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a b s t r a c t

A neural-network-based distributed control algorithm is established for bipartite consensus of the
nonlinear multi-agent systems with time delays. By using a backstepping technique, a desired reference
signal is introduced. Then, neural networks are used to learn the unknown nonlinear dynamics of the
multi-agent systems. In order to eliminate the effects of time delays, the information of a constructed

singularities in the distributed control algorithm. Therefore, a σ-function is utilized to circumvent this
problem. With the developed distributed control algorithm, bipartite consensus can be reached if the
communication graph is structurally balanced. Finally, simulation examples are conducted to demon-
strate the validity of the main theorem.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multi-agent systems have attracted a lot of attention during the last
decade. Variety of problems studied includes optimal control problems
[1–5], output-based control problems [6–9], containment problems
[10,11], formation problems [12–14], event-triggered problems [15,16]
and consensus problems [17–30]. For more details, refer to the survey
papers [31–35] and the references therein. However, the commu-
nication weights of multi-agent systems in all the papers above are
nonnegative and they have been fully investigated. Due to the exis-
tence of negative communication weights, bipartite consensus is a
new branch of traditional consensus problems. Therefore, it is worthy
of investigating how to design distributed control algorithms for
bipartite consensus problems.

In many physical scenarios, it is reasonable to assume that
some of the agents are cooperative while the rest are competitive.
For example, one community can be divided into two clusters
holding the opposite opinions as shown in Fig. 1. In [36], negative
weights were introduced to the communication topology and
bipartite consensus can be reached in the presence of antagonistic
atural Science Foundation of
86, and 61374105, in part by
4132078, and in part by the

cn (D. Liu).
interactions. However, it only dealt with the simplest situation
where the first-order dynamics of each agent was equal to the
control input. Subsequently, bipartite consensus problems were
extended to formation control [13] and directed signed networks
[37] with the same dynamics. In [38], the dynamics of the multi-
agent systems were high-order and bipartite consensus can be
reached under the stabilizability assumption with an equilibrium
between two fully competing groups. However, none of them
takes time delays into consideration. Due to the limit of the
communication capability, time delays are ubiquitous in physical
implementations and they will induce instability. Furthermore, the
unknown nonlinear dynamics are considered in this paper to
generalize bipartite consensus problems to a complex external
environment. Therefore, it is important to investigate bipartite
consensus of nonlinear time-delayed multi-agent systems.

In [39], adaptive neural control was introduced to solve the
uncertain MIMO nonlinear systems. In [17] and [18], a decentralized
adaptive control with neural networks (NNs) was proposed for multi-
agent systems with unknown dynamics, which made great contribu-
tions to the studies of nonlinear multi-agent systems. A neural net-
work technique is a powerful tool for learning the unknown dynamics
[40]. In [41], an adaptive neural control protocol was utilized for a class
of strict-feedback nonlinear systems with unknown time delays. In
[42], a Lyapunov–Krasovskii functional and Young's inequality were
used for the consensus of time-delayed multi-agent systems. We
borrow the technique of Lyapunov–Krasovskii functional from [41,42]
to eliminate the negative effects of time delays. However, this tech-
nique will induce singularities in the distributed control algorithm.
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Fig. 1. Two clusters with cooperative behaviors inside and antagonistic behaviors
between each other.
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Thus, we utilize a σ-function to deal with this problem. Furthermore,
to the best of authors’ knowledge, it is the first time to investigate
bipartite consensus of the time-delayed nonlinear multi-agent systems
of second order with the σ-function developed. The main contribu-
tions of this paper are listed as follows:

(1) A distributed control algorithm with neural network techni-
que is developed to achieve bipartite consensus of the non-
linear time-delayed multi-agent systems.

(2) A σ-function is introduced to circumvent the singularities in
the distributed control algorithm and the backstepping tech-
nique is utilized to design a reference signal which can reduce
the difficulty of achieving bipartite consensus.

(3) A Lyapunov–Krasovskii functional is introduced to eliminate
the negative effects of time delays and enhance the reliability
of the learning capability of NNs.

The rest of this paper is organized as follows. Basic definitions
of bipartite consensus and radial basis function neural networks
(RBFNNs) are given in Section 2. The distributed control algorithm
with NNs is developed for bipartite consensus in Section 3.
Implementations of bipartite consensus are conducted to
demonstrate the effectiveness of the developed algorithm in Sec-
tion 4. Conclusion is given in Section 5.

Notations: ð�ÞT denotes the transpose of a given matrix. ð�Þ is the
trace of a given matrix. J � J is the Frobenius norm or Euclidian
norm. � stands for the Kronecker product. λminð�Þ and λmaxð�Þ are
the smallest nonzero eigenvalue and the largest eigenvalue of a
given matrix, respectively. diagð�Þ represents a diagonal matrix.
ϕ
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Fig. 2. Structure of the radial basis function neural networks.
2. Preliminaries

2.1. Signed graph and bipartite consensus

A triplet G¼ fV; E;Ag is called a signed graph if V ¼ f1;2;…;Ng
is the set of nodes, EDV � V is the set of edges, and A¼ ðAijÞA
RN�N is the adjacency matrix of G. Denote Aij as the element of the
ith row and jth column of the matrix A. The ith node in a signed
graph G represents the ith agent, and a directed path from node i
to node j is denoted as an ordered pair ði; jÞAE which means that
agent i can directly transfer its information to agent j and
Ajia03ði; jÞAE. The interaction between the ith and the jth
agent is cooperative if Aij40. It is competitive if Aijo0 and there
is no interaction if Aij ¼ 0. Note that self-loops will not be con-
sidered in this paper, i.e., Aii ¼ 0, i¼ 1;2;…;N. The Laplacian
matrix of the signed graph is given as follows:

Lij ¼

P
kAN i

jAikj if i¼ j;

�Aij if ia j:

8<
: ð1Þ

The following two definitions are important concepts in this
paper.

Definition 1 (Structurally balanced, cf. Altafini [36]). In this paper,
a signed graph GðAÞ is said to be structurally balanced if it contains
a bipartition of the sets of nodes V1 and V2, where V ¼ V1 [
V2;V1 \ V2 ¼∅ such that AijZ0; 8 i; jAVpðpAf1;2gÞ;Aijr0;
8 iAVp; jAVq; paqðp; qAf1;2gÞ. Otherwise, it is called structurally
unbalanced.

Definition 2 (Bipartite consensus). If for any initial conditions
xið0Þ, iAV, the distributed control algorithm will make the fol-
lowing conditions hold:

lim
t-1

‖xjðtÞ�xiðtÞ‖¼ 0; 8 i; jAV1 or 8 i; jAV2;

lim
t-1

‖xjðtÞþxiðtÞ‖¼ 0; 8 iAV1 and 8 jAV2;

8<
: ð2Þ

where V1 and V2 are the distinct sets defined in Definition 1. Then,
we say that the multi-agent systems reach bipartite consensus.

2.2. Radial basis function neural networks

In practice, we usually employ a neural network as the function
approximator to model an unknown function. RBFNN is a potential
candidate for approximating the unknown dynamics of the multi-
agent systems in virtue of “linear-in-weight” property. In Fig. 2, a
continuous unknown nonlinear function vector hðxÞ ¼ ½h1ðxÞ;h2ðxÞ;
…;hmðxÞ�T : Rm-Rm can be approximated by RBFNNs:

hðxÞ ¼WTΦðxÞ; ð3Þ

where x¼ ½x1; x2;…; xm�TARm is the input vector, WARp�m is the
weight matrix and p represents the number of neurons. ΦðxÞ ¼
½φ1ðxÞ;φ2ðxÞ;…;φpðxÞ�T is the activation function vector and

φiðxÞ ¼ exp
�ðx�μiÞTðx�μiÞ

δ2i

" #
; i¼ 1;2;…; p; ð4Þ

where μi ¼ ½μi1;μi2;…;μim�T is the center of receptive field and δi is
the width of Gaussian function. RBFNNs can approximate any
continuous function over a compact set with a given precision.
Therefore, for a given positive constant θN, there exists an ideal
weight matrix Wn such that

hðxÞ ¼WnTΦðxÞþθ; ð5Þ

where θARm is the approximating error with JθJoθN .
However, it is difficult to obtain Wn in real applications. Thus,

we denote Ŵ as the estimation of the ideal weight matrix Wn. The
estimation of h(x) can be written as

ĥðxÞ ¼ ŴTΦðxÞ; ð6Þ

where Ŵ can be updated online. The online updating law will be
given in Section 3.
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3. Distributed control algorithm for bipartite consensus

We discuss the second-order case where multi-manipulator
systems are one of its physical applications. It can be described as
follows:

€xiðtÞ ¼ f iðxiðtÞ; _xiðtÞÞþgið _xiðt�τiÞÞþuiðtÞ;
i¼ 1;2;…;N; ð7Þ

where xið�ÞARm is the state vector, τi is the unknown time delay,
uið�ÞARm is the control vector, f ið�Þ : Rm-Rm and gið�Þ : Rm-Rm

are continuous but unknown nonlinear vector functions. For
simplicity, in the sequel we will ignore time expression t in case
there is no confusion.

Remark 1. In practice, xi; _xi and €xi can represent position, velocity
and acceleration of manipulator i, respectively. Furthermore, gið�Þ
is the unknown nonlinear time-delay term which can be seen as
the frictional impact on manipulator i.

The following three assumptions and one lemma are helpful for
demonstrating Theorem 1.

Assumption 1. gið _xiðt�τiÞÞ, i¼ 1;2;…;N, are unknown smooth
nonlinear functions. The inequalities Jgið _xiðtÞÞJrϕið _xiðtÞÞ, i¼ 1;
2;…;N, hold and ϕið�Þ, i¼ 1;2;…;N, are known positive smooth
scalar functions. Furthermore, gið0Þ ¼ 0 and ϕið0Þ ¼ 0, i¼ 1;2;…;N.

Assumption 2. The unknown time delays τi, i¼ 1;2;…;N, are
bounded by a known constant τmax, i.e., τirτmax, i¼ 1;2;…;N.

Assumption 3. θi, i¼ 1;2;…;N, are bounded approximation errors
of RBFNNs, i.e.,

Jθi JrθNi
; i¼ 1;2;…;N; ð8Þ

where θNi
, i¼ 1;2;…;N, are positive constants.

Lemma 1 (cf. Ge and Wang [39]). V ðtÞZ0 denotes a continuous
function and Vð0Þ is bounded. If 8 tZ0, _V ðtÞr�b1VðtÞþb2, where
b1 and b2 are positive constants, then the following inequality holds

VðtÞrV ð0Þe�b1tþb2
b1
ð1�e�b1tÞ: ð9Þ

Our aim is to design a distributed control algorithm to drive the
nonlinear time-delayed multi-agent systems toward bipartite
consensus. The distributed control algorithm is divided into four
parts and they are linear feedback term, neural network term,
time-delay eliminated term and second-order information term.
Before proceeding, we introduce a Lyapunov–Krasovskii functional
as follows:

LQ ðtÞ ¼
1
2

XN
i ¼ 1

Z t

t� τi
Q ið _xiðζÞÞdζ; ð10Þ

where Qið _xiðζÞÞ ¼ϕ2
i ð _xiðζÞÞ. The time derivative of LQ(t) is

_LQ ðtÞ ¼
1
2

XN
i ¼ 1

ϕ2
i ð _xiðtÞÞ�ϕ2

i ð _xiðt�τiÞÞ
� �

: ð11Þ

Let yi1 ¼ xi and yi2 ¼ _xi. Then, Eq. (7) can be rewritten in the
following form:

_yi1 ¼ yi2;
_yi2 ¼ f iðyi1; yi2Þþgiðyi2ðt�τiÞÞþui; i¼ 1;2;…;N:

(
ð12Þ

In the sequel, for convenient analysis, we will ignore the declara-
tion that i¼ 1;2;…;N and concentrate on agent i. We employ the
backstepping technique and suppose that

yi2d ¼ �ki
X
jAN i

jAij j ðyi1�sgnðAijÞyj1Þ; ð13Þ
where sgnð�Þ is a sign function given as follows:

sgnðAijÞ ¼
1; Aij40;
0; Aij ¼ 0;
�1; Aijo0:

8><
>: ð14Þ

Then, we can obtain an error signal between the real state yi2 and
the virtual state yi2d, i.e., vei ¼ yi2�yi2d. Consequently, the time
derivative of vei is

_vei ¼ _yi2� _yi2d ¼ f iðyi1; yi2Þþgiðyi2ðt�τiÞÞþuiþki
X
jAN i

jAij j ðyi2�sgnðAijÞyj2Þ:

ð15Þ
We utilize RBFNNs to approximate f iðyi1; yi2Þ. The distributed
control algorithm is designed as follows:

ui ¼ �ρiðtÞvei�Ŵ
T

i ΦiðyiÞ�
1
2

vei
‖vei‖2þσðveiÞ

ϕ2
i ðyi2Þ

�ki
X
jAN i

jAij j ðyi2�sgnðAijÞyj2Þ; ð16Þ

where

ρiðtÞ ¼ ki0þ
1
2
þ 1
2ωi

1þ 1
‖vei‖2þσðveiÞ

ℏi

� �
;

ℏi ¼
Z t

t�τmax

Qiðyi2ðζÞÞdζþωi‖yi2‖2þðωiþλmaxðMÞÞ‖yei‖2;

yei ¼
X
jAN i

jAij j ðyi1�sgnðAijÞyj1Þ;

yi ¼ ½yTi1; yTi2�T;

σðveiÞ ¼
1; if Jvei JoC;

0; if Jvei JZC;

(
ð17Þ

and C is a predetermined threshold (e.g., C¼0.01). Furthermore,
ωi40 and M are defined in (21). Next, we discuss the structure of
the distributed control algorithm.

(1) The linear feedback term �ρiðtÞvei is utilized to drive the ith
agent to the final bipartite consensus state. It contains all the
information which can be used by agent i to guide its direction
towards bipartite consensus. Moreover, if bipartite consensus
can be reached, then �ρiðtÞvei has no impact on the multi-
agent system (7).

(2) In order to model the unknown dynamics in (15), the neural
network term � ^WT

iΦiðyiÞ is used to learn the characteristics
of f iðyiÞ online. Ŵ i represents the estimation of RBFNN weight
matrix of agent i. Motivated by the projection algorithm, we
can derive the adaptive updating law as follows:

_̂W i ¼

aiΦiðyiÞvTei; if tr ŴT
i Ŵ i

� �
oWmax

i or

if tr ŴT
i Ŵ i

� �
¼Wmax

i and vTeiŴ
T
i ΦiðyiÞo0;

aiΦiðyiÞvTei�ai
vTeiŴ

T
i ΦiðyiÞ

tr Ŵ
T

i Ŵ i

� � Ŵ i;

if tr ^WT
i Ŵ i

� �
¼Wmax

i and vTei
^WT
i ΦiðyiÞZ0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð18Þ

where ai40 has impact on the updating rate of Ŵ i and Wmax
i

40 is utilized to constrain the value of Ŵ i. It is noted that the
initial value Ŵ ið0Þ should satisfy

tr ^WT
i ð0ÞŴ ið0Þ

� �
rWmax

i : ð19Þ

Thus, we let Ŵ ið0Þ be a zero matrix. Furthermore, according to
Lemma 2 in [17], if the updating law is expressed as (18), then
tr ^WT

i ðtÞŴ iðtÞrWmax
i ; 8 tZ0. Note that in (18), the final aim is

to regulate the angle between vei and
^WT
i ΦiðyiÞ to 90°.
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(3) �ð1=2Þvei=ð‖vei‖2þσðveiÞÞϕ2
i ðyi2Þ is the time-delay elimination

term which is introduced to eliminate the effects of time
delays. Note that if the σ-function is removed from the
denominator, it has singularity at Jvei J ¼ 0. In physical appli-
cations, it is nonsense because of the infinite control induced
by Jvei J ¼ 0. Therefore, we should exclude zero case and σ-
function is a wise choice for solving this problem.

(4) �ki
P

jAN i
jAij j ðyi2�sgnðAijÞyj2Þ is the second-order informa-

tion term and it includes the information of velocities that
agent i can obtain.

Theorem 1. The nonlinear time-delayed multi-agent system is
described by (7) with Assumptions 1–3. If the distributed control
algorithm is expressed as (16), the updating law of RBFNN weight
matrix is given in (18), the communication topology is structurally
balanced, and the initial condition is satisfied with (19), then the
multi-agent system (7) can reach bipartite consensus.

Proof. We construct a Lyapunov function containing error signal
vei, i¼ 1;2;…;N, as follows:

VðtÞ ¼ Vŷ1
ðtÞþLQ ðtÞþ

1
2

XN
i ¼ 1

tr
1
ai

~W
T

i
~Wi

� �
þ1
2
vTe ve

¼ 1
2
ŷT
1ðL � ImÞŷ1þ

1
2

XN
i ¼ 1

Z t

t�τi
Q iðyi2ðζÞÞdζ

þ1
2

XN
i ¼ 1

tr
1
ai

~W
T

i
~Wi

� �
þ1
2
vTe ve; ð20Þ

where Vŷ1
ðtÞ ¼ ð1=2ÞŷT

1ðL � ImÞŷ1, ŷ1 ¼ ½yT11; yT21;…; yTN1�T and
ve ¼ ½vTe1; vTe2;…; vTeN �T. Note that if Jvei J ¼ 0, then yi2 ¼ yi2d, i.e., _yi1

¼ yi2d ¼ �ki
P

jAN i

jAij j ðyi1�sgnðAijÞyj1Þ. It is obvious that this is a

traditional distributed control algorithm for bipartite consensus in
[36]. Therefore, in the sequel we will focus on the case where
Jvei Ja0.Then, we can infer that

dVðtÞ
dt

¼ yTe
_̂y1þ

1
2

XN
i ¼ 1

ϕ2
i ðyi2ðtÞÞ�ϕ2

i ðyi2ðt�τiÞÞ
� �

�
XN
i ¼ 1

tr
�
1
ai

~W
T

i
_̂W i

�
þvTe _ve

¼ yTe ŷ2þ
1
2

XN
i ¼ 1

ϕ2
i ðyi2ðtÞÞ�ϕ2

i ðyi2ðt�τiÞÞ
� �

�
XN
i ¼ 1

tr
�
1
ai

~W
T

i
_̂W i

�

þ
XN
i ¼ 1

vTeiðui� _yi2dÞþ
XN
i ¼ 1

vTei f iðyi1; yi2Þþgiðyi2ðt�τiÞÞ
� �

;

where ~Wi ¼Wn

i �Ŵ i, ŷ2 ¼ ½yT12; yT22;…; yTN2�T and ye ¼ ½yTe1; yTe2;
…; yTeN �T. Furthermore, the communication topology is connected
and structurally balanced. Thus, according to Lemma 1 in [36],
zero is an m-multiplicity eigenvalue of L � Im and T contains
eigenvectors of L � Im corresponding to the eigenvalue matrix
Λ¼ diagð0Im; λ2Im; λ3Im;…; λnImÞ, where TTT ¼ TTT ¼ ImN and

T �1 ¼ TT. Hence,

ŷT1 ðL � ImÞŷ1 ¼ ŷT1 T
TΛTŷ1

¼ ŷT1T
T

ffiffiffiffi
Λ

p ffiffiffiffi
Λ

p
Tŷ1

¼ ŷT1T
T

ffiffiffiffi
Λ

p ffiffiffiffi
Λ

p ffiffiffiffiffiffiffiffiffiffi
Λ

�1
q ffiffiffiffiffiffiffiffiffiffi

Λ
�1

q ffiffiffiffi
Λ

p ffiffiffiffi
Λ

p
Tŷ1

¼ ŷT1T
TΛTTTΛ

�1
TTTΛTŷ1

¼ ŷT1 ðL � ImÞTMðL � ImÞŷ1

¼ yTeMye; ð21Þ
whereffiffiffiffi
Λ

p
¼ diag 0Im;

ffiffiffiffiffi
λ2

p
Im;

ffiffiffiffiffi
λ3

p
Im;…;

ffiffiffiffiffi
λn

p
Im

� �
;

Λ ¼ diag λ2Im; λ2Im; λ3Im;…; λnIm
� �

;ffiffiffiffi
Λ

p
¼ diag

ffiffiffiffiffi
λ2

p
Im;

ffiffiffiffiffi
λ2

p
Im;

ffiffiffiffiffi
λ3

p
Im;…;

ffiffiffiffiffi
λn

p
Im

� �
;

and M¼ TTΛ
�1

T . Then, with Assumptions 1 and 3, we substitute
(16) into dV=dt to obtain

dVðtÞ
dt

r1
2

XN
i ¼ 1

ð‖yei‖2þ‖yi2‖2Þ�
XN
i ¼ 1

tr
1
ai

~W
T

i
_̂W i

� �

þ1
2

XN
i ¼ 1

ϕ2
i ðyi2ðtÞÞ�ϕ2

i ðyi2ðt�τiÞÞ
� �

þ
XN
i ¼ 1

θNi

þ
XN
i ¼ 1

vTei ~W
T

i ΦiðyiÞ�
XN
i ¼ 1

ρiðtÞ�
1
2

� �
‖vei‖2

þ1
2

XN
i ¼ 1

ϕ2
i ðyi2ðt�τiÞÞ�ϕ2

i ðyi2ðtÞÞ
� �

:

According to (18), we discuss the following two cases.

(a) When _̂W i ¼ aiΦiðyiÞvTei, we have

tr ~W
T

i
1
ai

_̂W i�ΦiðyiÞvTei
� �� �

¼ 0:

(b) When _̂W i ¼ aiΦiðyiÞvTei�aiðvTei
^WT
i ΦiðyiÞ=trð ^WT

i Ŵ iÞÞŴ i, we have

tr ~W
T

i
1
ai

_̂W i�ΦiðyiÞvTei
� �� �

¼ �vTeiŴ
T
i ΦiðyiÞ

tr ^WT
i Ŵ i

� � tr ~W
T

i Ŵ i

� �
:

Furthermore, we can obtain

tr ~W
T

i Ŵ i

� �
¼ tr ~W

T

i W
n

i

� �
�tr ~W

T

i
~Wi

� �
¼ 1
2

tr ~W
T

i W
n

i

� �
þtr WnT

i
~Wi

� �h i
�tr ~W

T

i
~Wi

� �
¼ 1
2

tr Wn

i TW
n

i

� ��tr ^WT
i W

n

i

� �h i
þ1
2

tr ^WT
i
~Wi

� �h
þtr ~W

T

i
~Wi

� �i
�tr ~W

T

i
~Wi

� �
¼ 1
2
tr WnT

i Wn

i

� �
�1
2
tr ŴT

i Ŵ i

� �
�1
2
tr ~W

T

i
~Wi

� �
r0

with

tr ~W
T

i
~Wi

� �
Z0

and

tr ^WT
i Ŵ i

� �
¼Wmax

i Ztr WnT
i Wn

i

� �
:

Then, if

tr ^WT
i Ŵ i

� �
¼Wmax

i 40 and vTei
^WT
i ΦiðyiÞZ0;

we can obtain

tr ~W
T

i
1
ai

_̂W i�ΦiðyiÞvTei
� �� �� �

Z0: ð22Þ

Therefore, in the above two cases, the inequality (22) always holds.
In terms of Assumption 2, we have

1
2

XN
i ¼ 1

Z t

t�τi
Q iðyi2ðζÞÞdζr

1
2

XN
i ¼ 1

Z t

t� τmax

Qiðyi2ðζÞÞdζ:

Thus, with (17) we can obtain

dVðtÞ
dt

r
XN
i ¼ 1

�ki0‖vei‖2�
1

2ωi
‖vei‖2�

λmaxðMÞ
2ωi

‖yei‖2
� �

�
XN
i ¼ 1

2Wmax
i

ωsai
þ

XN
i ¼ 1

2Wmax
i

ωsai
þ

XN
i ¼ 1

θNi



Table 1
Coefficients of the unknown dynamics in Example 1.

i 1 2 3 4 5 6 7 8

pi1 0.4 �0.65 8 1 �10 1.5 0.5 �1
pi2 0.5 0.45 �6 11 11 9 2 5
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� 1
2ωi

XN
i ¼ 1

Z t

t� τmax

Qiðyi2ðζÞÞdζ�tr ~W
T

i
1
ai

_̂W i�ΦiðyiÞvTei
� �� �

r� 1
ωs

Vŷ1
ðtÞ� 1

ωs
LQ ðtÞ�

1
2ωs

vTe ve�
1

2ωs

XN
i ¼ 1

tr
1
ai

~W
T

i
~Wi

� �

þ
XN
i ¼ 1

2Wmax
i

ωsai
þθsr� 1

ωs
VðtÞþ

XN
i ¼ 1

2Wmax
i

ωsai
þθs;

where ωs ¼maxiAVωi and θs ¼
PN

i ¼ 1 θNi
.

On the basis of Lemma 1, we have

VðtÞrV ð0Þe�ð1=ωsÞtþνs 1�e�ð1=ωsÞt
� �

; ð23Þ

where νs ¼
PN

i ¼ 1 2W
max
i =aiþωsθs. Since all the terms in (20) are

nonnegative, as t-1 we can obtain that Vŷ1
ðtÞrνs. That is,P

ðj;iÞAE jAij j ðyi1�sgnðAijÞyj1Þ2rνs. By choosing the parameters
Wmax

i , ai, ωi, θi and Aij properly, we can eventually derive that

Jyi1�sgnðAijÞyj1 Jr
ffiffiffiffiffiffiffiffiffiffiffi
νs

jAij j

s
; ði; jÞAE; ð24Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νs=jAij j

p
can be set small enough to meet the require-

ments in Definition 2. Therefore, bipartite consensus can be
achieved. □

Algorithm 1. Distributed control algorithm for bipartite con-
sensus of nonlinear time-delayed multi-agent systems.
1. I

2.
3.
4.
5.
6.
7.

8.

9.

10.

11.

12.
13.

Table 2
Coefficients of time-delay terms in Example 1.

i 1 2 3 4 5 6 7 8

si1 0.9 1.2 �1.1 �0.7 0.6 0.3 0.2 0.6
si2 1.2 0.8 0.6 0.3 0.8 0.4 �0.1 �0.4

Table 3
Time delays of eight agents in Example 1.

i 1 2 3 4 5 6 7 8

τi 0.1 0.05 0.15 0.08 0.18 0.1 0.11 0.02
n: Parameters of the multi-agent system (7), Wmax
i , θNi

, ki0,

ai, Wið0Þ, Aij, τmax, ki, μi, δi, and the initial conditions xið0Þ
and _xið0Þ
Out: xi(t), _xiðtÞ, xei ¼ Jyei J .
If topology G is structurally unbalanced:
Terminate the algorithm.
While bipartite consensus is not reached:
Calculate feedback coefficient ρiðtÞ;
Obtain linear feedback signal ρiðtÞvei;
Calculate the output of RBFNN Ŵ

T

i ΦiðyiÞ;
Update Ŵ i by (18);

Calculate �1
2

vei
‖vei‖2 þσðveiÞϕ

2
i ðyi2Þ;

Calculate �ki
P

jAN i

jAij j ðyi2�sgnðAijÞyj2Þ;

Use input signal ui to control agent i;
Return xi(t), _xiðtÞ, xie.
Terminate the algorithm.
5
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Fig. 3. Topology of Example 1 with eight agents.
4. Implementations of bipartite consensus
Example 1. In this example, the multi-agent system contains
eight agents shown in Fig. 3. Each agent can represent a robot that
moves on the plane. xi ¼ ½xi1; xi2�T is the position of agent i. The
adjacency matrix A1 is given as follows:

A1 ¼

0 0:3 0 0 0 0 0 �0:6
0:3 0 0:4 0 0 0 0 0
0 0:4 0 0:1 0 0 0 0
0 0 0:1 0 �0:2 0 0 0
0 0 0 �0:2 0 0:5 0 0
0 0 0 0 0:5 0 0:1 0
0 0 0 0 0 0:1 0 0

�0:6 0 0 0 0 0 0 0

2
66666666666664

3
77777777777775
:

The dynamics of the multi-agent system are described by the
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Fig. 4. Trajectories of eight agents on the plane.
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following equations:

€xi1ðtÞ
€xi2ðtÞ

" #
¼

_xi2ðtÞ sin ðpi1xi1ðtÞÞ
_xi1ðtÞ cos ðpi2x2i2ðtÞÞ

" #
þuiþ

si1 _xi1ðt�τiÞ cos ð _xi2ðt�τiÞÞ
si2 _xi2ðt�τiÞ sin ð _xi1ðt�τiÞÞ

" #
;

i¼ 1;2;…;8; ð25Þ

where pi1, pi2, si1 and si2 are the corresponding positive coefficients

given in Tables 1 and 2. We choose ϕið _xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi1 _xi1Þ2þðsi2 _xi2Þ2

q
. τi,

i¼ 1;2;…;8, are time delays shown in Table 3. We suppose that
the initial states of the multi-agent system are on a circle with
radius 5 and the initial velocities are zeros. All the eight agents
have the same parameters, τmax ¼ 0:2, ki0 ¼ 50, ki¼30, ωi ¼ 50,
Wmax

i ¼ 100, ai¼100 and θNi
¼ 0:01. The number of neurons for

each RBFNN is 16 and δ2i ¼ 2. μi, i¼ 1;2;…;8, are distributed uni-
formly in the range ½�5;5� � ½�5;5�. Our control objective is to
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Fig. 5. Trajectories of positions and velocities in first dimension for eight agents:
(a) trajectories of positions in first dimension, (b) trajectories of velocities in first
dimension.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

Time/s

P
os

iti
on

s 
of

 x
i2 1

2
3
4
5
6
7
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

20

30

Time/s

V
el

oc
iti

es
 o

f x
i2 1

2
3
4
5
6
7
8

Fig. 6. Trajectories of positions and velocities in second dimension for eight agents:
(a) trajectories of positions in second dimension, (b) trajectories of velocities in
second dimension.
drive the eight agents on the plane to the bipartite consensus
state. Fig. 4 illustrates that the eight agents can reach bipartite
consensus with the distributed control algorithm in Algorithm 1.
Additionally, Figs. 5 and 6 show the trajectories of positions and
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Fig. 7. Error trajectories of bipartite consensus with eight agents.
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Fig. 8. Trajectories of eight agents with structurally unbalanced graph.

Fig. 9. Two-link revolve manipulator.
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velocities in two dimensions. In Fig. 5(b), the velocities eventually
become zeros and the eight agents are divided into two different
groups with opposite signs. In order to describe whether bipartite
consensus has been achieved, we define the measurement of error
of bipartite consensus for each agent:

xei ¼ Jyei J ; i¼ 1;2;…;8: ð26Þ

In Fig. 7, it shows that the error of each agent can gradually
approach zero. Therefore, bipartite consensus for multi-agent
system (25) can be achieved. In Fig. 8, we just change the topol-
ogy of multi-agent system (25) and the adjacency matrix is
modified as

Au
1 ¼

0 0:3 0 0 0 0 0 �0:6
0:3 0 0:4 0 0 0 0 0
0 0:4 0 �0:1 0 0 0 0
0 0 �0:1 0 �0:2 0 0 0
0 0 0 �0:2 0 0:5 0 0
0 0 0 0 0:5 0 0:1 0
0 0 0 0 0 0:1 0 0:2

�0:6 0 0 0 0 0 0:2 0

2
66666666666664

3
77777777777775
:

It is obvious that the corresponding communication topology of
Au

1 is structurally unbalanced. Fig. 8 shows that bipartite con-
sensus cannot be reached and this in turn demonstrates the
importance of structural balance for bipartite consensus problems.

Example 2. We utilize a multi-manipulator system [43] to verify
the validity of the distributed control algorithm (16) in Section 3.
The profile of the two-link manipulator is shown in Fig. 9 and each
manipulator holds a component which is used to assemble the
industrial product. The concept of bipartite consensus can be
applied to the tasks which need to assemble the product in a
symmetrical way. The dynamics of the multi-manipulator system
Table 4
Parameters of each manipulator in Example 2.

~g li1 li2 mi1 mi2

9:8 m=s2 1.5 m 1 m 2 kg 1 kg

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time/s

P
os

iti
on

s 
of

 q
i1

q

q

q

q

q

q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

Time/s

V
el

oc
iti

es
 o

f q
i1

dq

dq

dq

dq

dq

dq

Fig. 10. Positions and velocities of link 1 with six manipulators: (a) trajectories of
positions of link 1, (b) trajectories of velocities of link 1.
are described as follows:

MiðqiÞ €qiþViðqi; _qiÞ _qiþGiðqiÞþgið _qiðt�τiÞÞ ¼Γi;

i¼ 1;2;…;6; ð27Þ

where qi ¼ ½qi1; qi2�TAR2; _qi and €qi are the position, velocity and
acceleration vector of the ithmanipulator, respectively.MiðqiÞAR2�2 is
the inertia matrix of manipulator i, Viðqi; _qiÞAR2�2 is the centripetal-
Coriolis matrix of manipulator i, GiðqiÞAR2 is the gravitational vector
of manipulator i and ΓiAR2 is the torque vector of manipulator i. We
give the detailed parameters of each manipulator as follows:

Viðqi; _qiÞ ¼
Vi11 Vi12

Vi21 Vi22

" #
;

GiðqiÞ ¼ Gi1 Gi2½ �;

Mi ¼ I;

Vi11 ¼ �mi2li1li2 sin ðqi2Þ _qi2;

Vi12 ¼ �mi2li1li2 sin ðqi2Þ _qi2�mi2li1li2 sin ðqi2Þ _qi1;

Vi21 ¼mi2li1li2 sin ðqi2Þ _qi1;

Vi22 ¼ 0;

Gi1 ¼ ðmi1þmi2Þ ~gli1 sin ðqi1Þþmi2 ~gli2 sin ðqi1þqi2Þ;

Gi2 ¼mi2 ~gli2 sin ðqi1þqi2Þ:

~g , li1, li2, mi1 and mi2 are given in Table 4. For simplicity, we set Mi ¼ I.
gið _qiðt�τiÞÞ represents the frictional force vector where

gið _qiðt�τiÞÞ ¼
si1 _qi1ðt�τiÞ cos ð _qi2ðt�τiÞÞ
si2 _qi2ðt�τiÞ sin ð _qi1ðt�τiÞÞ

" #
: ð28Þ

We set the same parameters for all the six manipulators,
ki0 ¼ 15, ωi ¼ 30, σ2

i ¼ 1:6 and the number of neurons for each
RBFNN is 16. μi, i¼ 1;2;…;6, are distributed uniformly in the range
½�3;3� � ½�3;3�. The coefficients of time-delay terms and time
delays are chosen from numbers 1 to 6 in Tables 2 and 3. The
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Fig. 11. Positions and velocities of link 2 with six manipulators: (a) trajectories of
positions of link 2, (b) trajectories of velocities of link 2.
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Fig. 12. Error trajectories of bipartite consensus for six manipulators.
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initial states of the multi-manipulator system are

qT1ð0Þ _qT
1ð0Þ

qT2ð0Þ _qT
2ð0Þ

qT3ð0Þ _qT
3ð0Þ

qT4ð0Þ _qT
4ð0Þ

qT5ð0Þ _qT
5ð0Þ

qT6ð0Þ _qT
6ð0Þ

2
666666666664

3
777777777775
¼

½�π=3;π=3� ½0;0�
½π=3; �π=4� ½0;0�
½π=5;π=4� ½0;0�

½2π=5; �2π=5� ½0;0�
½�π=4; �π=6� ½0;0�
½π=6; �π=3� ½0;0�

2
6666666664

3
7777777775
:

The adjency matrix A2 is given as follows:

A2 ¼

0 �0:5 0 0 0 0:3
�0:5 0 0:2 0 0 0
0 0:2 0 0:7 0 0
0 0 0:7 0 �0:1 0
0 0 0 �0:1 0 1:5
0:3 0 0 0 1:5 0

2
666666664

3
777777775
:

Other parameters are the same in Example 1.
From Figs. 10 and 11, we can infer that the multi-manipulator

system can reach the opposite positions in a symmetrical manner,
where dqi1 and dqi2 represent the velocities of Link 1 and Link 2,
respectively. In Fig. 12, all the errors of bipartite consensus qi

e,
i¼ 1;2;…;6, approach zeros, which are similar to the definition of
xi
e in Example 1. This further demonstrates the effectiveness of the

developed control algorithm in physical applications.
5. Conclusion

Bipartite consensus of the unknown nonlinear time-delayed
multi-agent systems is investigated in this paper. RBFNNs are
utilized to learn the unknown dynamics online and a Lyapunov–
Krasovskii functional is introduced to deal with time delays.
However, in order to avoid singularities in the distributed control
algorithm, a σ-function is applied to the time-delay elimination
part of the algorithm. If the communication topology is structu-
rally balanced, then the distributed control algorithm can make
the multi-agent systems achieve bipartite consensus, which can be
applied to a multi-manipulator system. In the future, to adapt to
more complex environment, we will concentrate on the cases
where external noises are added to the control input and con-
nectivity is preserved.
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