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a b s t r a c t

The constrained optimal control problem depends on the solution of the complicated Hamilton–Jacobi–
Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is
proposed, which learns the solution of the HJBE and the optimal control policy from real system data.
One important feature of the off-policy RL is that its policy evaluation can be realized with data generated
by other behavior policies, not necessarily the target policy, which solves the insufficient exploration
problem. The convergence of the off-policy RL is provedbydemonstrating its equivalence to the successive
approximation approach. Its implementation procedure is based on the actor–critic neural networks
structure, where the function approximation is conducted with linearly independent basis functions.
Subsequently, the convergence of the implementation procedure with function approximation is also
proved. Finally, its effectiveness is verified through computer simulations.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Optimal control is an important part of control theory, which
has been widely investigated over the past several decades. The
bottleneck of its applications to nonlinear systems is that it de-
pends on the solution of the Hamilton–Jacobi–Bellman equation
(HJBE) (Bertsekas, 2005; Hull, 2003; Lewis, Vrabie, & Syrmos,
2013), which is extremely difficult to obtain analytically. Over the
past few years, reinforcement learning (RL) (Lendaris, 2009; Pow-
ell, 2007; Precup, Sutton, & Dasgupta, 2001; Sutton & Barto, 1998),
has appeared as an efficient tool to solve the HJBE andmanymean-
ingful results (Faust, Ruymgaart, Salman, Fierro, & Tapia, 2014;
Jiang & Jiang, 2012; Lee, Park, & Choi, 2012; Liu, Wang, & Li, 2014;
Liu & Wei, 2014; Luo, Wu, Huang, & Liu, 2014; Modares & Lewis,
2014; Murray, Cox, Lendaris, & Saeks, 2002; Vamvoudakis & Lewis,
2010; Vrabie & Lewis, 2009; Vrabie, Pastravanu, Abu-Khalaf, &
Lewis, 2009; Wang, Liu, & Li, 2014; Wei & Liu, 2012; Yang, Liu,
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& Wang, 2014; Yang, Liu, Wang, & Wei, 2014; Zhao, Xu, & Jagan-
nathan, 2014) have been reported. For example, appropriate es-
timators were employed for approximating value function such
that the temporal difference error isminimized (Doya, 2000). Mur-
ray et al. (2002) suggested two policy iteration algorithms that
avoid the necessity of knowing the internal system dynamics. Vra-
bie et al. (2009) extended their result and proposed a new policy
iteration algorithm to solve the linear quadratic regulation prob-
lem online along a single state trajectory. A nonlinear version of
this algorithm was presented in Vrabie and Lewis (2009) by us-
ing neural network (NN) approximator. Vamvoudakis and Lewis
(2010) also gave a so-called synchronous policy iteration algorithm
which tunes synchronously the weight parameters of both NNs in
the actor–critic structure. An integral reinforcement learning (IRL)
method (Modares & Lewis, 2014) was introduced to solve the lin-
ear quadratic tracking problem of partially-unknown continuous-
time systems. Online adaptive optimal control (Jiang & Jiang, 2012)
and Q-learning (Lee et al., 2012) algorithms were developed for
linear quadratic regulator problem. Off-policy RL approaches were
proposed to solve the nonlinear data-based optimal control prob-
lem (Luo et al., 2014) and partially model-freeH∞ control problem
(Luo, Wu, & Huang, 2015). However, it is noted that control con-
straints are not involved in these results.

In practice, constraints widely exist in real control systems and
have damaging effects on the systemperformance, and thus should

http://dx.doi.org/10.1016/j.neunet.2015.08.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.08.007&domain=pdf
mailto:biao.luo@hotmail.com
mailto:whn@buaa.edu.cn
mailto:tingwen.huang@qatar.tamu.edu
mailto:derong@ustb.edu.cn
http://dx.doi.org/10.1016/j.neunet.2015.08.007


B. Luo et al. / Neural Networks 71 (2015) 150–158 151
be accounted for during the controller design process. For the con-
strained optimal control problem, several results (Abu-Khalaf &
Lewis, 2005; He & Jagannathan, 2005, 2007; Heydari & Balakrish-
nan, 2013; Liu, Wang, & Yang, 2013; Lyshevski, 1998; Modares,
Lewis, & Naghibi-Sistani, 2013; Zhang, Luo, & Liu, 2009) have been
reported recently. A nonquadratic cost functional was introduced
by Lyshevski (1998) to confront input constraints, and then the as-
sociated HJBE was reformulated accordingly. As the extensions of
the method in Saridis and Lee (1979) and Beard, Saridis, and Wen
(1997) to handle constrained optimal control problem, model-
based successive approximation method was used for solving
the HJBE of continuous-time systems (Abu-Khalaf & Lewis, 2005)
and discrete-time systems (Chen & Jagannathan, 2008). Modares,
Lewis, and Naghibi-Sistani (2014) developed an experience-replay
based IRL algorithm for nonlinear partially unknown constrained-
input systems. Aheuristic dynamic programmingwas used to solve
the constrained optimal control problem of nonlinear discrete-
time systems (Zhang et al., 2009). The single network based adap-
tive critics method was proposed for finite-horizon nonlinear
constrained optimal control design (Heydari & Balakrishnan,
2013). However, the data-based constrained nonlinear optimal
control problem is rarely studied with off-policy RL and still re-
mains an open issue.

In this paper, a data-based off-policy RL method is proposed for
learning the constrained optimal control policy form real system
data instead of using mathematical model. The rest of the paper
is arranged as follows. Section 2 gives the problem description
and Section 3 presents a model-based successive approximation
method. The data-based off-policy RL method is developed in
Section 4. Section 5 shows the simulation results and Section 6
gives the conclusions.

Notation: R and Rn are the set of real numbers and the n-
dimensional Euclidean space, respectively. ∥ · ∥ denotes the
vector norm or matrix norm in Rn. The superscript T is used for
the transpose and I denotes the identify matrix of appropriate
dimension. ▽ , ∂/∂x denotes a gradient operator. C1(X) is a
function space onXwith continuous first derivatives. LetX andU
be compact sets, denote D , {(x, u)|x ∈ X, u ∈ U}. For column
vector functions s1(x, u) and s2(x, u), where (x, u) ∈ D , define
inner product ⟨s1(x, u), s2(x, u)⟩D ,


D
sT1(x, u)s2(x, u)d(x, u) and

norm ∥s1(x, u)∥D , ⟨s1(x, u), s2(x, u)⟩
1/2
D .

2. Problem description

Let us consider the following continuous-time nonlinear
system:

ẋ(t) = f (x(t))+ g(x(t))u(t), x(0) = x0, (1)

where x = [x1, . . . , xn]T ∈ Rn is the state, x0 is the initial state and
u = [u1, . . . , um]

T
∈ Rm is the control input constrained by |ui| 6

β , β > 0. Assume that f (x) + g(x)u(x) is Lipschitz continuous on
X that contains the origin, f (0) = 0, and the system is stabilizable
on X, i.e., there exists a continuous control function u(x) such that
the system is asymptotically stable. f (x) and g(x) are continuous
unknown vector or matrix functions of appropriate dimensions.

The optimal control problem under consideration is to learn
a state feedback control law u(t) = u(x(t)) from real system
data, such that the system (1) is closed-loop asymptotically sta-
ble, and minimize the following generalized infinite horizon cost
functional:

V (x0) ,


+∞

0
(Q (x(t))+ W (u(t)))dt, (2)

where Q (x) andW (u) are positive definite functions, i.e., for ∀x ≠

0, u ≠ 0, Q (x) > 0, W (u) > 0, and Q (x) = 0, W (u) = 0 only
when x = 0, u = 0. Then, the optimal control problem is briefly
presented as

u(t) = u∗(x) , argmin
u

V (x0). (3)

3. Model-based successive approximation method

For the model-based optimal control problem (3), i.e., the
mathematicalmodels of f (x) and g(x) are completely known, it can
be converted to solving the HJBE. In Abu-Khalaf and Lewis (2005),
a model-based successive approximation method was given for
solving the HJBE, where the HJBE is successively approximated by
a sequence of linear partial differential equations. Before we start,
the definition of admissible control (Abu-Khalaf & Lewis, 2005;
Beard et al., 1997) is given.

Definition 1 (Admissible Control). For the given system (1), x ∈ X,
a control policy u(x) is defined to be admissible with respect to
the cost function (2) on X, denoted by u(x) ∈ U(X), if, (1) u is
continuous on X, (2) u(0) = 0, (3) u(x) stabilizes the system, and
(4) V (x) < ∞,∀x ∈ X. �

For ∀u(x) ∈ U(X), its value function V (x) of (2) satisfies the
following linear partial differential equation (Abu-Khalaf & Lewis,
2005):

[∇V (x)]T(f (x)+ g(x)u(x))+ Q (x)+ W (u) = 0, (4)

where V (x) ∈ C1(X), V (x) ≥ 0 and V (0) = 0. From the optimal
control theory (Anderson & Moore, 2007; Bertsekas, 2005; Lewis
et al., 2013), if using the optimal control u∗(x), the Eq. (4) results in
the HJBE

[∇V ∗(x)]T(f (x)+ g(x)u∗(x))+ Q (x)+ W (u∗) = 0. (5)

For the system (1) with input constraints |ui| 6 β , the following
nonquadratic form W (u) for the cost functional (2) can be used
(Abu-Khalaf & Lewis, 2005; Lyashevskiy, 1996; Lyshevski, 1998;
Modares et al., 2013):

W (u) = 2
m
l=1

rl

 ul

0
ϕ−1(µl)dµl, (6)

where µ ∈ Rm, rl > 0 and ϕ(·) is a continuous one-to-one
bounded function satisfying |ϕ(·)| 6 β with ϕ(0) = 0. Moreover,
ϕ(·) is a monotonic odd function and its derivative is bounded.
An example of ϕ(·) is the hyperbolic tangent tanh(·). Denoting
R = diag(r1, . . . , rm), it follows from Abu-Khalaf and Lewis (2005)
and Lyshevski (1998) that the HJBE (5) of the constrained optimal
control problem is given by

[∇V ∗
]
T


f − gϕ


1
2
R−1gT

∇V ∗


+ Q (x)

+W


−ϕ


1
2
R−1gT

∇V ∗


= 0. (7)

By solving theHJBE forV ∗(x), the optimal control policy is obtained
as:

u∗(x) = −ϕ


1
2
R−1gT(x)∇V ∗(x)


. (8)

For simplicity of description, define

ν∗(x) , −
1
2
R−1gT(x)∇V ∗(x). (9)
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Then, the HJBE (7) and optimal control (8) can briefly be rewritten
as:

(∇V ∗)T

f + gϕ(ν∗)


+ Q + W (ϕ(ν∗)) = 0 (10)

u∗
= ϕ(ν∗). (11)

In Abu-Khalaf and Lewis (2005), the HJBE (10) is successively
approximated with a sequence of iterative equations

[∇V (i)]T(f + gu(i))+ Q + W (u(i)) = 0; i = 0, 1, . . . , (12)

with policy improvement

u(i+1)
= ϕ(ν(i+1)), (13)

where

ν(i+1) , −
1
2
R−1gT

∇V (i). (14)

Remark 1. From the famous RL books (Bertsekas, 2005; Sutton
& Barto, 1998), policy iteration is a basic framework of RL. Over
the past few years, policy iteration has already been employed to
solve the unconstrained optimal control problems of linear sys-
tems (Jiang & Jiang, 2012; Modares & Lewis, 2014; Vrabie et al.,
2009) and nonlinear systems (Vamvoudakis & Lewis, 2010; Vrabie
& Lewis, 2009). In fact, the successive approximation between the
iterative equations (12) and (13) is essentially a model-based pol-
icy iteration method, which involves two basic steps: policy eval-
uation and policy improvement. The Eq. (12) is policy evaluation
for evaluating the control policy u(i) for its value function V (i), and
Eq. (13) is policy improvement for obtaining an improved control
policy u(i+1) based on the current value function V (i). By imple-
menting the two steps alternatively, it has been proven in Abu-
Khalaf and Lewis (2005) that the value function V (i) will converge
to the solution of the HJBE (10), i.e., limi→∞ V (i) = V ∗ and thus
limi→∞ u(i) = u∗. Note that the iterative equation (12) involves the
full mathematical system models of f (x) and g(x). In Abu-Khalaf
and Lewis (2005), a model-based approach was developed to solve
the iterative equation (12) by usingNN for approximating the value
function V (i). �

4. Data-based constrained optimal control

For the data-based constrained optimal control problem
under consideration, the explicit expression of the HJBE (10) is
unavailable since the mathematical system models f (x) and g(x)
are unknown, which prevents using model-based approaches for
control design. To overcome this difficulty, a data-based off-policy
RL is developed to learn the optimal control policy.

4.1. Off-policy reinforcement learning

In this subsection, the off-policy RL approach is derived based
on (12) and (13). Inspired by Jiang and Jiang (2014) and Luo et al.
(2014), the system (1) can be rewritten as

ẋ = f + gu(i) + g[u − u(i)] (15)

for ∀u ∈ U. Let us consider the case when V (i)(x) be the solution of
the iterative equation (12). By using (12)–(14), we take derivative
of V (i)(x)with respect to time along the state of system (15)

dV (i)(x)
dt

= [∇V (i)]T(f + gu(i))− [∇V (i)]Tg[u(i) − u]

= −Q − W (u(i))+ 2(ν(i+1))TR[u(i) − u]

= −Q − W (ϕ(ν(i)))+ 2(ν(i+1))TR[ϕ(ν(i))− u]. (16)
Integrating both sides of (16) on the interval [t, t + 1t] and
rearranging terms yields,

2
 t+1t

t
[ν(i+1)(x(τ ))]TR[ϕ(ν(i)(x(τ )))− u(τ )]dτ

+ V (i)(x(t))− V (i)(x(t +1t))

=

 t+1t

t


Q (x(τ ))+ W (ϕ(ν(i)(x(τ ))))


dτ , (17)

where V (i)(x) is an unknown function and ν(i+1)(x) is an unknown
function vector to be solved. The main idea of the off-policy RL is
solving the iterative equation (17) instead of the iterative equation
(12). Compared with the iterative equation (12), the iterative
equation (17) does not require the explicit mathematical model
of the system (1), i.e., f (x) and g(x). According to the definition of
off-policy RL (Maei, Szepesvári, Bhatnagar, & Sutton, 2010; Precup
et al., 2001; Sutton & Barto, 1998), the value function V (i) of the
target control policy u(i) can be evaluated by using system data
generated with other behavior policies u and not restricted to the
target policy. This implies that the proposed off-policy RL method
has an advantage that it can learn the value function and control
policy from system data that are generated according to more
exploratory or even random policies.

For the proposed off-policy RL, its aim is to learn the constrained
optimal control policy (8) by iteratively solving Eq. (17) for the
unknown function V (i)(x) and function vector ν(i+1)(x). Thus, it is
necessary to prove that the generated sequences {V (i)} and {ν(i)}
will converge to V ∗ and ν∗, respectively.

Theorem 1. Let V (i)(x) ∈ C1(X), V (i)(x) ≥ 0, V (i)(0) = 0 and
ϕ(ν(i+1)(x)) ∈ U(X). (V (i)(x), ν(i+1)(x)) is the solution of Eq. (17) if
and only if it is the solution of the iterative equations (12)–(14),
i.e., Eq. (17) is equivalent to the iterative equations (12)–(14).

Proof. From the derivation of Eq. (17), we have that if (V (i), ν(i+1))
is the solution of the iterative equations (12)–(14), it also satisfies
Eq. (17). To complete the proof, we have to show that (V (i), ν(i+1))
is the unique solution of Eq. (17). The proof is by contradiction.

Before start, we derive a simple fact. Consider

lim
1t→0

1
1t

 t+1t

t
h̄(τ )dτ

= lim
1t→0

1
1t

 t+1t

0
h̄(τ )dτ −

 t

0
h̄(τ )dτ


=

d
dt

 t

0
h̄(τ )dτ

= h̄(t). (18)

From (17), we have

dV (i)(x)
dt

= lim
1t→0

1
1t


V (i)(x(t +1t))− V (i)(x(t))


= 2 lim

1t→0

 t+1t

t
[ν(i+1)(x(τ ))]T

× R[ϕ(ν(i)(x(τ )))− u(τ )]dτ

− lim
1t→0

1
1t

 t+1t

t


Q (x(τ ))+ W (ϕ(ν(i)(x(τ ))))


dτ . (19)

By using the fact (18), Eq. (19) is rewritten as

dV (i)(x)
dt

= 2[ν(i+1)(x(t))]TR[ϕ(ν(i)(x(t)))− u(t)]

−Q (x(t))− W (ϕ(ν(i)(x(t)))). (20)
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Suppose that (W (x), υ(x)) is another solution of Eq. (17), where
W (x) ∈ C1(X)with boundary conditionW (0) = 0 and ϕ(υ(x)) ∈

U(X). Thus, (W , υ) also satisfies Eq. (20), i.e.,

dW (x)
dt

= 2υT(x(t))R[ϕ(ν(i)(x(t)))− u(t)]

−Q (x(t))− W (ϕ(ν(i)(x(t)))). (21)

Substituting Eq. (21) from (20) yields,

d
dt


V (i)(x)− W (x)


= 2[ν(i+1)(x(t))− υ(x(t))]T

× R[ϕ(ν(i)(x(t)))− u(t)]. (22)

This means that Eq. (22) holds for ∀u ∈ U. If letting u = ϕ(ν(i)),
we have

d
dt


V (i)(x)− W (x)


= 0. (23)

This implies that V (i)(x) − W (x) = c holds for ∀x ∈ X, where
c is a real constant. For x = 0, c = V (i)(0) − W (0) = 0. Then,
V (i)(x) − W (x) = 0, i.e., W (x) = V (i)(x) for ∀i, x ∈ X. From (22),
we have

[ν(i+1)(x)− υ(x)]TR[ϕ(ν(i)(x))− u] = 0

for ∀u ∈ U. Thus, ν(i+1)(x)− υ(x) = 0, i.e., υ(x) = ν(i+1)(x) for ∀i,
x ∈ X. This completes the proof. �

Theorem 1 shows that the off-policy RL with iterative equation
(17) is theoretically equivalent to the model-based successive
approximation method with the iterative equations (12)–(14),
which is convergent as proved in Abu-Khalaf and Lewis (2005).
Thus, the convergence of the off-policy RL can be guaranteed.

4.2. The method of weighted residuals

At each step of the off-policy RL, it requires to solve the iterative
equation (17) for V (i)(x) and ν(i+1)(x) = [ν

(i+1)
1 (x), . . . , ν(i+1)

m (x)]T.
By using real system data, the method of weighted residuals
(MWR) is derived based on the actor–critic NN structure. Although
similar MWR can also be found in Luo et al. (2014), for the sake of
clearness and completeness, the MWR will be developed for (17)
which is much more complicated and different to some extent.
Let Ψ (x) , {ψj(x)}∞j=1 and Φ l(x) , {φ l

k(x)}
∞

k=1 be complete sets
of any linearly independent basis functions, such that ψj(0) = 0
and φ l

k(0) = 0 for ∀l, j, k. Then, the solution (V (i)(x), ν(i+1)(x))
of the iterative equation (17) can be expressed as linear com-
bination of basis function sets Ψ (x) and Φ l(x), i.e., V (i)(x) =

∞

j=1 θ
(i)
V ,jψj(x) and ν

(i+1)
l (x) =


∞

k=1 θ
(i+1)
νl,k

φ l
k(x), (l = 1, . . . ,m),

which are assumed to converge pointwise in X. By using finite-
dimensional sets ΨN(x) , [ψ1(x), . . . , ψLV (x)]

T and Φ l
N(x) ,

[φ l
1(x), . . . , φ

l
Lu(x)]

T as neuron activation functions, the real out-
put of critic and actor NNs can be, respectively, given by

V̂ (i)(x) = Ψ T
N (x)θ̂

(i)
V (24)

ν̂
(i+1)
l (x) = (Φ l

N(x))
Tθ̂ (i+1)
νl

, (25)

where θ̂ (i)V , [θ̂
(i)
V ,1, . . . , θ̂

(i)
V ,LV

]
T and θ̂ (i+1)

νl
, [θ̂

(i+1)
νl,1

, . . . , θ̂
(i+1)
νl,Lu

]
T

are the estimations of the unknown ideal weight vectors θ (i)V ,

[θ
(i)
V ,1, . . . , θ

(i)
V ,LV

]
T and θ (i+1)

νl
, [θ

(i+1)
νl,1

, . . . , θ
(i+1)
νl,Lu

]
T. The expression

(25) can be rewritten as a compact form

ν̂(i+1)(x) =


ν̂
(i+1)
1 (x), . . . , ν̂(i+1)

m (x)
T

=


(Φ1

N(x))
Tθ̂ (i+1)

u1 , . . . , (Φm
N (x))

Tθ̂ (i+1)
um

T
. (26)
Due to the truncation error of the trail solutions (24) and (25),
the replacement ofV (i) and ν(i+1) in the iterative equation (17)with
V̂ (i) and ν̂(i+1) respectively, yields the following residual error:

σ (i)(x(t), u(t)) , 2
 t+1t

t
[ν̂(i+1)(x(τ ))]T

× R[ϕ(ν̂(i)(x(τ )))− u(τ )]dτ
+ V̂ (i)(x(t))− V̂ (i)(x(t +1t))

−

 t+1t

t


Q (x(τ ))+ W (ϕ(ν̂(i)(x(t))))


dτ . (27)

By using (24) and (26), we have

σ (i)(x(t), u(t))
= [ΨN(x(t))− ΨN(x(t +1t))]T θ̂ (i)V

+ 2
m
l=1

rl

 t+1t

t
ϕ


Φ l

N(x(t))
T
θ̂ (i)νl


×


Φ l

N(x(τ ))
T

dτ

θ̂ (i+1)
νl

− 2
m
l=1

rl

 t+1t

t
ul(τ )


Φ l

N(x(τ ))
T

dτ

θ̂ (i+1)
νl

−

 t+1t

t
Q (x(τ ))dτ

− 2
m
l=1

rl

 t+1t

t

 ϕ


Φ l
N (x(t))

T
θ̂
(i)
νl


0

ϕ−1(µl)dµl

 dτ . (28)

For simplicity of notation, define

ρ1Ψ (x(t)) , [ΨN(x(t))− ΨN(x(t +1t))]T

ρ
(i)l
Φ (x(t)) ,

 t+1t

t
ϕ


Φ l

N(x(t))
T
θ̂ (i)νl

 
Φ l

N(x(τ ))
T

dτ

ρ l
uΦ(x(t), u(t)) ,

 t+1t

t
ul(τ )


Φ l

N(x(τ ))
T

dτ (29)

ρQ (x(t)) ,

 t+1t

t
Q (x(τ ))dτ

ρ
(i)l
1 (x(t)) ,

 t+1t

t

 ϕ


Ψ l
N (x(t))

T
θ̂
(i)
νl


0

ϕ−1(µl)dµl

 dτ .

Then, Eq. (28) is rewritten as

σ (i)(x(t), u(t)) = ρ1Ψ (x(t))θ̂
(i)
V + 2

m
l=1

rlρ
(i)l
Φ (x(t))θ̂

(i+1)
νl

− 2
m
l=1

rlρ l
uΦ(x(t), u(t))θ̂

(i+1)
νl

− ρQ (x(t))− 2
m
l=1

rlρ
(i),l
1 (x(t)). (30)

To write Eq. (30) in a compact form, define

θ̂ (i+1) ,


θ̂
(i)
V

T
,

θ̂ (i+1)
u1

T
, . . . ,


θ̂ (i+1)
um

T


ρ
(i)l
uΦ(x(t), u(t)) , rl


ρ
(i)l
Φ (x(t))− ρ l

uΦ(x(t), u(t))


(31)

ρ(i)(x(t), u(t)) ,

ρT
1Ψ (x(t)), 2ρ

(i)1
uΦ (x(t), u(t)), . . . ,

2ρ(i)muΦ (x(t), u(t))


π (i)(x(t)) , ρQ (x(t))+ 2
m
l=1

rlρ
(i)l
1 (x(t))
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where θ̂ (i+1) is the unknown constant vector of size L = LV + mLu.
Then, the Eq. (30) is rewritten as

σ (i)(x(t), u(t)) = ρ(i)(x(t), u(t))θ̂ (i+1)
− π (i)(x(t)), (32)

where we denote ρ(i) = [ρ
(i)
1 , . . . , ρ

(i)
L ]

T. In the MWR, the
unknown constant vector θ̂ (i+1) can be solved in such a way that
the residual error σ (i)(x, u) (for ∀t > 0) of (32) is forced to be zero
in some average sense. The weighted integrals of the residual are
set to zero:
W
(i)
L (x, u), σ

(i)(x, u)

D

= 0, (33)

where W
(i)
L (x, u) , [ω

(i)
1 (x, u), . . . , ω

(i)
L (x, u)]

T is named the
weighted function vector. Then, the substitution of (32) into (33)
yields,
W
(i)
L (x, u), ρ

(i)(x, u)

D
θ̂ (i+1)

−


W
(i)
L (x, u), π

(i)(x)

D

= 0,

where the notations

W
(i)
L , ρ

(i)

D

and

W
(i)
L , π

(i)

D

are given by


W
(i)
L , ρ

(i)

D

,



ω
(i)
1 , ρ

(i)
1


D

· · ·


ω
(i)
1 , ρ

(i)
L


D

...
. . .

...
ω
(i)
L , ρ

(i)
1


D

· · ·


ω
(i)
L , ρ

(i)
L


D


and
W
(i)
L , π

(i)

D

,

ω
(i)
1 , π

(i)

D
, . . . ,


ω
(i)
L , π

(i)

D

T
.

Thus, θ̂ (i+1) can be obtained with

θ̂ (i+1)
=


W
(i)
L , ρ

(i)
−1

D


W
(i)
L , π

(i)

D
. (34)

Note that the computations of

W
(i)
L , ρ

(i)

D
and


W
(i)
L , π

(i)

D
in-

volvemany numerical integrals on domainD , which are computa-
tionally expensive. Thus, theMonte-Carlo integrationmethod (Luo
et al., 2014; Peter Lepage, 1978) is introduced, which is especially
competitive on multi-dimensional domain. We now illustrate the
Monte-Carlo integration for computing


W
(i)
L (x, u), ρ

(i)(x, u)

D
.

Let ID ,


D
d(x, u), and SM , {(xk, uk)|(xk, uk) ∈ D, k =

1, 2, . . . ,M} be the set that are sampled on domain D , whereM is
the size of sample set SM . Generally, it is desired to collect data set
SM as rich as possible to cover the domain D as much as possible.
With the sample set SM ,


W
(i)
L (x, u), ρ

(i)(x, u)

D

is approximately
computed with
W
(i)
L (x, u), ρ

(i)(x, u)

D

=


D

W
(i)
L (x, u)ρ

(i)(x, u)d(x, u)

=
ID
M

M
k=1

W
(i)
L (xk, uk)ρ

(i)(xk, uk)

=
ID
M
(W (i))TZ (i), (35)

where W (i) ,

W
(i)
L (x1, u1), . . . ,W

(i)
L (xM , uM)

T
and Z (i) ,

ρ(i)T(x1, u1), . . . , ρ
(i)T(xM , uM)

T
. Similarly,

W
(i)
L (x, u), π

(i)(x)

D

=
ID
M

M
k=1


W
(i)
L (xk, uk)

T
π (i)(xk)

=
ID
M
(W (i))Tη(i), (36)
where η(i) ,

π (i)(x1), . . . , π (i)(xM)

T. Then, the substitution of
(35) and (36) into (34) yields,

θ̂ (i+1)
=


(W (i))TZ (i)

−1
(W (i))Tη(i). (37)

It is observed that the sample set SM is generated on domain
D , based on which W (i), Z (i) and η(i) can be computed and
then the unknown parameter vector θ̂ (i+1) is obtained with the
expression (37) accordingly. With θ̂ (i+1), the unknown function
V (i)(x) and function vector ν(i+1)(x) can be approximately obtained
by expressions (24) and (26), respectively.

Remark 2. It is assumed that the system state x is measurable and
sufficient system data can be collected for implementing the off-
policy RL. For the function approximation of V (i)(x) and ν(i+1)(x),
linearly independent basis functions are required,whichmay bring
limitation to some extent. Further studies will be conducted to
reduce the deficiencies of this limitation. �

4.3. Implementation of off-policy reinforcement learning

Based on the parameter update strategy (37), we give the
implementation procedure of the off-policy RL for data-based
constrained optimal control design.

Algorithm 1. Off-policy RL for data-based constrained optimal
control design.
I Step 1: Collect real system data (xk, uk) for sample set SM , and

then compute ρ1Ψ (xk), ρ l
uΦ(xk, uk) and ρQ (xk);

I Step 2: Give initial parameter vectors θ̂ (0)u such that φ(ν̂(0)) ∈

U(X). Let i = 0;
I Step 3: ComputeW (i), Z (i) and η(i), and update θ̂ (i+1) with (37);
I Step 4: Let i = i + 1. If ∥θ̂ (i) − θ̂ (i−1)

∥ ≤ ξ (ξ is a small positive
number), stop iteration and θ̂ (i)u is employed to obtain the final
control policy φ(ν̂(i)); else go back to Step 3 and continue. �

Remark 3. Note that the off-policy RLmethod (i.e., Algorithm 1) is
also suitable for solving the unconstrained optimal control prob-
lem. By using a sufficiently large control bound β , the constrained
optimal control problem is relaxed to be an unconstrained one. �

Remark 4. On-policy RL is one of the popular methods used for
control design (Modares & Lewis, 2014; Vrabie & Lewis, 2009;
Vrabie et al., 2009). To evaluate the value function of a general
target control policy µ in the on-policy RL methods, it needs
to generate system data using the policy µ. This biases the
learning process by under-representing states that are unlikely
to occur under µ. As a result, the estimated value function of
these underrepresented states may be highly inaccurate, and
seriously impact the improved policy. This is known as inadequate
exploration—a particularly acute difficult issue in RL methods,
which is rarely discussed in the existingworks using RL techniques
for control design. On the other hand, for real implementation of
the on-policy learning methods, the approximate target control
policy µ̂ (rather than the actual target policy µ) is usually used to
generate data for learning its value function. In other words, the
on-policy learning methods use the ‘‘inaccurate’’ data to learn its
value function, which will increase the accumulated error. Note
that these mentioned problems are solved in the developed off-
policy RL method (i.e., Algorithm 1). The policy evaluation in the
off-policy RL method can be realized with data generated by other
behavior policies while not necessarily the target policy, which
increases the ‘‘exploration’’ ability during the learning process.
Moreover, in the off-policy RL algorithm, the control u and state
x can be arbitrary on U and X, where no error occurs during the
process of generating data, and thus the accumulated error can be
reduced. �
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4.4. Convergence analysis with approximation

Under NN approximation structure (24) and (25), the conver-
gence of the developed off-policy RL method is proved in the fol-
lowing Theorem 2.

Theorem 2. Let the parameter vector θ̂k be computed with (37).
Assume that there exist constants M1 > 0 and δ1 > 0, such that
for ∀M > M1 and i > 0,

1
M
(W (i))TZ (i) > δ1IL. (38)

For ∀x ∈ X, ε > 0, there exist integers L1, L2, I1 > 0 such that if
LV > L1, Lu > L2 and i > I1, then

(1) |V̂ (i)(x)− V (i)(x)| 6 ε and ∥ν̂(i)(x)− ν(i)(x)∥ 6 ε.
(2) |V̂ (i)(x)− V ∗(x)| 6 ε and ∥ν̂(i)(x)− ν∗(x)∥ 6 ε.

Proof. (1) Let V (i)(x) be the solution of the following equation

[∇V
(i)

]
T(f + gû(i))+ Q + W (û(i)) = 0, (39)

where V
(i)
(0) = 0 and û(i) = ϕ(ν̂(i)). Define

ν(i+1) , −
1
2
R−1gT

∇V
(i)
. (40)

From Section 4.2, V
(i)
(x) and ν(i+1)(x) can be represented as

V
(i)
(x) =


∞

j=1 θ
(i)
V ,jψj(x) and ν(i+1)

l (x) =


∞

k=1 θ
(i+1)
νl,k φ

l
k(x),

respectively. Define the error weight vectorθ (i+1) as

θ (i+1) , θ̂ (i+1)
− θ

(i+1)
. (41)

Then, it follows from (37) and (41) that

(W (i))TZ (i)θ̂ (i+1)
= (W (i))Tη(i),

i.e.,

(W (i))TZ (i)θ (i+1)
= (W (i))Tη(i) − (W (i))TZ (i)θ

(i+1)
. (42)

Multiplying [θ (i+1)
]
T on both sides of (42) yields

[θ (i+1)
]
T(W (i))TZ (i)θ (i+1)

= [W (i)θ (i+1)
]
T
[η(i) − Z (i)θ

(i+1)
]. (43)

By using (38), the left side of (43) satisfies

[θ (i+1)
]
T(W (i))TZ (i)θ (i+1) > Mδ1∥θ (i+1)

∥
2. (44)

Combining (43) and (44) yields

Mδ1∥θ (i+1)
∥
2 6 [W (i)θ (i+1)

]
T
[η(i) − Z (i)θ

(i+1)
]. (45)

Based on definitions of η(i), Z (i) and θ (i+1), the right side of (45) is
given by

[W (i)θ (i+1)
]
T
[η(i) − Z (i)θ

(i+1)
]

= [θ (i+1)
]
T

M
l=1

WL(xl, ul)π
(i)(xl)

− [θ (i+1)
]
T

M
l=1

WL(xl, ul)

ρ(i)(xl, ul)

T
θ
(i+1)

= [θ (i+1)
]
T

M
l=1

WL(xl, ul)


2

 t+1t

t
[ν(i+1)(xl(τ ))]T

× R[ϕ(ν̂(i)(xl(τ )))− ul(τ )]dτ

+ V
(i)
(xl(t))− V

(i)
(xl(t +1t))
−

 t+1t

t


Q (xl(τ ))+ W (ϕ(ν̂(i)(xl(t))))


dτ


+ [θ (i+1)

]
T

M
l=1

WL(xl, ul)el

= [θ (i+1)
]
T

M
l=1

WL(xl, ul)el, (46)

where

el = −

∞
k=LV +1

θ
(i)
V ,k[ψj(xl(t))− ψj(xl(t +1t))]

− 2
m
j=1

rj
∞

k=Lu+1

θ
(i+1)
νl,k

 t+1t

t
φ

j
k(xl(τ ))

× [ϕj(ν̂
(i)(xl(τ )))− uj,l(τ )]dτ .

From (45) and (46), we have

Mδ1∥θ (i+1)
∥
2 6


W (i)θ (i+1)T 

η(i) − Z (i)θ
(i+1)


6 ∥θ (i+1)

∥

M
l=1

∥WL(xl, ul)∥ |el|

= M∥θ (i+1)
∥ε1ε2

i.e.,

∥θ (i+1)
∥ 6

1
δ1
ε1ε2, (47)

where ε1 , max |el| and ε2 , max ∥WL(x, u)∥. Note that
limLV ,Lu→∞ el = 0. Then, limLV ,Lu→∞ ε1 = 0, i.e., limLV ,Lu→∞

∥θ (i+1)
∥ = 0. Considering

V̂ (i)(x)− V
(i)
(x) =

LV
j=1

θ (i)V ,jψj(x)+

∞
j=LV +1

θ
(i)
V ,jψj(x),

ν̂
(i+1)
l (x)− ν

(i+1)
l (x) =

Lu
k=1

θ (i+1)
νl,k

φ l
k(x)+

∞
k=Lu+1

θ
(i+1)
νl,k φ

l
k(x),

we have

lim
LV ,Lu→∞

V̂ (i)(x) = V
(i)
(x), (48)

lim
LV ,Lu→∞

ν̂
(i+1)
l (x) = ν

(i+1)
l (x). (49)

Next, we will use mathematical induction to prove that
limLV ,Lu→∞ V

(i)
(x) = V (i)(x) and limLV ,Lu→∞ ν

(i+1)
l (x) = ν

(i+1)
l (x)

for i = 0, 1, 2 . . . .

(a) For i = 0, it follows fromdefinitions of V
(i)
(x) and ν(i+1)

l (x) that

V
(0)
(x) = V (0)(x) and ν(1)l (x) = ν

(1)
l (x).

(b) For some i, assume that limLV ,Lu→∞ V
(i−1)

(x) = V (i−1)(x) and
limLV ,Lu→∞ ν

(i)
l (x) = ν

(i)
l (x). According to (16) and (39),

dV
(i)
(x)

dt
= −Q − W (ϕ(ν̂(i)))+ 2(ν(i+1))TR[ϕ(ν̂(i))− u]. (50)

From (16) and (50),

V
(i)
(x(t))− V (i)(x(t))

=


∞

t
[W (ϕ(ν̂(i)))− W (ϕ(ν(i)))]dτ
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+ 2


∞

t
(ν(i+1))TR[ϕ(ν̂(i))− ϕ(ν(i))]dτ

+ 2


∞

t
[ν(i+1)

− ν(i+1)
]
TR[ϕ(ν(i))− u]dτ . (51)

According to (49) and limLV ,Lu→∞ ν
(i)
l (x) = ν

(i)
l (x), we have that

limLV ,Lu→∞ ν̂
(i)
l (x) = ν

(i)
l (x). Then,

lim
LV ,Lu→∞

V
(i)
(x) = V (i)(x), (52)

lim
LV ,Lu→∞

ν
(i+1)
l (x) = ν

(i+1)
l (x). (53)

Based on Eqs. (48), (49), (52) and (53), for ∀x ∈ X, ε > 0, there
exist integers L1, L2 > 0 such that if LV > L1 and Lu > L2. Then,

|V̂ (i)(x)− V (i)(x)| 6 |V̂ (i)(x)− V
(i)
(x)| + |V

(i)
(x)− V (i)(x)|

6
ε

2
+
ε

2
= ε,

∥ν̂(i)(x)− ν(i)(x)∥ 6 ∥ν̂(i)(x)− ν(i)(x)∥ + ∥ν(i)(x)− ν(i)(x)∥

6
ε

2
+
ε

2
= ε.

(2) From Ref. Abu-Khalaf and Lewis (2005) and Theorem 1, for
∀ε > 0, there exists integer I1 such that for ∀i > I1,

|V (i)(x)− V ∗(x)| 6
ε

2
. (54)

According to the part (1) of Theorem 1, there exist LV > L1 and
Lu > L2 such that

|V̂ (i)(x)− V (i)(x)| 6
ε

2
. (55)

From (54) and (55), we have

|V̂ (i)(x)− V ∗(x)| 6 |V̂ (i)(x)− V (i)(x)| + |V (i)(x)− V ∗(x)|

6
ε

2
+
ε

2
= ε.

Similarly, ∥ν̂(i)(x)− ν∗(x)∥ 6 ε. The proof is completed. �

5. Simulation studies

In this section, we study the effectiveness of the developed
off-policy RL approach on a complex rotational/translational
actuator (RTAC) nonlinear benchmark problem (Abu-Khalaf, Lewis,
& Huang, 2008). The dynamics of the nonlinear plant poses
challenges as the rotational and translational motions are coupled.
In the simulation studies, select the weighted function vector as
W
(i)
L (x, u) = ρ(i)(x, u). Then, W (i)

= Z (i) and the parameter vector
update strategy (37) becomes a least-square scheme. The RTAC
system is given as follows:

ẋ =



x2
−x1 + ζ x24 sin x3
1 − ζ 2 cos2 x3

x4
ζ cos x3(x1 − ζ x24 sin x3)

1 − ζ 2 cos2 x3

 +



0
−ζ cos x3

1 − ζ 2 cos2 x3
0
1

1 − ζ 2 cos2 x3

 u,

x0 = [0.4, 0.0, 0.4, 0.0]T,

where ζ = 0.2. The input is constrained by |u| 6 β , where
β = 0.2. Let ϕ(µ) = β tanh(µ/β) and R = 1, then W (u) in cost
Fig. 1. The norm ∥θ̂
(i)
V ∥ at each iteration.

functional (2) is

W (u) = 2
 u

0
β tanh−1(µ/β)Rdµ

= 2βRu tanh−1(u/β)+ β2R ln(1 − u2/β2).

Let Q (x) = xTSx with S = diag(0.5, 0.05, 0.05, 0.05). To learn
the constrained optimal control policy with the off-policy RL
method (Algorithm 1), select the basis function vectors asΨN(x) =

[x21, x1x2, x1x3, x1x4, x
2
2, x2x3, x2x4, x

2
3, x3x4x

2
1x

2
4, x1x

3
2, x1x

2
2x3, x1x

2
2

x4, x1x2x23, x1x2x3x4, x1x
2
2x4, x1x

3
3, x1x

2
3x4, x1x3x

2
4, x1x

3
4, x

4
2, x

3
2x3, x

2
2

x23, x2x3x4, x
2
2x

2
4, x2x

3
3, x2x

2
3x4, x2x

3
4, x

4
3, x

3
3x4, x

2
3x

2
4, x3x

3
4, x

4
4]

T with
the size of LV = 42, and ΦN(x) = [x1, x2, x3, x4, ϕT(x)]T with
the size of Lu = 46, and initial θ̂ (0)u as θ̂ (0)u = [1.0, 1.0,−0.7,
−2.0, 0, . . . , 0]T.

Collect sample set SM with size M = 1001, and compute
ρ1Ψ (xk), ρQ (xk), ρ l

uΦ(xk, uk). Setting ξ = 10−5, the simulation re-
sults show that at the 20th iteration (i.e., i = 20), the weight vec-
tors converge, respectively, to θ̂ (20)V = [4.2970, 0.1216, −0.2196,
−0.8742, 4.0075, 0.2672, 0.7472, 0.1643, 0.4953, 0.7819,
0.8625, 1.9686, 2.1268, 0.5542,−1.6487,−0.3671, −0.6932,
−2.4891, −0.9257, 0.5616, 1.4230, 0.4928, 0.6333, 0.4141,
0.4928, 0.0537, 0.1653, 0.9117, 1.4092, 0.4641, −1.0433,
−0.1432, 0.0280, 1.0835, 0.1701,−0.5234,−0.5237, −0.0486,
−0.0376, 0.2384,−0.0521,−0.5238]T and θ̂

(20)
u = [0.4421,

0.4591, −0.2291, −0.7333, 0.1905, −0.1791, −0.0575,
−0.2978, −0.0232, −0.0739, 0.1672, −0.0035, −0.0009,
0.0519, 0.4666, −4.6554,−3.1500,−0.9666, 1.2378, 0.2776,
0.1788, 8.9946, 3.1199, 3.2885, 2.5886,−3.9747, 3.9289,
−18.3913, −3.9747, 4.6712, −5.3350, −6.1230, 14.1708,
−1.4422, 0.7945, 3.5809, 0.7768, 2.1957, 1.9014, −1.5518,
−7.0940, 0.1421, −0.4144, −0.1659, 0.3712 −10.5140]T. The
norm of parameter vectors are shown in Figs. 1 and 2, where ∥θ̂

(i)
V ∥

and ∥θ̂
(i)
u ∥ converge to 8.1462 and 31.7143 respectively. By using

the convergent parameter vector θ̂ (20)u , closed-loop simulation is
conducted with the final control policy û(20), and Figs. 3 and 5 give
the control and state trajectories, respectively. It is indicated from
Fig. 3 that the control constraint |u| 6 0.2 is satisfied. To show the
real cost generated by a control policy u, define

J(t) ,

 t

0
Q (x(τ ))+ W (u(τ ))dτ .

Fig. 4 gives the trajectory of J(t) under the final control policy û(20),
from which it is observed that J(t) approaches to 0.6781 as time
increases.
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Fig. 2. The norm ∥θ̂
(i)
u ∥ at each iteration.

6. Conclusions

An off-policy RL method has been developed for solving the
data-based constrained optimal control problem of nonlinear sys-
tems,which learns the optimal control policy from real systemdata
rather than mathematical model, and thus avoids the solution of
the complicated HJBE. Theoretically, it is found that the off-policy
RL method is equivalent to the model-based successive approxi-
mation approach for solving the HJBE, and thus its convergence
has been proved. To solve the iterative equation in the off-policy
RL method, the MWR and the numerically efficient Monte-Carlo
integration approaches have been introduced for its implementa-
tion. The off-policy RL algorithm is an offline control design pro-
cedure, which learns the constrained optimal control policy offline
and then is used for real online control purpose after the conver-
gence of the algorithm. Finally, the effectiveness of the developed
off-policy RL method has been demonstrated through simulation
studies on a rotational/translational actuator system.
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61304086, and 61374105, in part by Beijing Natural Science
Foundation under Grant 4132078, in part by the Early Career
Development Award of SKLMCCS and in part by the NPRP grant
#NPRP 4-1162-1-181 from the Qatar National Research Fund (a
member of Qatar Foundation). The authors would like to thank
anonymous reviewers for their valuable comments.
Fig. 5. System state trajectories with the final control policy û(20) .
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