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Abstract In recent years, recommender systems have

become popular to handle the information overload prob-

lem of social media websites. The most widely used Col-

laborative Filtering methods make recommendations by

mining users’ rating history. However, users’ behaviors in

social media are usually implicit, where no ratings are

available. This is a One-Class Collaborative Filtering

(OCCF) problem with only positive examples. How to

distinguish the negative examples from missing data is

important for OCCF. Existing OCCF methods tackle this

by the statistical properties of users’ historical behavior;

however, they ignored the rich content information in

social media websites, which provide additional evidence

for profiling users and items. In this paper, we propose to

improve OCCF accuracy by exploiting the social media

content information to find the potential negative examples

from the missing user-item pairs. Specifically, we get a

content topic feature for each user and item by probabilistic

topic modeling and embed them into the Matrix

Factorization model. Extensive experiments show that our

algorithm can achieve better performance than the state-of-

art methods.

Keywords One-Class Collaborative Filtering �
Recommender system � Topic modeling � Social media

1 Introduction

The social media websites are emerging and booming

recent years, such as YouTube,1 Twitter2 and Facebook.3

The prevalent use of social media generates massive data at

an unprecedented rate, which makes people difficult to

explore the big data and even confused about what she/he

really wants. To deal with the information overload of

social media, recommender systems have emerged by

suggesting users the potential enjoyed items. For example,

the video recommendations in YouTube and the news

recommendations in Yahoo!News.4 These recommender

systems offer users efficient platforms to find their favorite

items in social media websites.

The most widely used recommendation methods are

Collaborative Filtering (CF) approaches. Based on the

assumption that similar users have similar behaviors on

similar items [2, 45], CF methods aim at predicting users’

interests by mining users’ rating history [17, 23, 38–40].

These ratings are usually explicitly expressed in different

scores, such as a 1–5 scale in Netflix,5 where high scores
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expressing viewing preferences and low scores expressing

dislike. Through these positive (like) and negative (dislike)

examples, CF methods can capture the users’ tastes.

However, in most social media websites, we can only

observe users’ implicit feedback, such as who watched

what, who read what and who shared what. In these cases,

we have only positive examples of what a user likes but

lacks substantial evidence on which items user dislike, that

is, if a user has not watched a video yet, we cannot

determine whether she/he does not like the video or even

not know it. Thus, most recommendations in social media

can be considered as One-Class Collaborative Filtering

(OCCF) problem, which has following typical character-

istics: only positive examples can be observed; classes are

highly imbalanced; and the vast majority of data are

missing. How to model the negative examples is crucial to

OCCF.

There are two intuitive strategies for traditional CF

methods to handle this one-class problem: treating all

missing user-item pairs as unknown [39], or treating all

missing user-item pairs as negative [6]. However, both of

them confused the negative examples and unlabeled posi-

tive examples together. Recently, some researches on

OCCF problems focused on modeling the negative exam-

ples [19, 34, 35, 44]. They give a weight to each missing

user-item pair as the probability to treat it as negative.

However, most of them distinguish the negative examples

by simply observing the statistical properties of historical

feedback. For example, in [19, 34], they think if a user has

viewed more items, those items that she/he has not viewed

are more likely to be negative; if an item is viewed by less

users, the missing data for this item are more likely to be

negative. These assumptions are not always suitable for all

the datasets, and users’ implicit feedback offers little

information to identify negative examples from missing

data. For example, if an item is new to the system (cold-

start) and no user has rated it, all the users’ opinion on it

will be taken as negative with high probability, which is

unfair. Thus, it is limited for existing OCCF methods to

model negative examples by simply considering the

behavior history.

In social media websites, we naturally have much con-

tent information that can be leveraged [4, 5]. For example,

the news’ content, the movie’s tag, the video’s description

and the image’s visual information. The content informa-

tion has been proved to provide important evidence for

profiling users and items in [1, 3, 36, 48], which to some

extent can represent user’s taste on item. For example, if

user’s content profile is similar to a video’s content profile,

the user will be more likely to watch the video. In OCCF

problems where it is hard to identify representative nega-

tive examples from implicit feedback, the rich content

information of social media may be useful to assist

modeling the missing negative examples. However, little

work has been done on this.

In this paper, we propose to deal with the one-class

recommendation problems of social media by exploiting

the rich content information of social media. To distinguish

the potential negative examples from missing data, we get

a content topic feature for each user and item by probabi-

listic topic modeling [7, 18, 46]. Then, we extend the

Matrix Factorization [23, 39] model of CF by incorporat-

ing the content-dissimilarity-based weighting scheme.

Experiments on real-world data from CiteUlike6 and

YouTube show that the proposed method can effectively

improve the recommendation performance.

The rest of the paper is organized as follows. We first

discuss the related work in Sect. 2. Then, we will give

some preliminaries in Sect. 3 and describe our method in

Sect. 4. We analyze experimental results on two real-word

social media datasets in Sect. 5. Finally, we conclude this

work in Sect. 6.

2 Related work

Recommendation methods are usually classified into three

categories [2]: Content-based recommendations [3, 13, 32,

36, 37], CF [17, 23, 38–40] and Hybrid approaches [11,

31, 41, 48]. Content-based methods make recommenda-

tions based on the similarity between the user and the

item’s content profile. In [3, 25, 32], they utilize the tra-

ditional heuristics, such as cosine similarity to measure the

similarity, and recommend items whose content profile is

similar to those the user liked in the past. In [36], based on

the content profiles of items that were rated as ‘‘relevant’’

or ‘‘irrelevant’’ by the user, the author learns a Bayesian

classifier to classify unrated items. Recently, Content-

based methods have also been investigated in many rec-

ommender systems for social media. For example, [26, 28]

recommend tags for the target image by considering the

tags associated with its nearest neighbors based on visual

content similarity. Mei et al. [30] proposes an online video

recommender system using multimodal content relevance

between videos and users’ click-through data. However,

the Content-based methods have following limitations:

First, they must have enough information to build a reliable

classifier and are limited by the features explicitly associ-

ated with the objects they recommend; second, they tend to

recommend items that have similar content to those the

user already rated, which leads to a poor diversity of

recommendation.

Unlike Content-based methods, CF approaches predict

users’ interest by mining users’ rating history. They do not

6 http://www.citeulike.org/.
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require content information and can discover interesting

associations that the Content-based methods cannot. In

general, CF methods are based on the fundamental

assumption that similar users have similar behaviors on

similar items [2, 45]. Notice that the ‘‘similar’’ here is

different from the content similarity in Content-based

methods, it refers to the similar rating preference. CF

methods are mainly divided into two categories: memory-

based and model-based. Memory-based methods [8, 17,

27, 40] usually search for similar users or items to produce

a prediction. The similarity is computed based on rating

history. They can be further categorized as user-based

methods [8, 17, 20] or item-based methods [14, 27, 40],

depending on whether the recommendation for a user is

aggregated from users with similar preference to her/him or

from items similar to those she/he already liked. However,

memory-based methods are limited in handling highly

sparse data since the rating similarity cannot be estimated

accurately in this case.

Different from memory-based methods, the model-

based methods first employ machine learning and statistical

techniques to learn a prediction model from the known

ratings of users, and then apply the model to do recom-

mendation. Examples include the latent semantic mod-

els [18, 43], graphical models [21], Bayesian models [16,

52] and clustering models [22, 33]. Among different

model-based methods, low-rank Matrix Factorization (MF)

techniques have attracted much research attention [23, 38,

39], due to the advantages of scalability and accuracy.

Based on the premise that users’ tastes can be represented

by a small number of factors, MF techniques learn the low-

rank latent factors of users and items from the observed

ratings in the user-item rating matrix and then utilize them

to predict unobserved ratings. Traditional CF techniques

have achieved successful results in rating prediction

problems, such as Netflix’s movie recommendation.

However, it suffers from the well-known cold-start prob-

lem [41], where few ratings can be obtained when a new

item or user enters to the system.

Hybrid approaches try to combine Content-based

methods and CF approaches to remedy their limitations.

Burke et al. [10] employ mixture models which build the

recommendation based on a linear combination of the

Content-based prediction and collaborative prediction.

Schein et al. [41] propose to unify CF and Content-based

evidence by probabilistic mixture of aspects. Recently,

more and more works focus on social media recommen-

dation [42, 50, 51]. Many of them are the Hybrid approa-

ches, which mine the content information of social media

as well as the historical behaviors of users to give a more

accuracy recommendation. Wang et al. [49] design a joint

social content recommendation framework for video rec-

ommendation in online social network. Particularly, they

propose a user-content matrix update approach to fill in the

cold user-video entries by making use of both the social

network information and content information. Tiemann

et al. [47] investigate ensemble learning methods to com-

bine outputs of item-based Collaborative filtering and

Content-based methods for music recommendation. Most

of the methods mentioned above do not pay attention to the

one-class recommendation problem dealing with implicit

user feedback, which is common in social media.

The most typical characteristics of One-Class Collabo-

rative Filtering (OCCF) problems are that only positive

examples can be observed and classes are highly imbal-

anced [19]. It is crucial for OCCF to model negative

examples from missing data. In prior works, there are

several intuitive strategies to handle this problem. One

common solution is to treat all the missing data as negative

(AMAN) [6], which may bias the recommendation results

because many missing data may be positive. Another

solution is to treat all the missing data as unknown

(AMAU) [39], which ignores the missing ones and only

uses the positive ones into the CF models. Recently, some

researches on OCCF problems focused on modeling the

negative examples [19, 34, 35, 44]. The basic idea of them

is to treat all the missing user-item pairs as negative, but

give a weight to each of them as the probability to treat it as

negative. However, most of them distinguish the negative

examples by simply observing the statistical properties of

historical feedback. For example, in [19, 34], they compute

the number of items each user have rated and the number of

users each item have been rated by, then determine the

weight by them. specifically, they think if a user has

viewed more items, those items that she/he has not viewed

is more likely to be negative; if an item is viewed by less

users, the missing data for this item are more likely to be

negative, which is too coarse to model the negatives and is

not suitable for all the datasets.

In existing OCCF methods, little has been studied to

exploit the rich content information of social media to

overcome the one-class recommendation problem. In this

paper, we emphasize on improving OCCF by incorporating

rich content information to distinguish the potential nega-

tive examples from missing user-item pairs. Specifically,

our approach is a Hybrid method, where we get a content

topic feature for each user and item by probabilistic topic

modeling [7, 18, 46] and embed them into the Matrix

Factorization model.

3 Preliminaries

In this section, we first give the problem definition formally

and then introduce the Matrix Factorization method of

Collaborative Filtering, which is the basis of our model.
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3.1 Problem definition

The task of techniques discussed in this paper is to make

recommendations dealing with the implicit feedback data

in social media websites, which consist of only positive

examples. Suppose we have a set of users U ¼ fu1; . . .; umg
and a set of items V ¼ fv1; . . .; vng. The users’ implicit

feedbacks on items are expressed in a matrix R ¼ ½Rij�m�n,

where Rij ¼ 1 represents a positive example, Rij ¼ 0 rep-

resents a negative example. For example, if user ui posts

video vj in her/his preference list, Rij ¼ 1, otherwise Rij is

either 0 or 1. Given the original implicit feedback matrix

R, which lack of negative examples, our goal was to model

the missing negative examples and decompose the newly

modeled matrix R, and then recommend a top-N sorted list

of items for each user, which is referred to as a top-N rec-

ommendation task in [12].

3.2 Matrix Factorization model

Matrix Factorization (MF) models [23, 24, 38, 39] have

achieved excellent results in recommendation dealing with

explicit ratings, such as Netflix movie recommendation. In

Matrix Factorization models, they learn latent factors of the

users and the items to represent their characteristics. Sup-

posing users’ tastes can be represented by these latent

characteristics, ratings are predicted by the inner product of

users’ and items’ latent factors. Let U 2 Rf�m and V 2
Rf�n be the user and item latent factor matrices, respec-

tively, with column vectors Ui and Vj representing d-

dimensional user-specific and item-specific latent factors of

user ui and item vj. The user ui’s rating on item vj is

approximated as:

R̂ij ¼ UT
i Vj ð1Þ

To learn the latent factors U and V, many of the MF

methods, applied to explicit rating datasets, suggest mini-

mizing the regularized squared error between the predicted

ratings and the observed ratings, while avoiding overfitting

through an adequate regularized model. The optimization

function is as follows:

min
U;V

X

Ri;jis observed

ðRij � UT
i VjÞ2 þ kðkUik2

F þ kVjk2
FÞ ð2Þ

where k � kF is the Frobenius Norm of a matrix and k is

used for regularizing the model. The latent factors are often

learnt by stochastic gradient descent (SGD) and Alternat-

ing Least Squares (ALS), see example in [24, 53].

In the prior works, MF models often focus on mining the

historical ratings explicitly expressed in different scores,

such as a 1–5 scale in Netflix, where high scores expressing

preference and low scores expressing dislike. In these

cases, they have positive and negative examples to effi-

ciently learn the latent factors of users and items. However,

in One-Class Collaborative Filtering setting, due to lack of

negative examples, it is limited to directly apply the above

algorithm to OCCF problem. In this paper, we will extend

MF models by incorporating content information of social

media to model the missing negative examples.

4 Our framework

In this section, we first introduce the overview of our

framework, which focus on the one-class problem of social

media recommendation. Then, we will talk about each step

of our method in detail.

4.1 Our framework overview

The OCCF problems have following typical characteris-

tics: Only positive examples can be observed, and the

classes are highly imbalanced. To address the problems of

OCCF, we propose to exploit the content information of

social media to assist modeling negative examples, and

extend the Matrix Factorization (MF) model by incorpo-

rating the content-dissimilarity based weighting scheme.

Our framework consists of following steps, which is shown

in Fig. 1:

Step 1: We extract content topic feature for each user

and item. Since we attempt to utilize the content infor-

mation to help us distinguish the potential negative

examples from missing user-item pairs, we first analyze the

content information of social media. In this step, we aim to

find the useful types of content information for users and

items. To get short descriptions of these content profile

while preserving the essential statistical relationships that

are useful for inferring preference, we extract a content

topic feature for each user and item by the probabilistic

topic modeling method Latent Dirichlet Allocation

(LDA) [7].

Step 2: We sample negative examples. In OCCF prob-

lems, the data are unbalanced with no negative feedback. In

this step, we sample negative examples from missing user-

item pairs according to the content topic feature dissimi-

larity. Thus, we will have both positive and negative

examples to learn the model in the next step.

Step 3: We predict users’ missing ratings by Content-

dissimilarity Weighted MF. In this step, we extend Matrix

Factorization model by assigning each negative example a

weight, which stands for the confidence to treat it as neg-

ative. This weight is also determined by the user’s and

item’s content topic feature dissimilarity. After this step,

the user and item latent factor can be learned to estimate

users’ missing ratings on items.
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Step 4: We get the final recommendation by bagging. To

avoid the biased and unstable predicted results caused by

sampling, we will repeat the second and third steps several

times and use the bagging technique [9] to construct an

ensemble of the results. Finally, we provide a top-N sorted

list of items for each user according to the aggregated ratings.

4.2 Content topic feature

In this paper, we propose to exploit the useful content

information of social media to identify potential negative

examples for OCCF problems.

First of all, we should build the content profile for each

user and item. For items in social media websites, we have

sufficient information to characterize them. For example,

the articles have abstract and text description; the videos

have tags and visual feature. For users, the registration

information is usually used to profile users in prior works.

However, in many social media websites, the registration

information is very sparse and limited in reflecting users’

characteristics. As we know, user’s active actions on social

media strongly indicate their preferences; therefore, the

user’s content profiles could be extracted from the content

information of those items she/he liked before, which is

easy to obtain. For example, if user ui has liked fv1; v2; v3g,

we use the content information extracted from fv1; v2; v3g
to represent user ui’s content profile.

As we know, the content information of social media is

usually collections of discrete data. For instance, the text

description of articles contains hundreds of words; the

visual feature of videos contains hundreds of visual words.

Many of these words have similar semantic topic. Since we

will refer to the similarity of content profile to determine

the potential negative examples, we should make the

content feature more semantically concentrated. Thus, we

propose to extract content topic feature for each user and

item, which is the short and semantical description of the

content profile, by the probabilistic topic modeling method

Latent Dirichlet Allocation (LDA) [7].

Latent Dirichlet Allocation (LDA) is a popular proba-

bilistic topic model to discover a set of ‘‘topics’’ from a

large collection of discrete data. It assumes a generative

probabilistic model in which documents are represented as

random mixtures over latent topics, each topic is charac-

terized by a distribution over words. Assume there are J

words in the vocabulary, K latent topics and N documents.

Each document j has a topic distribution hj, which is a K-

dimensional vector, and each topic k has a word distribu-

tion /k, which is a J-dimensional vector. As shown in Fig.

2, the generative process of LDA can be summarized as

follows. For each document j in the corpus,

1. Choose topic distribution hj �DirichletðaÞ.
2. Choose word distribution /k �DirichletðbÞ.

Fig. 1 The flowchart of our

algorithm. In the dotted box,

step 2 and step 3 compose a

single predictor. To avoid the

biased and unstable predicted

results, we repeat it l times,

leading to l predictors and get

an ensemble of the l predicted

results for final recommendation

Fig. 2 The graphical model for LDA
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3. For each of the word s,

(a) Choose a topic assignment

zj;s �MultinomialðhjÞ.
(b) Choose a word wj;s �Multinomialðbzj;s

Þ.

This process reveals how the words of each document are

assumed to come from a mixture of topics. Given a col-

lection, the posterior distribution (or maximum likelihood

estimate) of the topics reveals the K topics that likely

generated its documents.

Given a corpus of items, we can use variational EM [7]

or Gibbs sampling method [15] to learn the topic-word

distribution / and the item-topic distribution h, where the

hj is the content topic feature we want to get. Further, for

each user, given the user’s content information described

before, we can use variational inference to situate its

content in terms of the topics and get the content topic

feature for user. For simplicity, we note the item content

topic feature as q and user-content topic feature as p in the

rest of the paper. Since the content topic features are

interpretable low-dimensional representations of users’ and

items’ content, we measure the content similarity between

user ui and item vj by:

simðpi; qjÞ ¼
pT

i qj

kpik2 � kqjk2

ð3Þ

Note that, if utilizing multiple modalities of content

information, for example, the videos have text description

and visual feature, we can learn the q and p under each

modality as the way described above, and then compute the

content similarities under different modalities and integrate

them to determine the final similarity between user and

item.

4.3 Sampling negative examples

In the OCCF problems, the data are unbalanced with no

negative feedback. Traditional methods treat all the miss-

ing user-item pairs as negative [6, 19]. On the one hand,

there may be many unlabeled positive examples among the

missing data. On the other hand, it is still unbalanced with

too many negative examples, which makes the model

costly to learn in the last step and may bias the results

toward negative. In this paper, we sample negative exam-

ples from the missing user-item pairs according to the

content topic feature dissimilarity. That is, the more

dissimilar between user and item content, the higher

probability we sample them as negative. Thus, the sampled

probability for a missing user-item pair as negative is as

follows:

Pij / 1=simðpi; qjÞ ð4Þ

The number of our sampled negative examples is compa-

rable with the number of positive examples. Thus, we will

have a balanced set of positive and negative examples,

denoted as T , to train the model.

4.4 Content-dissimilarity weighted MF

One intuitive way to get the final recommendation is to

train the MF model described in Sect. 3.2 with the sampled

negative examples and the existing positive examples.

However, we can not make sure the sampled negative

examples are actually negative. Inspired by the idea of [19,

35] to introduce weight for each example, we assign a

weight to each negative example to response the confi-

dence to treat it as negative. Instead of using a global

weighting scheme in prior works, a better way is to con-

sider the similarity between the users’ and items’ content

information, that is the more similar they are, more likely

the user will like the item, and the less weight we should

assign to that negative example. Thus, we have following

weight to each negative example:

Cij ¼ 1 � simðpi; qjÞ ð5Þ

For each positive example Cij ¼ 1. Therefore, our Content-

dissimilarity Weighted MF have the following loss

function:

LossðU;VÞ ¼
X

Ri;j2T
Cij Rij � UT

i Vj

� �2þk kUik2
F þ kVjk2

F

� �

ð6Þ

where Ui is the latent factor of user ui;Vj is the latent factor

of item vj. U ¼ ðU1; . . .;UmÞ 2 Rf�m, V ¼ ðV1; . . .;VnÞ
2 Rf�n. T is the training set containing sampled negative

examples and existing positive ones.

The Alternating Least Squares (ALS) method [53] is

efficient for solving these kinds of low-rank approximation

problems, which rotates between fixing the U and fixing the

V. When all Ui are fixed, the system computes the Vj by

solving a least squares problem, and vice versa. Here, we

estimate U;V by the ALS as follows:
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Algorithm 1 ALS for Content-dissimilarity Weighted
MF
Require: Training rating set T , content topic feature p

and q, latent factor number f
Ensure: latent factor matrices U and V

1: Initial V;
2: if Rij = 0, ∀Rij ∈ T

Cij = 1 − sim(pi, qj);
3: else Cij = 1;
4: end if
5: repeat
6: Ui = (VIU

i
C̃IU

i
V T
IU
i

+ λE)−1VIU
i

C̃IU
i

RT (i, IU
i ),

∀1 ≤ i ≤ m;
7: Vj = (UIV

j
C̄IV

j
UT

IV
j

+ λE)−1UIV
j

C̄IV
j

R(IV
j , j),

∀1 ≤ j ≤ n;
8: Until convergence
9: return U and V

Fixing V, in order to learn U which minimize Eq. (6),

we take partial derivatives of LossðU;VÞ; with respect to

each entry of U:

1

2

oLossðU;VÞ
oUri

¼
X

j2IU
i

Cij UT
i Vj � Rij

� �
Vrj þ kUri;

81� i�m; 1� r � f

ð7Þ

where Uri denotes the rth element of vector Ui, Vrj denotes

the rth element of vector Vj. IU
i denotes the set of indices of

items that user ui has rated (no matter negative or positive)

in the training set. Then for Ui we have:

1

2

oLossðU;VÞ
oUi

¼ 1

2

oLossðU;VÞ
oU1i

; . . .;
oLossðU;VÞ

oUfi

� �

¼ ðVIU
i

~CIU
i

VT
IU
i
þ kEÞUi � VIU

i

~CIU
i

RT i; IU
i

� �

ð8Þ

where E is an f � f identify matrix, and Rði; IU
i Þ is the row

vector where columns j 2 IU
i of the i-th row of R are

selected. VIU
i

denotes the sub-matrix of V where columns

j 2 IU
i are selected. ~CIU

i
is a nui

� nui
diagonal matrix with

entries of Cði; IU
i Þ on the diagonal, where nui

is the number

of items rated by ui.

Let the partial derivative 1
2

oLossðU;VÞ
oUi

¼ 0, we get

Ui ¼ VIU
i

~CIU
i

VT
IU
i
þ kE

� ��1

VIU
i

~CIU
i

RT i; IU
i

� � ð9Þ

Similarly, by fixing U and solving 1
2

oLossðU;VÞ
oVj

¼ 0, we have:

Vj ¼ UIV
j

�CIV
j
UT

IV
j
þ kE

� ��1

UIV
j

�CIV
j
R IV

j ; j
� �

ð10Þ

where IV
j denotes the set of indices of users who have rated

vj (no matter negative or positive) in the training set.

RðIV
j ; jÞ is the column vector where rows i 2 IV

j of the jth

column of R are selected. UIV
j

denotes the sub-matrix of U

where columns i 2 IV
j are selected. �CIV

j
is a nvj

� nvj
diag-

onal matrix with entries of CðIV
j ; jÞ on the diagonal, where

nvj
is the number of users who have rated vj.

Based on Eqs. (9) and (10), the algorithm for estimating

the latent factors U and V is described in Algorithm 1.

After achieving them, we can predict the missing data by

R̂ij ¼ UT
i Vj, where high score infers higher preference.

4.5 Bagging

To provide a sorted list of items Li ¼ ðL1; L2; . . .; LNÞ for

each user ui, which is the aim of recommendation for

social media, we can rank the items which have not

been rated by ui according to the ratings R̂ij predicted in

above steps. However, since the negative example in the

training set is sampled, the predicted rating R̂ij learned

from them may be biased and unstable. A practical

solution to the problem is to construct an ensemble.

Here, we use the bagging technique [9]; the process is

shown in Algorithm 2.

Algorithm 2 Bagging for Final Recommendation
Require: observed positive examples Rij , content topic

feature p and q, number of single predictor l, number of
recommendation results N

Ensure: sorted list of top-N items
Li = (L1, L2, . . . , LN ), 1 ≤ i ≤ m

1: for s = 1 : l do
2: Generate a new training set Ts by negative example

sampling (section 4.3);
3: Learn latent factors U and V by Algorithm 1;
4: Predict rating matrix by R̂s = UTV;
5: end for

6: Aggregate the predicted rating matrix R̂ = 1
l

l

s=1
R̂s;

7: for i = 1 : m
8: sorted items which have not been rated by ui, according

to the predicted rating R̂ij ;
9: end for
10: return the list of top-N items

Li = (L1, L2, . . . , LN ), 1 ≤ i ≤ m

5 Experiments

In this section, we investigate the performance of our

method in the one-class recommendation problem of social

media, by comparing with other state-of-the-art algorithms

on two real-world datasets.
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5.1 Datasets

CiteUlike dataset CiteUlike7 is a scientific article shar-

ing service where users create personal libraries by

posting the articles they like on the website. Each article

has information such as title, abstract, authors, publica-

tions and keywords. Recommending potential enjoyed

articles for each user in CiteUlike is typically a one-

class problem, where we only know the articles she/he

likes. To evaluate our models’ recommendation quality,

we conduct our experiment on a subset of CiteUlike’s

‘‘user-post-article’’ data, for each article we use the title

and abstract as the content information. The dataset

contains 5,551 users and 16,980 articles with 204,986

observed user-item pairs, where each pair denotes a

posting action.

YouTube dataset YouTube8 is a well-known video-

sharing website on which users can upload, view and

share videos. Each member of YouTube maintains a list

of ‘‘favored videos’’ to indicate explicitly her/his prefer-

ence on those videos. However, there is no clear evidence

for us to know explicitly which videos she/he do not like.

Thus, it is also a one-class recommendation problem in

YouTube. The dataset we collected consists of 7,008

users and 106,693 videos with 349,965 observed user-

video pairs, where each pair denotes a ‘‘favor’’ action. We

also collected each video’s content information, such as

the title, the tag, the textual description and the visual

information.

The detailed statistics of the two datasets are showed in

Table 1. In both datasets, the high sparsity is rather

noticeable in the user-item rating matrixes. Compared with

CiteUlike dataset, in Youtube dataset, each user rated

fewer items and each item was rated by fewer users, which

leads to a much sparser rating matrix.

5.2 Experimental setups

Since the real recommender systems are normally con-

cerned about personalized ranking of items but not rating

prediction to all items, we focus on the task of top-N

recommendation [12] to evaluate our model’s recommen-

dation quality, which provide each user a sorted list of top-

N items and evaluate the performance by measuring how

well the recommended items hit the users’ interests. To

achieve this, in the experiments, the observed dataset for

each user is randomly divided into twofolds, we use 80 %

of the known positive examples for training and the rest

20 % for testing. That is, we train the model on the training

set and then give our predictions of the top-N items for

each user to see whether the recommended items hit the

items in the testing set (i.e., whether the items in the testing

set are recommended by the method). The better they hits

the testing set, the better recommendation performance the

model achieves. The random selection for the training and

testing set was carried out 20 times independently, and we

report the average results.

For the evaluation protocol, we follow the evaluation

mechanism described in [12]. As the total number of items

is huge in the datasets, while the number of positive items

for each user in the testing set is much fewer, it is pro-

hibitive to take all the items as the candidates and generate

a total ordering of the whole item set for each user. Our

testing methodology for top-N measure is as follows: For

each user ui, we randomly sample M items that are not

viewed by ui and mix them with the testing data to con-

struct a probe set. Then, we compute the predicted ratings

over the probe set to find the top-N items in the probe set.

In our experiments, M = 2,000.

To analyze how well the recommended item list of each

method hit the testing items, we consider three classical

measures in our experiments: Precision, Recall and MAP

(Mean Average Precision).

For each user ui, given a ranked list of N items, we

denote precui
ðNÞ as the precision at ranked position

N; recallui
ðNÞ as the recall at ranked position N. Thus, we

have:

precui
ðNÞ ¼ #PositiveHitsui

ðNÞ
N

ð11Þ

recallui
ðNÞ ¼ #PositiveHitsui

ðNÞ
#AllPositivesui

ð12Þ

where #AllPositivesui
denotes the total number of positive

items which the user ui likes in the testing set, and

#PositiveHitsui
ðNÞ denotes the number of positive items

contained in the ranked position N. The final Precision and

Recall at ranked position N, denoted as PreðNÞ and

Table 1 Statistics of the datasets

CiteUlike YouTube

# of users 5,551 4,083

# of items 16,980 9,013

# of observed ratings 204,986 29,879

Ave ratings per user 37 7

Ave ratings per item 12 3

Max ratings per user 403 80

Min ratings per user 10 1

Rating sparsity 99.78 % 99.92 %

7 http://www.citeulike.org/.
8 http://www.youtube.com/.
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RecallðNÞ, are computed as the mean of precui
ðNÞ and

recallui
ðNÞ over all the users.

Mean average precision (MAP) assesses the overall

performance based on precisions at different recall levels.

It calculates the mean of average precision (AP) over all

users in the testing set, where AP for user ui is the average

of precisions computed at all positions with a preferred

item:

APui
¼

PN
k¼1 precui

ðkÞ � prefui
ðkÞ

#AllPositivesui

ð13Þ

where precui
ðkÞ is the precision at ranked position

k; prefui
ðkÞ is a binary indicator returning 1 if the k-th item

is preferred or 0 otherwise. The MAP is the mean of APui

over all users.

For the above three metrics (Precision, Recall, MAP), a

larger value means the recommended list hits the testing set

better, which denote a better performance for the task of

top-N recommendation [12, 34, 35].

To extract content topic feature, for CiteUlike, we use

the title and abstract of each article as the content infor-

mation. We remove stop words and use tf-idf to choose the

top 8,000 distinct words as the vocabulary. Then, the

content information can be presented by the counts of these

words. The content topic feature can be extracted as

described in Sect. 4.2. For YouTube dataset, we use the

text features of each video, such as the title, the tag and the

textual description, as well as the visual information. For

the text features, we can extract the content topic feature

pðaÞ and qðaÞ as the same way in CiteUlike. For visual

information, we first obtain the key frame for each video

and then describe them by the typical 2,000-dimensional

bag-of-words representation using SIFT [29]. Then, the

content topic feature pðbÞ and qðbÞ under the visual modality

can be extracted as described in Sect. 4.2. Finally, we

integrate the content topic feature under two modalities to

determine the content similarity between user and item as:

asimðpðaÞ; qðaÞÞ þ ð1 � aÞsimðpðbÞ; qðbÞÞ. In the experiment

of YouTube dataset, a ¼ 0:7.

5.3 Baseline models

To evaluate the performance of our model, we implement

the following related works for comparison with our

model.

• AMAN: The traditional CF Matrix Factorization

method which treats all the missing data as negative.

The optimization problem is as Eq. (2), with all the

positive examples assigned to 1 and all the missing

examples assigned to 0.

• AMAU: The traditional CF Matrix Factorization

method which treats all the missing data as unknown.

The optimization problem is as Eq. (3), with only the

positive examples assigned to 1 and no 0 ones.

• LDA: Here, LDA stands for a Content-based method,

where we use the LDA-content topic features (dis-

cussed in Sect. 4.2) to represent the users’ and items’

content profile in traditional Content-based method and

compute the similarity between them (as Eq. (3)) to

produce the top-N list of items for each user.

• wAMAN_uniform: The state-of-the-art OCCF algo-

rithm which is the weighted version of AMAN. It treats

all the missing data as negative and give a weight to

each of them. The weight here is uniform with value

less than 1 [34, 35]. This weighting implements the

intuition that the confidence of unknown data being

negative is lower than the confidence of positive

examples.

• wAMAN_item: Here, the weights are not-uniform, and

the jth item has its own weight proportional to

m �
P

i Rij, which is a item-specific weighting scheme,

taking the intuition that if an item is viewed by less

users, the missing data for this item is negative with

higher probability [34, 35].

• wAMAN_user: Here, the weights are not-uniform, and

the ith user has her/his own weight proportional toP
j Rij, which is a user-specific weighting scheme,

taking the intuition that if a user has viewed more users,

those items she/he has not viewed could be negative

with higher probability [34, 35].

5.4 Results and analysis

Performance on CiteUlike Table 2 shows the experimental

results on the CiteUlike dataset with three different eval-

uation metrics: MAP, Recall and Precision, when we return

top N ¼ 20 articles for each user. Through cross-valida-

tion, we select the regularizing parameter k ¼ 1 and the

dimension of content topic feature K ¼ 50. We try differ-

ent number of latent factors f from 10 to 200 and find that

the performance increases with the f increasing. f ¼ 200 is

chosen in reporting the results.

Table 2 Performance comparison on CiteUlike with N ¼ 20

Methods MAP Recall Precision

LDA 0.1193 0.3659 0.1099

AMAU 0.0161 0.0417 0.0185

AMAN 0.1735 0.3943 0.1350

wAMAN_uniform 0.2324 0.4563 0.1358

wAMAN_item 0.2129 0.4347 0.1305

wAMAN_user 0.2114 0.4372 0.1306

Ours 0.2840 0.5399 0.1630

Bold values indicate the best performance in comparison
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As we know, a larger value of the three metrics (MAP,

Recall and Precision) means a better performance. From

Table 2, we can observe that AMAU returns the worst

performance in CiteUlike. Even the Content-based method

LDA outperforms AMAU, which shows that the content

information helps much in article recommendation. AMAN

performs better than AMAU and LDA and shows that the

negative examples are necessary for recommendation with

implicit data. The three OCCF methods focus on weighting

negatives increase the result of AMAN and demonstrate

that it is useful to model the negative examples in OCCF.

However, the user-oriented and item-oriented weighting

schemes do not perform as well as the simple uniform

scheme. The reason may be that the CiteUlike data are very

sparse with most users posting few articles and most arti-

cles appearing in few users’ libraries, which leads that the

weighting scheme based on the number of ratings for each

user or item become very weak. It is obvious that our

method outperforms other approaches, with significant

improvement of 0.0516 (22.20 %) in MAP compared with

the best baseline wAMAN_uniform. This suggests that our

method can model the negative examples better with the

content topic feature and is efficient to solve the sparse and

unbalance problems in OCCF.

Performance on YouTube For YouTube dataset, we

select the regularizing parameter k ¼ 0:4 and the dimen-

sion of content topic feature K ¼ 50 by cross-validation.

We try different number of latent factors f from 10 to 100

and find that the performance increases with the f

increasing before f ¼ 50 and there seems little improve-

ment after that. Thus, f ¼ 50 is chosen in the experiment.

The experimental results on YouTube with number of

returned videos N ¼ 20 are reported in Table 3. Since the

YouTube data are much sparser and each user has watched

few videos, it is much more difficult for us to hit the

favored videos in the test data; thus, the performance of all

the methods is much lower than in CiteUlike. However, we

can observe that our method also achieves the best per-

formance over all the baseline methods in Youtube dataset.

Compared with state-of-the-art method wAMAN_uniform,

our method gets a very significant improvement of 55.28 %

in MAP, which shows that the content information is very

useful in this kind of sparse datasets and our method can

model the negative examples better with the content topic

feature. Note that the wAMAN_item method does not

achieve better performance than AMAN in YouTube

dataset, which shows that the strategy to model negative

Table 3 Performance comparison on YouTube with N ¼ 20

Methods MAP Recall Precision

LDA 0.0171 0.0510 0.0047

AMAU 0.0061 0.0290 0.0026

AMAN 0.0368 0.0898 0.0094

wAMAN_uniform 0.0530 0.1975 0.0199

wAMAN_item 0.0326 0.0792 0.0082

wAMAN_user 0.0484 0.1481 0.0139

Ours 0.0823 0.2282 0.0218

Bold values indicate the best performance in comparison

Fig. 3 MAP performance on CiteUlike and YouTube datasets varying different number of recommended items
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examples by simply observing the statistical properties of

historical feedback is not always suitable for all the

datasets.

Performance under different number of recommended

items Since our aim was to recommend a top N sorted list

of items for each user, different number of recommended

items may result in different performance. Figure 3 shows

the MAP performance of all the methods with different

number of returned items N. From the results, we can

observe that on both datasets our method consistently

outperforms other approaches varying with different

number of recommended items, which demonstrates the

high efficiency of our methods.

6 Conclusion

In this paper, we propose a novel framework to deal with

the one-class recommendation problems of social media by

exploiting the rich content information. Specifically, we get

a content topic feature for each user and item to assist

distinguishing the potential negative examples from miss-

ing data and extend the Matrix Factorization (MF) model

by incorporating the content-dissimilarity based weighting

scheme. Experiments on real-world data from CiteUlike

and YouTube show that the proposed method outperforms

state-of-the-art algorithms, which suggests that the our

method is effective to overcome the sparsity and unbalance

of one-class problem in social media recommendation.
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