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Abstract In this paper, a novel iterative Q-learning algorithm, called “policy iteration based deterministic Q-

learning algorithm”, is developed to solve the optimal control problems for discrete-time deterministic nonlinear

systems. The idea is to use an iterative adaptive dynamic programming (ADP) technique to construct the

iterative control law which optimizes the iterative Q function. When the optimal Q function is obtained, the

optimal control law can be achieved by directly minimizing the optimal Q function, where the mathematical

model of the system is not necessary. Convergence property is analyzed to show that the iterative Q function

is monotonically non-increasing and converges to the solution of the optimality equation. It is also proven that

any of the iterative control laws is a stable control law. Neural networks are employed to implement the policy

iteration based deterministic Q-learning algorithm, by approximating the iterative Q function and the iterative

control law, respectively. Finally, two simulation examples are presented to illustrate the performance of the

developed algorithm.
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1 Introduction

Optimal control of nonlinear systems has been the focus of control fields for many decades [1–6]. Dy-

namic programming is a useful technique in handling optimal control problems, though it is often com-

putationally untenable to perform it to obtain the optimal solutions. Characterized by strong abilities

of self-learning and adaptivity, adaptive dynamic programming (ADP), proposed by Werbos [7,8], has

demonstrated powerful capability to find the optimal control policy by solving the Hamilton-Jacobi-

Bellman (HJB) equation forward-in-time and becomes an important brain-like intelligent optimal control

method for nonlinear systems [9–15]. There were several synonyms of ADP, including “adaptive crit-

ic designs” [16], “adaptive dynamic programming” [17–20], “approximate dynamic programming” [21],

“neuro-dynamic programming” [22], and “reinforcement learning” [23]. Iterative methods have wide-

ly been used in ADP to obtain the solution of the HJB equation indirectly and have received more

and more attention [24–28]. According to different iteration procedures, iterative ADP algorithms are
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classified into policy iteration and value iteration [29], respectively. In policy iteration algorithms, an

admissible control law is necessary to initialize the algorithms [30–32]. Policy iteration algorithms for

optimal control of continuous-time systems were given in [33,34]. In [35], a policy iteration algorithm

for discrete-time nonlinear systems was developed. The complex-valued ADP algorithm was discussed

in [36]. It successfully solved the complex-valued nonlinear system optimal control problems. Based on

neuro-cognitive psychology, a novel controller based on multiple actor-critic structures was developed for

unknown systems in [37]. This controller traded off fast actions based on stored behavior patterns with

real-time exploration using current input-output data. The integral reinforcement learning (IRL) algo-

rithm was presented to obtain the iterative control for unknown continuous-time systems with unknown

disturbances in [38]. Off-policy learning was used to allow the dynamics to be completely unknown. On

the other hand, value iteration algorithms for optimal control of discrete-time nonlinear systems were

given in [22]. For value iteration algorithms, a “zero” initial value function [39–42] is generally required

to guarantee the convergence properties of the iterative value functions, while the stability of the control

system under the iterative control law cannot be guaranteed.

For many traditional iterative ADP algorithms, it is required to build the model of nonlinear systems

and then perform the ADP algorithms to derive an improved control policy [43–50]. These iterative

ADP algorithms are denoted as “model-based ADP algorithms”. In contrast, Q-learning, proposed

by Watkins [51,52], is a typical data-based ADP algorithm. In [16,29], Q-learning was named action-

dependent heuristic dynamic programming (ADHDP). For Q-learning algorithms, Q function is used

instead of performance index function in the traditional iterative ADP algorithms. Q functions depend

on both system state and control, which means that they already include the information about the

system and the utility function. Hence, it is easier to compute control policies from Q functions than the

traditional performance index functions [53]. Because of this merit, Q-learning algorithms are preferred to

unknown and model-free systems to obtain the optimal control [52,53]. In [52], a convergence proof of the

Q-learning algorithm was proposed under the stochastic environment. However, we should point out that

many real-world control systems are deterministic, which need deterministic convergence and stability

properties to optimize the control systems. Furthermore, previous iterative Q-learning algorithms were

based on value iterations [51–57]. Although the iterative Q functions were convergent to the optimum,

stability of the system under the iterative control law could not be guaranteed. Thus, for previous iterative

Q-learning algorithms, only the converged optimal control law can be used to control the nonlinear

system, and all the iterative control laws during the iteration procedure may not be stable. This makes

the computation efficiency of the previous iterative Q-learning algorithms very low. Hence, new iterative

Q-learning algorithms need to be developed for deterministic nonlinear systems with property analysis

method. This motivates our research.

In this paper, a novel iterative Q-learning algorithm based on policy iteration is developed for discrete-

time deterministic nonlinear systems, which is denoted as “policy iteration based deterministic Q-learning

algorithm”. First, the policy iteration based deterministic Q-learning algorithm is derived. The differ-

ences between the previous Q-learning algorithms and the developed policy iteration based deterministic

Q-learning algorithm are presented. Second, property analysis, including convergence and stability prop-

erties, for the developed iterative Q-learning algorithm is established. We emphasize that our theoretical

contribution is to establish a new property analysis method to guarantee that any of the iterative control

laws is a stable control law and simultaneously to make the iterative Q functions converge to the optimal

solution monotonically. Next, neural networks are employed to implement the policy iteration based

deterministic Q-learning algorithm by approximating the iterative Q function and iterative control law,

respectively. Finally, simulation results will illustrate the effectiveness of the developed algorithm.

2 Problem formulation

In this paper, we will study the following discrete-time deterministic nonlinear system

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (1)
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where xk ∈ R
n is the state vector and uk ∈ R

m is the control vector. Let x0 be the initial state and

F (xk, uk) be the system function. Let uk = {uk, uk+1, . . . } be an arbitrary sequence of controls from

k to ∞. The performance index function for state x0 under the control sequence u0 = {u0, u1, . . . } is

defined as

J(x0, u0) =

∞∑

k=0

U(xk, uk), (2)

where U(xk, uk) > 0, for xk, uk �= 0, is the utility function.

The goal of this paper is to find an optimal control scheme which stabilizes system (1) and simulta-

neously minimizes the performance index function (2). For convenience of analysis, results of this paper

are based on the following assumptions.

Assumption 1. The system (1) is controllable; the system state xk = 0 is an equilibrium state of system

(1) under the control uk = 0, i.e., F (0, 0) = 0; the feedback control uk = u(xk) satisfies uk = u(xk) = 0

for xk = 0; the utility function U(xk, uk) is a positive definite function of xk and uk.

Define the control sequence set as Uk =
{
uk : uk = (uk, uk+1, . . .), ∀uk+i ∈ R

m, i = 0, 1, . . .
}
.

Then, for a control sequence uk ∈ Uk, the optimal performance index function is defined as J∗(xk) =

minuk

{
J(xk, uk) : uk ∈ Uk

}
. According to [51,52], the optimal Q function satisfies the Bellman equation

of optimality, which is also oftentimes called the Q-Bellman equation [58],

Q∗(xk, uk) =U(xk, uk) + min
uk+1

Q∗(xk+1, uk+1). (3)

The optimal performance index function satisfies J∗(xk) = min
uk

Q∗(xk, uk). The optimal control law

u∗(xk) can be expressed as u∗(xk) = argmin
uk

Q∗(xk, uk). We know that if we obtain the optimal Q

function Q∗(xk, uk), then the optimal control law u∗(xk) and the optimal performance index function

J∗(xk) can be obtained. However, the optimal Q function Q∗(xk, uk) is generally an unknown and

non-analytic function, which cannot be obtained directly by (3). Hence, a new policy iteration based

Q-learning algorithm is developed to solve the Q function iteratively.

3 Policy iteration based deterministic Q-learning algorithm for discrete-time
nonlinear systems

In this section, the policy iteration based deterministic Q-learning algorithm will be developed to obtain

the optimal controller for discrete-time nonlinear systems. Stability proofs will be given to show that any

of the iterative control laws is a stable control law. Convergence and optimality proofs will also be given

to show that the iterative Q function will converge to the optimum.

3.1 Derivation of the policy iteration based deterministic Q-learning algorithm

For optimal control problems, the developed control scheme must not only stabilize the control systems,

but also make the performance index function finite, i.e., the control law must be admissible [39].

Definition 1. A control law u(xk) is said to be admissible with respect to (2) on a compact set Ω if

u(xk) is continuous on Ω, u(0) = 0, u(xk) stabilizes (1) on Ω, and ∀x0 ∈ Ω, J(x0) is finite.

In the developed policy iteration algorithm, the Q function and control law are updated by iterations,

with the iteration index i increasing from 0 to infinity. Let v0(xk) be an arbitrary admissible control law.

For i = 0, let Q0(xk, uk) be the initial iterative Q function constructed by v0(xk), i.e.,

Q0(xk, v0(xk)) =

∞∑

j=0

U(xk+j , v0(xk+j)). (4)

Thus, initial iterative Q function satisfies the following generalized Q-Bellman equation

Q0(xk, uk) = U(xk, uk) +Q0(xk+1, v0(xk+1)). (5)
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Then, the iterative control law is computed by

v1(xk) = argmin
uk

Q0(xk, uk). (6)

For i = 1, 2, . . ., let Qi(xk, uk) be the iterative Q function constructed by vi(xk), which satisfies the

following generalized Q-Bellman equation

Qi(xk, uk) = U(xk, uk) +Qi(xk+1, vi(xk+1)), (7)

and the iterative control law is updated by

vi+1(xk) = argmin
uk

Qi(xk, uk). (8)

3.2 Properties of the policy iteration based deterministic Q-learning algorithm

For the policy iteration algorithm of continuous-time nonlinear systems [33], it shows that any of the

iterative control laws can stabilize the system. In [35], the stability for the iterative control law and

the convergence properties of the policy iteration algorithm for discrete-time nonlinear systems were also

proven. This is a merit of the policy iteration algorithm. In this subsection, inspired by [35], we will

show that the stability and convergence properties will also hold for the developed policy iteration based

deterministic Q-learning algorithm. Before the main theorems, the following lemma is necessary.

Lemma 1. For i = 0, 1, . . ., let Qi(xk, uk) and vi(xk) be updated by (5)–(8). Under Assumption 1, the

iterative function Qi(xk, uk), i = 0, 1, . . ., is positive definite for xk and uk.

Proof. First, let i = 0. As the iterative function Q0(xk, v0(xk)) is constructed by v0(xk), according to

(5), we have

Q0(xk, v0(xk)) =

∞∑

j=0

U(xk+j , v0(xk+j)) = U(xk, v0(xk)) +Q0(xk+1, v0(xk+1)). (9)

According to Assumption 1, we have v0(xk) = 0 as xk = 0. As U(xk, uk) is positive definite for xk and uk,

we have the initial Q function Q0(xk, v0(xk)) =
∑∞

j=0 U(xk+j , v0(xk+j)) = 0 as xk = 0. For any xk �= 0,

as U(xk, uk) is positive definite for xk, uk, we have Q0(xk, v0(xk)) > 0, which proves Q0(xk, v0(xk)) is

positive definite for xk. According to (5), if xk = 0 and uk = 0, according to Assumption 1, we have

xk+1 = F (xk, uk) = 0 and v0(xk+1) = 0. Then, we can get

Q0(xk, uk) = U(xk, uk) +Q0(xk+1, v0(xk+1)) = 0. (10)

If ‖xk‖ + ‖uk‖ �= 0, we can obtain that Q0(xk, uk) > 0, which proves that Q0(xk, uk) is positive definite

for xk and uk. According to the idea from (9)–(10), for i = 0, 1, . . ., we can prove that iterative function

Qi(xk, uk) is positive definite for xk and uk. The proof is completed.

Theorem 1. For i = 0, 1, . . ., let Qi(xk, uk) and vi(xk) be obtained by the policy iteration algorithm

(5)–(8), where v0(xk) is an arbitrary admissible control law. If Assumption 1 holds, then for i = 0, 1, . . .,

the iterative control law vi(xk) stabilizes the nonlinear system (1).

Proof. According to (5) and (7), letting Vi(xk) = Qi(xk, vi(xk)), for i = 0, 1, . . ., we can get

Vi(xk+1)− Vi(xk) = Qi(xk+1, vi(xk+1))−Qi(xk, vi(xk)) = −U(xk, vi(xk)) < 0. (11)

According to Lemma 1 and Assumption 1, the function Vi(xk) is positive definite for xk. Then for

i = 0, 1, . . ., Vi(xk) is a Lyapunov function. Thus vi(xk) is a stable control law. The proof is completed.

From Theorem 1, we know that for i = 0, 1, . . ., the nonlinear system (1) can be stabilized by the

iterative control law. In the following, convergence property of the policy iteration Q-learning algorithm

will be proven, which shows that the iterative Q function will be monotonically non-increasing and

converge to the optimum.
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Theorem 2. For i = 0, 1, . . ., let Qi(xk, uk) and vi(xk) be obtained by (5)–(8). If Assumption 1 holds,

then the iterative Q function Qi(xk, uk) is monotonically non-increasing and converges to the optimal Q

function Q∗(xk, uk), as i → ∞, i.e.,

lim
i→∞

Qi(xk, uk) = Q∗(xk, uk), (12)

which satisfies the optimal Q-Bellman equation (3).

Proof. The statement can be proven by the following four steps.

(1) Show that the iterative Q function Qi(xk, uk) is monotonically non-increasing as i increases, i.e.,

Qi+1(xk, uk) � Qi(xk, uk). (13)

According to (8), we have

Qi(xk, vi+1(xk)) = min
uk

Qi(xk, uk) � Qi(xk, vi(xk)). (14)

For i = 0, 1, . . ., define a new iterative Q function Qi+1(xk, uk) as

Qi+1(xk, uk) = U(xk, uk) +Qi(xk+1, vi+1(xk+1)), (15)

where vi+1(xk+1) is obtained by (8). According to (14), we can obtain

Qi+1(xk, uk) = U(xk, uk) +Qi(xk+1, vi+1(xk+1))

= U(xk, uk) + min
uk+1

Qi(xk+1, uk+1)

� U(xk, uk) +Qi(xk+1, vi(xk+1))

= Qi(xk, uk). (16)

As Qi(xk, uk), ∀ i = 0, 1, . . ., are finite functions for xk and uk, for any N = 0, 1, . . ., there exits a

positive function which satisfies ζ(N ) � 0 that satisfies Qi+1(xN , uN ) � Qi(xN , uN ) + ζ(N ). Now, for

any i = 0, 1, . . ., we will prove that the following inequality

Qi+1(xk, uk) � Qi(xk, uk) + ζ(N ), (17)

holds ∀ k = 0, 1, . . . ,N . The inequality (17) obviously holds for k = N . Let uN = vi+1(xN ), we can get

Qi+1(xN , vi+1(xN )) � Qi(xN , vi+1(xN )) + ζ(N ). For k = N − 1, we have

Qi+1(xN−1, uN−1) = U(xN−1, uN−1) +Qi+1(xN , vi+1(xN ))

� U(xN−1, uN−1) +Qi(xN , vi+1(xN )) + ζ(N )

= Qi+1(xN−1, uN−1) + ζ(N )

� Qi(xN−1, uN−1) + ζ(N ). (18)

So, the inequality (17) holds for k = N − 1. Assume that the inequality (17) holds for k = � + 1, � =

0, 1, . . . ,N−1. As u�+1 is a free control variable, we can getQi+1(x�+1, vi+1(x�+1)) � Qi(x�+1, vi+1(x�+1))

+ ζ(N ). For k = � we can get

Qi+1(x�, u�) = U(x�, u�) +Qi+1(x�+1, vi+1(x�+1))

� U(x�, u�) +Qi(x�+1, vi+1(x�+1)) + ζ(N )

= Qi+1(x�, u�) + ζ(N )

� Qi(x�, u�) + ζ(N ). (19)

Then, we have (17) holds for ∀ k = 0, 1, . . . ,N . According to Lemma 1, for i = 0, 1, . . ., vi+1(xk) is a

stable control law. Then, we have xN → 0, for N → ∞. Letting N → ∞, we know that ζ(N ) → 0.

Hence, for any i = 0, 1, . . ., we have (13) holds, ∀k = 0, 1, . . .. As Qi(xk, uk) is a non-increasing and
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lower bounded sequence, i.e., Qi(xk, uk) � 0, the limit of the iterative Q function Qi(xk, uk) exists as

i → ∞, i.e.,

Q∞(xk, uk) = lim
i→∞

Qi(xk, uk). (20)

(2) Show that the limit of the iterative Q function Qi(xk, uk) satisfies the optimal Q-Bellman equation,

as i → ∞.

According to (19), we can obtain

Q∞(xk, uk) = lim
i→∞

Qi+1(xk, uk) � Qi+1(xk, uk) � Qi+1(xk, uk)

= U(xk, uk) +Qi(xk+1, vi+1(xk+1))

= U(xk, uk) + min
uk

Qi(xk+1, uk+1). (21)

Letting i → ∞, we obtain Q∞(xk, uk) � U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). Let ζ > 0 be an arbitrary

positive number. There exists a positive integer p such that

Qp(xk, uk)− ζ � Q∞(xk, uk) � Qp(xk, uk). (22)

Hence, we can get

Q∞(xk, uk) � Qp(xk, uk)− ζ

= U(xk, uk) +Qp(xk+1, vp(xk+1))− ζ

� U(xk, uk) +Q∞(xk+1, vp(xk+1))− ζ

� U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1)− ζ. (23)

Since ζ is arbitrary, we have Q∞(xk, uk) � U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). Thus, we obtain

Q∞(xk, uk) = U(xk, uk) + min
uk+1

Q∞(xk+1, uk+1). (24)

Next, let μ(xk) be an arbitrary admissible control law, and define a new function P(xk, uk), which

satisfies

P(xk, uk) = U(xk, uk) + P(xk+1, μ(xk+1)). (25)

Then, we can declare the third step of the proof.

(3) Show that for an arbitrary admissible control law μ(xk), the converged Q function Q∞(xk, uk)

satisfies Q∞(xk, uk) � P(xk, uk).

The statement can be proven by mathematical induction. As μ(xk) is an admissible control law, we

have xk → 0 as k → ∞. Without loss of generality, let xN = 0 where N → ∞. According to (25),

we have

P(xk, uk) =U(xk, uk) + lim
N→∞

{U(xk+1, μ(xk+1)) + U(xk+2, μ(xk+2)) + · · ·
+U(xN−1, μ(xN−1)) + P(xN , μ(xN ))} , (26)

where xN = 0. According to (24), the function Q∞(xk, uk) can be expressed as

Q∞(xk, uk) =U(xk, uk) + lim
N→∞

{U(xk+1, v∞(xk+1)) + U(xk+1, v∞(xk+1))

+ · · ·+ U(xN−1, v∞(xN−1)) +Q∞(xN , uN )}

=U(xk, uk) + lim
N→∞

{
min
uk+1

{
U(xk+1, uk+1) + min

uk+2

{
U(xk+2, uk+2)
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+ · · ·+ min
uN−1

{
U(xN−1, uN−1) + min

uN
Q∞(xN , uN )

}}}}
. (27)

As v∞(xk) is an admissible control law, we can get xN = 0 where N → ∞, which means Q∞(xN , uN ) =

P(xN , uN ) = 0. For N − 1, according to (24), we can obtain

P(xN−1, uN−1) = U(xN−1, uN−1) + P(xN , μ(xN ))

� U(xN−1, uN−1) + min
uN

P(xN , uN )

= U(xN−1, uN−1) + min
uN−1

Q∞(xN , uN )

= Q∞(xN−1, uN−1). (28)

Assume that the statement holds for k = �+ 1, � = 0, 1, . . .. Then for k = l we have

P(x�, u�) = U(x�, u�) + P(x�+1, μ(x�+1))

� U(x�, u�) + min
u�+1

P(x�+1, u�+1)

� U(x�, u�) + min
u�+1

Q∞(x�+1, u�+1)

= Q∞(x�, u�). (29)

Hence for xk, uk, k = 0, 1, . . ., the inequality

Q∞(xk, uk) � P(xk, uk) (30)

holds. Mathematical induction is completed.

(4) Show that the converged function Q∞(xk, uk) equals to its optimal function Q∗(xk, uk).

According to the definition of Q∗(xk, uk), for i = 0, 1, . . ., we have

Qi(xk, uk) = U(xk, uk) +Qi(xk+1, vi(xk+1))

= U(xk, uk) +

∞∑

j=1

U(xk+j , vi(xk+j))

� U(xk, uk) + min
u∞
k+1

∞∑

j=1

U(xk+j , uk+j)

= U(xk, uk) +Q∗(xk+1, u
∗(xk+1))

= Q∗(xk, uk). (31)

Letting i → ∞, we obtain

Q∞(xk, uk) � Q∗(xk, uk). (32)

On the other hand, for an arbitrary admissible control law μ(xk), we have (30) holds. Let μ(xk) =

u∗(xk), where u∗(xk) is an optimal control law. Then, we get

Q∞(xk, uk) � Q∗(xk, uk). (33)

According to (32) and (33), we can obtain (12). The proof is completed.

In Theorem 1, we have proven that for i = 0, 1, . . ., the iterative control law is stable. According to

the analysis of Theorem 2, the iterative control law can be enhanced as an admissible control law.

Theorem 3. For i = 0, 1, . . ., let Qi(xk, uk) and vi(xk) be obtained by (5)–(8), where v0(xk) is an

arbitrary admissible control law. If Assumption 1 holds, then for i = 0, 1, . . ., the iterative control law

vi(xk) is admissible.
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Figure 1 The structure diagram of the policy iteration based deterministic Q-learning algorithm.

Proof. Let i = 0. According to (5), we obtain

Q0(xk, uk) = U(xk, uk) +Q0(xk+1, v0(xk+1))

= U(xk, uk) +
∞∑

j=1

U(xk+j , v0(xk+j))

� Q1(xk, uk)

= U(xk, uk) +

∞∑

j=1

U(xk+j , v1(xk+j)). (34)

As Q0(xk, uk) is finite for xk, uk, we have
∑∞

j=1 U(xk+j , v1(xk+j)) < ∞, which means v1(xk) is admissible.

By mathematical induction, we can prove vi(xk) is admissible for i = 0, 1, . . .. The proof is completed.

4 Neural network implementation for the policy iteration based deterministic
Q-learning algorithm

In this paper, backpropagation (BP) neural networks (NNs) are used to approximate vi(xk) andQi(xk, uk),

respectively. The number of hidden layer neurons is denoted by τ . The weight matrix between the input

layer and hidden layer is denoted by Y . The weight matrix between the hidden layer and output layer

is denoted by W . Then the output of three-layer NN is represented by F̂ (X,Y,W ) = WTσ(Y TX + b),

where σ(Y TX + b) ∈ R�, [σ(z)]i =
ezi−e−zi

ezi+e−zi
, i = 1, . . . , τ are the activation functions and b is the thresh-

old value. For convenience of analysis, only the hidden-output weight matrix W is updated during the

NN training, while the input-hidden weights are fixed [25]. Hence, in the following, the NN function is

simplified by the expression F̂N (X,W ) = WTσN (X), where σN (X) = σ(Y TX + b).

There are two NNs, which are critic and action networks, respectively, to implement the developed

Q-learning algorithm. Both NNs are chosen as three-layer BP networks. The whole structure diagram is

shown in Figure 1.

4.1 The critic network

For i = 0, 1, . . ., the goal of the critic network is to approximate the iterative function Qi+1(xk, uk). In

the critic network, the state xk and the control uk are used as the input and the output is formulated

as Q̂j
i (xk, uk) = W jT

ci σ(Zc(k)), where Zc(k) = Y T
c Z(k) + bc, Z(k) = [xT

k , u
T
k ]

T, and Yc and bc are

the given weight matrix and threshold. Define the error function for the critic network as ejci(k) =

Q̂j
i (xk, uk) − Qi(xk, uk), where Qi(xk, uk) is the target Q function which satisfies (7). The objective

function to be minimized in the critic network training is Ej
ci(k) = 1

2 (e
j
ci(k))

2. So the gradient-based

weight update rule [23] for the critic network is given by

W j+1
ci = W j

ci +ΔW j
ci = W j

ci − αc

[
∂Ej

ci(k)

∂ejci(k)

∂ejci(k)

∂Q̂j
i (xk, uk)

∂Q̂j
i (xk, uk)

∂W j
ci

]
= W j

ci − αce
j
ci(k)σ(Zc(k)), (35)
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where αc > 0 is the learning rate of critic network. If the training precision is achieved, then we say that

Qi(xk, uk) can be approximated by the critic network.

4.2 The action network

The principle in adapting the action network is to indirectly back-propagate the error between the desired

objective, denoted by Uc and the iterative function Qi(xk, uk). According to the definition of Q function

in (3), we know that Uc ≡ 0. From Figure 1, according to an array of xk and uk, we can obtain xk+1,

immediately. Then, the target of the iterative control law vi(xk+1) can be defined as (8). In the action

network, the state xk+1 is used as input to create the iterative control law as the output of the network.

The output can be formulated as v̂ji (xk+1) = W jT
ai σ(Za(k + 1)), where Za(k + 1) = Y T

a xk+1 + ba, and

Ya and ba are the given weight matrix and threshold. Define the output error of the action network as

ejai(k + 1) = v̂ji (xk+1)− vi(xk+1).

The weights of the action network are updated to minimize the following performance error measure

Ej
ai(k + 1) = 1

2 (e
j
ai(k + 1))T(ejai(k + 1)). The weights updating algorithm is similar to the one for the

critic network. By the gradient descent rule [23], we can obtain

W j+1
ai = W j

ai +ΔW j
ai = W j

ai − βa

[
∂Ej

ai(k + 1)

∂ejai(k + 1)

∂ejai(k + 1)

∂v̂ji (xk+1)

∂v̂ji (xk+1)

∂W j
ai

]

= W j
ai − βaσ(Za(k + 1))(ejai(k + 1))T, (36)

where βa > 0 is the learning rate of the action network. If the training precision is achieved, then we say

that the iterative control law vi(xk+1) can be approximated by the action network.

Finally, inspired by [35], the convergence of NN weights is proven which guarantees that the iterative

Q function and iterative control law can be approximated by the critic and action networks, respectively.

Theorem 4. Let the target iterative Q function and the target iterative control law be expressed by

Qi+1(xk) = W ∗T
ci σ(Zc(k)) and vi(xk+1) = W ∗T

ai σ(Za(k + 1)), respectively. Let the critic and action

networks be trained by (35) and (36), respectively. If the learning rates αc and βa are both small enough,

then the critic network weights Wci and action network weights Wai are asymptotically convergent to

the optimal weights W ∗
ci and W ∗

ai, respectively.

Proof. Let W̄ j
ci = W j

ci −W ∗
ci and W̄ j

ai = W j
ai −W ∗

ai. From (35) and (36), we have

W̄ j+1
ci = W̄ j

ci − αce
j
ci(k)σ(Zc(k)), W̄ j+1

ai = W̄ j
ai − βae

j
ai(k + 1)σ(Za(k + 1)).

Consider the following Lyapunov function candidate

L(W̄ j
ci, W̄

j
ai) = tr

{
W̄ jT

ci W̄ j
ci + W̄ jT

ai W̄
j
ai

}
. (37)

Then, the difference of the Lyapunov function candidate (37) is given by

ΔL(W̄ j
ci, W̄

j
ai) = tr

{
W̄

(j+1)T
ci W̄ j+1

ci + W̄
(j+1)T
ai W̄ j+1

ai

}
− tr

{
W̄ jT

ci W̄ j
ci + W̄ jT

ai W̄
j
ai

}

=αc

∥∥∥ejci(k)
∥∥∥
2 (

−2 + αc‖σ(Zc(k))‖2
)
+ βa

∥∥∥ejai(k + 1)
∥∥∥
2 (

−2 + βa‖σ(Za(k + 1))‖2
)
.

According to the definition of σ(·), we know that ‖σ(Zc(k))‖2 and ‖σ(Za(k + 1))‖2 are both finite

for ∀Zc(k), Za(k). Thus, if αc and βa are both small enough that satisfy αc � 2
‖σ(Zc(k))‖2 and βa �

2
‖σ(Za(k+1))‖2 , then we have ΔL(W̄ j

ci, W̄
j
ai) < 0. The proof is completed.

5 Simulation study

In this section, we choose two examples for numerical experiments to evaluate the performance of our

policy iteration based deterministic Q-learning algorithm.



Wei Q L, et al. Sci China Inf Sci December 2015 Vol. 58 122203:10

5.1 Example 1

First, the performance of the developed Q-learning algorithm will be verified by linear system in [59],

where the results can be verified for traditional linear optimal control theories. Let us consider the

spring-mass-damper system M d2y
dt2 + bdydt + κy = u,where y is the position and u is the control input.

Let M = 0.1 kg denote the mass of object. Let κ = 2 kgf/m be the stiffness coefficient of spring and

let b = 0.1 be the wall friction. Let x1 = y and x2 =
dy

dt
. Discretizing the system function using Euler

method with the sampling interval Δt = 0.1 s leads to
[
x1(k+1)

x2(k+1)

]
=

[
1 ΔT

− κ
MΔT 1− b

MΔT

][
x1k

x2k

]
+

[
0

ΔT
M

]
uk. (38)

Let the initial state be x0 = [1, 1]T. Let the performance index function be expressed by (2). The utility

function is expressed as U(xk, uk) = xT
kQxk + uT

kRuk, where Q = I, R = I and I denotes the identity

matrix with suitable dimensions.

Define the state and control spaces as Ωx = {xk | − 1 � x1k � 1,−1 � x2k � 1} and Ωu = {uk | − 1 �
uk � 1}, respectively. We randomly choose p = 5000 training data in Ωx × Ωu to implement the policy

iteration based deterministic Q-learning algorithm to obtain the optimal control law. Neural networks

are used to implement the developed Q-learning algorithm. The critic network and the action network

are chosen as three-layer back-propagation (BP) neural networks with the structures of 3–8–1 and 2–8–

1, respectively. For each iteration step, the critic network and the action network are trained for 200

steps using the learning rate of αc = βa = 0.02 so that the neural network training error becomes less

than 10−5. Let the iterative function Qi(xk, vi(xk)) be defined as

Qi(xk, vi(xk)) = min
uk

Qi(xk, uk). (39)

For system (38), we can obtain an admissible control law v0(xk) = Kxk, where K = [0.13,−0.17]T.

Initialized by the admissible control law v0(xk), we implement the developed algorithm for i = 15 it-

erations to reach the computation precision ε = 0.01. The plots of the iterative function Qi(xk, vi(k))

are shown in Figure 2(a), where we let “In” denote “initial iteration” and let “Lm” denote “limiting

iteration”.

From Figure 2(a) we can see that by the developed policy iteration based deterministic Q-learning

algorithm, the iterative Q function is monotonically non-increasing and converges to its optimum after

15 iterations. The iterative trajectories of system states and controls are shown in Figure 2 (b) and (c),

respectively. From Figure 2 (b) and (c) we can see that the iterative system states and iterative controls

are both convergent to the optimum. Under an arbitrary iterative control law, the system (38) is stable,

which justifies the stability properties of the developed policy iteration based deterministic Q-learning

algorithm. The optimal states and control trajectories are shown in Figure 2(d).

On the other hand, for the linear system (38), we know that the optimal Q function can be expressed

as Q∗(xk, uk) = ZT(k)P ∗Z(k), Zk = [xT
k , u

T
k ]

T. According to the discrete algebraic Riccati equation,

we know that P ∗ = [27.98 0.51 − 1.99; 0.51 3.13 1.89; −1.99 1.89 2.89]. The optimal control law can be

expressed as u∗(xk) = Kxk, where K∗ = [0.69 − 0.65], which can obtain the same trajectories as in

Figure 2(d). Hence, the effectiveness of the developed policy iteration based deterministic Q-learning

algorithm can be verified for linear systems.

5.2 Example 2

We now examine the performance of the developedQ-learning algorithm in a nonlinear torsional pendulum

system [23]. The dynamics of the pendulum is as follows

⎧
⎪⎨

⎪⎩

dθ

dt
= ω,

J
dω

dt
= u−Mgl sin θ − fd

dθ

dt
,

(40)
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Figure 2 The policy iteration based Q-learning algorithm for linear system. (a) The plots of the iterative Q function;

(b) the iterative state trajectories; (c) the iterative control trajectories; (d) the optimal state and control trajectories.

where M = 1/3 kg and l = 2/3 m are the mass and length of the pendulum bar, respectively. The system

states are the current angle θ and the angular velocity ω. Let J = 4/3Ml2 and fd = 0.2 be the rotary

inertia and frictional factor, respectively. Let g = 9.8 m/s2 be the gravity. Discretization of the system

function using Euler method with the sampling interval Δt = 0.1 s leads to
[
x1(k+1)

x2(k+1)

]
=

[
0.1x2k + x1k

−0.49 sin(x1k)− 0.1fdx2k + x2k

]
+

[
0

0.1

]
uk, (41)

where x1k = θk and x2k = ωk. Let the initial state be x0 = [1,−1]T. Let the utility function be the

quadratic form which is the same as in Example 1. Let the structures of the critic and action networks be

3–12–1 and 2–12–1, respectively. We randomly choose p = 20000 training data in Ωx ×Ωu to implement

the policy iteration based deterministic Q-learning algorithm to obtain the optimal control law. For each

iteration step, the critic network and the action network are trained for 1000 steps using the learning

rate of αc = βa = 0.01 so that the neural network training error becomes less than 10−5. For the

nonlinear system (41), we can obtain an admissible control law using action network, i.e., v0(xk) =

Wa,initialσ(Ya,initialxk + ba,initial), according to Algorithm 1 in [35] and the detailed method is omitted

here. Initialized by the admissible control law v0(xk), we implement the developed algorithm for i = 25

iterations to reach the computation precision ε = 0.01. The plots of the iterative function Qi(xk, vi(xk))

are shown in Figure 3(a).

For nonlinear system (41), the iterative Q function is monotonically non-increasing and converges

to its optimum by the policy iteration based deterministic Q-learning algorithm. The corresponding
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Figure 3 The policy iteration based Q-learning algorithm for nonlinear system. (a) The plots of the iterative Q function;

(b) the iterative state trajectories; (c) the iterative control trajectories; (d) the optimal state and control trajectories.

iterative trajectories of system states and controls are shown in Figure 3 (b) and (c), respectively. From

Figure 3 (b) and (c), we can see that the iterative system states and iterative controls are both convergent

to their optimal ones. The nonlinear system (41) can be stabilized under an arbitrary iterative control

law vi(xk), where the stability properties of the developed policy iteration based deterministic Q-learning

algorithm can be verified for nonlinear systems. The optimal states and control trajectories are shown in

Figure 3(d).

To show the effectiveness of the developed Q-learning algorithm, value iteration algorithm [39,40,42] is

used for comparisons. Implement the value iteration algorithm for 45 iteration. The plots of the iterative

value iteration algorithm are shown in Figure 4(a). The corresponding iterative trajectories of system

states and controls are shown in Figure 4 (b) and (c), respectively.

From Figure 4 (a)–(d), we can see that after 45 iterations, the iterative value function converges to the

optimal one, where the optimal state and control in Figure 4(d) is the same as the one in Figure 3(d).

For the policy iteration based deterministic Q-learning algorithm, the iterative Q function converges

to its optimal within 25 iterations, while it takes 45 iterations for value iteration algorithm. It shows

the effectiveness of the developed Q-learning algorithm. More importantly, from Figure 4 (b) and (c),

we can see that the stability property of system (41) cannot be guaranteed under the iterative control

law ui(xk) by the value iteration algorithm. On the other hand, from Figure 3 (b) and (c), we can

see that system(41) is stable under any of the iterative control law vi(xk) by the policy iteration based

deterministic Q-learning algorithm. Therefore, according to the simulation comparisons, the effectiveness

of the developed policy iteration based deterministic Q-learning algorithm can be justified.
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Figure 4 The value iteration algorithm for nonlinear system. (a) The plots of the iterative Q function; (b) the iterative

state trajectories; (c) the iterative control trajectories; (d) the optimal state and control trajectories.

6 Conclusion and future work

In this paper, a novel policy iteration based deterministic Q-learning algorithm is developed to solve

the optimal control problems for discrete-time nonlinear systems. Initialized by an arbitrary admissible

control law, it has been proven that the iterative Q function and iterative control law will converge to

their optimum as i → ∞. Stability properties are presented to show that any of the iterative control laws

can stabilize the nonlinear system.

Applications of the developed Q-learning algorithm to real engineering problems, such as smart grid

or other complex systems, are very important. In [55–57], the Q-learning algorithm applications to

smart grid were developed, while the stability of the smart grid system was not analyzed. In [54], the

value iteration based Q-learning algorithm was proposed for the optimal energy management in smart

residential environments. Although the convergence analysis of the value iteration based Q-learning

algorithm in [54] was proposed, the stability of the system under the iterative control law can not be

guaranteed. With the present development, we see the possibility of analyzing the stability of these

systems. This will be one of our main future research topics.
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