. Wang, H. Li, and X. Yang,
“Neural-network-based online HJB solution for optimal robust guar-
anteed cost control of continuous-time uncertain nonlinear systems,”
IEEE Trans. Cybern., vol. 44, no. 12, pp. 2834–2847, Dec. 2014.

[57] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class
of continuous-time nonlinear interconnected systems using online learn-
ing optimal control approach,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 418–428, Feb. 2014.

[58] P. Pennesi and I. C. Paschalidis, “A distributed actor-critic algorithm
and applications to mobile sensor network coordination problems,” IEEE
Trans. Autom. Control, vol. 55, no. 2, pp. 492–497, Feb. 2010.

[59] K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent differ-
ential graphical games: Online adaptive learning solution for synchro-
nization with optimality,” Automatica, vol. 48, no. 8, pp. 1598–1611,
2012.

[60] J. Y. Lee, J. B. Park, and Y. H. Choi, “Integral Q-learning and explorized
policy iteration for adaptive optimal control of continuous-time linear
systems,” Automatica, vol. 48, no. 11, pp. 2850–2859, Nov. 2012.

[61] H. Li, D. Liu, and D. Wang, “Integral reinforcement learning for linear
continuous-time zero-sum games with completely unknown dynamics,”
IEEE Trans. Autom. Sci. Eng., vol. 11, no. 3, pp. 706–714, Jul. 2014.

[62] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based
on the dual critic network design,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 24, no. 6, pp. 913–928, Jun. 2013.

[63] D. Vrabie and F. L. Lewis, “Generalized policy iteration for continuous-
time systems,” in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, USA,
Jun. 2009, pp. 3224–3231.

[64] D. Vrabie, K. Vamvoudakis, and F. L. Lewis, “Adaptive optimal con-
trollers based on generalized policy iteration in a continuous-time
framework,” in Proc. 17th Mediterr. Conf. Control Autom., Thessaloniki,
Greece, Jun. 2009, pp. 1402–1409.

[65] J. Y. Lee, T. Y. Chun, J. B. Park, and Y. H. Choi, “On generalized
policy iteration for continuous-time linear systems,” in Proc. 50th IEEE
Conf. Decis. Control Eur. Control Conf., Orlando, FL, USA, Dec. 2011,
pp. 1722–1728.

[66] Q. Wei, D. Liu, and X. Yang, “Infinite horizon self-learning optimal con-
trol of nonaffine discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 4, pp. 866–879, Apr. 2015.

[67] T. M. Apostol, Mathematical Analysis, 2nd ed. Boston, MA, USA:
Addison-Wesley, 1974.

[68] J. Si and Y.-T. Wang, “On-line learning control by association and rein-
forcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264–276,
Mar. 2001.

[69] P. J. Werbos, “Consistency of HDP applied to a simple reinforcement
learning problem,” Neural Netw., vol. 3, no. 2, pp. 179–189, Apr. 1990.

[70] H. R. Maei, C. Szepesvari, S. Bhatnagar, and R. S. Sutton, “Toward
off-policy learning control with function approximation,” in Proc. 27th
Int. Conf. Mach. Learn., Haifa, Israel, Jun. 2010, pp. 719–726.

[71] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-difference learn-
ing with function approximation,” IEEE Trans. Autom. Control, vol. 42,
no. 5, pp. 674–690, May 1997.

[72] H. Maei et al., “Convergent temporal-difference learning with arbitrary
smooth function approximation,” in Proc. Adv. Neural Inf. Process. Syst.,
Vancouver, BC, Canada, 2009, pp. 1204–1212.

[73] R. C. Dorf and R. H. Bishop, Modern Control Systems, 12th ed.
New York, NY, USA: Prentice Hall, 2011.

[74] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation
using incremental constructive feedforward networks with random hid-
den nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Aug. 2006.

[75] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

Derong Liu (S’91–M’94–SM’96–F’05) received
the Ph.D. degree in electrical engineering from the
University of Notre Dame, Notre Dame, IN, USA,
in 1994.

He was a Staff Fellow with General Motors
Research and Development Center, Warren, MI,
USA, from 1993 to 1995. He was an Assistant
Professor with the Department of Electrical
and Computer Engineering, Stevens Institute of
Technology, Hoboken, NJ, USA, from 1995 to 1999.
He joined the University of Illinois at Chicago,

Chicago, IL, USA, in 1999, and became a Full Professor of Electrical and
Computer Engineering and of Computer Science in 2006. He was selected
for the “100 Talents Program” by the Chinese Academy of Sciences in 2008.
He has published six research monographs and nine edited volumes.

Prof. Liu was a recipient of the Michael J. Birck Fellowship from the
University of Notre Dame in 1990, the Harvey N. Davis Distinguished
Teaching Award from the Stevens Institute of Technology in 1997, the
Faculty Early Career Development Award from the National Science
Foundation in 1999, the University Scholar Award from the University of
Illinois from 2006 to 2009, and the Overseas Outstanding Young Scholar
Award from the National Natural Science Foundation of China in 2008. He
is currently an Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS. He is a Fellow of the International
Neural Network Society.

Qinglai Wei (M’11) received the B.S. degree
in automation, the M.S. degree in control theory
and control engineering, and the Ph.D. degree in
control theory and control engineering, all from
Northeastern University, Shenyang, China, in 2002,
2005, and 2008, respectively.

From 2009 to 2011, he was a Post-Doctoral
Fellow with the State Key Laboratory of
Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of
Sciences, Beijing, China, where he is cur-

rently an Associate Professor. His current research interests include
neural-network-based control, adaptive dynamic programming, optimal
control, nonlinear systems, and their industrial applications.

Dr. Wei has been an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS since 2014. He is currently
an Associate Editor of Acta Automatica Sinica.

Pengfei Yan received the B.S. degree in informa-
tion and computing science from Wuhan University,
Wuhan, China, in 2011. He is currently pursuing
the Ph.D. degree with the State Key Laboratory
of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of
Sciences, Beijing, China.

His current research interests include adaptive
dynamic programming, data-driven control, adaptive
control, and neural-network-based control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

