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Abstract
Aiming at the limitations of the simplified spherical harmonics approximation 
(SPN) and diffusion equation (DE) in describing the light propagation in tissues, 
a hybrid simplified spherical harmonics with diffusion equation (HSDE) based 
diffuse light transport model is proposed. In the HSDE model, the living body 
is first segmented into several major organs, and then the organs are divided 
into high scattering tissues and other tissues. DE and SPN are employed to 
describe the light propagation in these two kinds of tissues respectively, which 
are finally coupled using the established boundary coupling condition. The 
HSDE model makes full use of the advantages of SPN and DE, and abandons 
their disadvantages, so that it can provide a perfect balance between accuracy 
and computation time. Using the finite element method, the HSDE is solved 
for light flux density map on body surface. The accuracy and efficiency of the 
HSDE are validated with both regular geometries and digital mouse model 
based simulations. Corresponding results reveal that a comparable accuracy 
and much less computation time are achieved compared with the SPN model 
as well as a much better accuracy compared with the DE one.

Keywords: hybrid light transport model, SPN, DE, HSDE, fluorescence/
bioluminescence tomography
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1. Introduction

Fluorescence tomography (FMT), as an emerging and promising imaging technique, has 
become an attractive tool for biological and biomedical research (Ntziachristos et al 2002a, 
2002b, Ntziachristos et al 2005, Zacharakis et al 2005, Ale et al 2012). With the goal of pro-
viding three-dimensional (3D) images, FMT can accurately detect 3D distribution and con-
centration of fluorescent probes inside a living body using the boundary measurements from 
a non-contact detector (Hyde et al 2010, Li et al 2012, Darne et al 2014). Thus, more and 
more applications have been achieved for this technique in recent years because of its high 
sensitivity, noninvasiveness, 3D in vivo imaging, and possibility of revealing functional 
information with fluorescent probes, including tumor imaging (Fortin et al 2012, Erickson 
et al 2013, Lu et al 2013, Zhang et al 2013, 2014), tumor treatment and pharmacokinetic 
analysis (Ntziachristos et al 2002a, 2002b, Stuker et al 2011, Liu et al 2012a, Davisa et al 
2013, Zhang et al 2014), arthrosis and bone imaging (Lambers et al 2012, Mohajerani et al 
2014), atherosclerosis (Nahrendorf et al 2009), and Alzheimer’s disease imaging (Hyde  
et al 2009).

Establishing an accurate and rapid forward model which properly characterizes the fluores-
cence propagation in tissues is crucial for FMT reconstruction that provides the location of the 
fluorophore, the distribution of the fluorescence quantum yield, and the images of fluorescent 
lifetime. Because the diffusion equation (DE) is easy to be solved with high accuracy in a dif-
fuse medium, it has been initially employed in FMT reconstruction (Ntziachristos et al 2002a, 
2002b, Soubret et al 2005, Joshi et al 2006, Wang et al 2007, 2009, Tan and Jiang 2008, 
Freiberger et al 2010, Gao et al 2010, Hyde et al 2010, Rudge et al 2010, Zhu et al 2011, 
Ale et al 2012, Li et al 2012, Liu et al 2012b, Yi et al 2013, Wu and Gayen 2014). Although 
DE provides high efficiency for describing fluorescence propagation in tissues and is popular 
in FMT, it becomes inaccurate in some cases, such as in domains near the source, with high 
or too low absorption, with low scattering, and small-sized tissues, which are pertinent in 
whole-body small animal imaging (Gibson et al 2005). To conquer the limitations of DE, the 
radiative transfer equation (RTE) and Monte Carlo (MC) based reconstruction methods were 
also developed recently (Joshi et al 2008, Kim et al 2010, Quan et al 2011, Chen et al 2012). 
RTE and MC are regarded as the golden standard methods for describing the light propagation 
in a turbid medium, which would provide an accurate forward solver for FMT reconstruc-
tion. However, a huge computational burden and time cost hinder the practical applications 
of RTE and MC based reconstruction methods. The simplified spherical harmonics (SPN) 
approximation has also been employed as the forward model for FMT (Han et al 2010, Klose 
and Pöschinger 2011), with the purpose of reducing the computational cost of the RTE or 
MC based one. As a higher order approximation to RTE, SPN inherits its high accuracy, but 
the computational cost is still large compared with the DE model. In summary, the DE based 
forward model has high computational efficiency, but is only valid in a highly diffuse medium 
(high scattering tissues); the SPN, RTE, and MC based forward models provide adequate accu-
racy in various types of tissues, such as high and low scattering as well as high absorption 
ones, but bring about a large computational burden and time cost. In the living body, diverse 
organs have different optical properties, which might be sorted into different types of tissues 
using the predefined parameter to differentiate the optical behavior of various organs (Yang  
et al 2015). Taking the whole-body small animal imaging as an example, the low scattering 
liver and lungs are surrounded by high scattering adipose, kidneys, heart, etc. Thus, develop-
ing a new forward model, which is not only accurate but also efficient for the living body con-
sisting of different types of tissues, is becoming much more important for further extension of 
the applications of FMT in biological and biomedical research. Some hybrid light transport 
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models have been developed in the past decades (Firbank et al 1996, Dehghani et al 1999, 
Tarvainen 2005, Gorpas et al 2010, Gorpas et al 2012, Lehtikangas et al 2013). However, they 
are either limited by using RTE (Tarvainen 2005, Gorpas et al 2010, 2012, Lehtikangas et al 
2013) or proposed for the problem of light propagation in void regions (Firbank et al 1996, 
Dehghani et al 1999). In our previous study (Yang et al 2013), the hybrid SPN with radiosity 
model (HSRM) was proposed to describe light propagation in the turbid media with high, low 
scattering and high absorption as well as void region, but it still suffers the large computa-
tional burden and time cost of SPN.

In this study, the hybrid simplified spherical harmonics with diffusion equation (HSDE) 
is proposed as the forward model for fluorescent light propagation in tissues. In the HSDE 
based model, the tissues are first classified into two categories, the high scattering tissues and 
other tissues, using a defined sorting criterion which integrates the commonly used criterion 
and our newly investigated results (Dehghani et al 1999, Yang et al 2015). DE and SPN are 
then used to describe light propagation in high scattering and other tissues respectively. By 
establishing a boundary coupling condition which depicts the transformation of physical 
quantities at the boundary of different equations, the unified form of HSDE can be finally 
obtained, which takes both the high-precision advantage of SPN and the low-computation-
cost advantage of DE into account and provides a perfect balance between accuracy and 
computation time. With the help of the finite element method, the HSDE is solved for light 
flux density map on body surface. In the following sections, the performance of HSDE model 
is verified and evaluated with a series of simulations from the regular shape to digital mouse 
based geometries.

2. Methods

2.1. Construction of the HSDE model

Prior to the construction of the forward model of fluorescent light propagation, the biological 
tissues should be specifically sorted as follows. First of all, the living body can be segmented 
into several major organs based on a priori information of anatomic structure. Then, the major 
organs are classified into different categories using the predefined sorting criterion. The clas-
sification procedure obeys the following expression:

⎪

⎪

⎧
⎨
⎩

μ μ ζ
μ μ ζ μ χ

=
≥
< ≥

′

′
Ω

Ω /

Ω / or ,

h s a

l s a a

 (1)

where Ω denotes the domain of the living body; Ωh is that of the category of high scattering 
regions; Ωl is of the category of the other regions, including low scattering and high absorp-
tion tissues; μa is the absorption coefficient; μ′

s is the reduced scattering coefficient that can 
be calculated by μ μ= ( − )′ g1s s , where g is the anisotropy factor; ζ and χ are parameters for 
tissue classification. Based on the commonly used criterion and our newly investigated results 
(Dehghani et al 1999, Yang et al 2015), ζ and χ are set to be 10 mm−1 and 0.2 mm−1 in this 
study, respectively.

After the tissues are specifically classified, DE and SPN are then utilized to describe light 
propagation in high scattering and other regions respectively. Previous studies have illustrated 
that the third order SPN (SP3) can yield an adequate accuracy with an acceptable computa-
tional burden (Lu et al 2009, Liu et al 2010), so that it was actually selected as a case of SPN 
here. The concrete form of SP3 as well as the relevant boundary condition can be detailed as 
(Klose and Larsen 2006, Lu et al 2009, Liu et al 2010):
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where ∂Ωl denotes the boundary of the other regions Ωl; Φ ( )( = )r k 1, 2k  are the composite 
moments relevant to the nodal flux density; ( )S r  is the light source; μ ( )( = )r i 1, 2, 3ia  and μ ( )ra  
are absorption related parameters; ( = )A B C D k, , , 1, 2k k k k  are boundary related parameters; 
and υ is the unit direction vector toward the body surface. The parameters are detailed in 
(Klose and Larsen 2006, Lu et al 2009). The exiting partial current J at the outer boundary 
of the other regions can be expressed as follows (Klose and Larsen 2006, Lu et al 2009, Liu  
et al 2010):

β β( ) = ( )Φ ( ) + ( )Φ ( ) ∈ ∂ΩJ r r r r r r    ,SP3 1 1 2 2 l (3)

where β ( )( = )r k 1, 2k  can be referenced from (Liu et al 2010).
From previous studies (Soubret et al 2005, Joshi et al 2006, Wang et al 2007, 2009, Tan and 

Jiang 2008, Freiberger et al 2010, Gao et al 2010, Rudge et al 2010, Zhu et al 2011, Liu et al 
2012b, Yi et al 2013, Wu and Gayen 2014), a conclusion can be obtained that DE can be used 
to accurately and efficiently describe light propagation in the high scattering regions. DE and 
its Robin boundary condition can be detailed as (Arridge 1999):

μ− ∇ ⋅ ( ( ) ∇Φ ( )) + ( )Φ ( ) = ( ) ∈D r r r r S r r Ω ,0 a 0 h (4a)

β
υΦ ( ) +

( )
( )( ⋅ ∇Φ ( )) = ∈ ∂r

r
D r r r

1
0 Ω ,h0

0
0 (4b)

where ∂Ωh shows the boundary of high scattering regions Ωh; Φ ( )r0  is the nodal flux den-
sity; μ μ( ) = ( ( ( ) + ( )))′ −D r r r3 a s

1 is the diffuse coefficient; and β ( )r0  is a parameter relevant to 
the mismatched refractive indices. In the same way, the exiting partial current J at the outer 
boundary of high scattering regions can be expressed as (Cong et al 2005):

β( ) = ( )Φ ( ) ∈ ∂ΩJ r r r r    .DE 0 0 h (5)

To integrate SP3 and DE, a boundary coupling condition at the interface of the other and 
high scattering regions is established according to the law of conservation of flux (Ripoll and 
Nieto-Vesperinas 1999a, 1999b) and can be defined as:
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( ) = ( ) ∈J r J r r B    ,SP3 DE (6)

where B represents the shared boundary between the other and high scattering regions and is 
defined as the intersection between ∂Ωl and ∂Ωh. Substituting equations (3) and (5) into equa-
tion (6), the following relationship can be addressed:

β
β

β
β

Φ ( ) =
( )
( )

Φ ( ) +
( )
( )

Φ ( )r
r

r
r
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r .0

1

0
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2

0
2 (7)

By introducing an indicator factor that indicates the category of biological tissues and 
incorporating the predefined boundary coupling condition simultaneously, the unified form of 
HSDE can be obtained:
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where σ( )r  is the introduced indicator factor and is defined as:
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h h
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where ∂Ω is the outer boundary of the living body. In mathematics, the computational com-
plexity of equation (8) is almost the same as that of equation (2). However, the improvement 
on the computational efficiency can be achieved during the process of programming imple-
mentation, because much less computational amount of DE in assembling the system matrix 
of HSDE and a bit more zero-value elements of the system matrix of HSDE in the matrix 
inversion would reduce the computation time of equation (8).

The relevant measurements can be obtained from the exiting partial current at the outer 
boundary of the living body that has the following expression:

σ σ( ) = ( − ( )) ( ) + ( ) ( ) ∈ ∂J r r J r r J r r1 Ω,SP3 DE (10)

where ( )J r  is the exiting partial current at the outer boundary ∂Ω of the living body. Substituting 
equations (3), (5) and (7) into equation (10), the exiting partial current can be rewritten as:

β β( ) = ( )Φ ( ) + ( )Φ ( ) ∈ ∂J r r r r r r Ω.1 1 2 2 (11)
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For convenience, the established HSDE can be rewritten as the following concise form:
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where the concrete forms of ( )∇ΦC rk, 1 , ( )∇ΦC rk, 2 , ( )ΦC rk, 1 , ( )ΦC rk, 2 , and ( )( = )C r k 1, 2k S,  are listed 
in the appendix. Equation (12) together with boundary condition equation (11) is the developed 
HSDE model that would provide a perfect balance between accuracy and computation time.

2.2. Finite element discretization of the HSDE model

Using the Gauss divergence theorem, the governing equation of HSDE, equations (11) and 
(12) can be equivalently deduced to the following weak form:
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Following the standard finite element method, the composite moments Φ ( )( = )r k 1, 2k  and 
the light source ( )S r  in equation (13) can be approximated with piecewise polynomial bases:
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where ϕk i,  is the nodal value of Φ ( )( = )r k 1, 2k  on the ith node; si is the nodal value of ( )S r ; 
φ ( )ri  is the basis function; and Ni is the total number of discretized nodes.

By substituting equation (14) into equation (13), the following matrix equation can be obtained:
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where relevant components in the block matrices are detailed as:
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Computing the Moor–Penrose inverse of M and multiplying it on both sides of equa-
tion (15), we have:
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Then, Φ ( = )k 1, 2k  can be represented by the block matrices:
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Only retaining the elements in the matrices ( = )+M p q, 1, 2pq  and ( = )F p 1, 2pp  that corre-
spond to the measurable boundary in the exiting partial current equation, the linear relation-
ship between the unknown distribution of the light source and the exiting partial current on the 
outer boundary is established as:

β β= ( ( + ) + ( )( + ))
=

+ + + +J M F M F M F M F S

AS

r
.

1 11 11 12 22 2 21 11 22 22 (18)

Using the HSDE model to describe light propagation both in the excitation and emission 
process of FMT, the forward model for FMT reconstruction can be constructed. Similarly, the 
HSDE has the utility for bioluminescence tomography as well (Wang et al 2003, 2004, Gu  
et al 2004, Chaudhari et al 2005, Cong et al 2005, Lv et al 2006, Klose et al 2010).

3. Simulation studies

3.1. Accuracy demonstration of the HSDE model

The accuracy of the HSDE model was first demonstrated with regular geometries and digital 
mouse model based simulations. In comparison, the Monte Carlo method which was imple-
mented in software for the molecular optical simulation environment (MOSE) (Ren et al 
2013), was selected as the standard to validate the other numerical calculation models. To 
ensure accurate and reliable results of MOSE, simulations with 108 photons were performed 
for all of the comparisons. As for the references, the SP3 and DE models were selected to 
illustrate the superiority of the HSDE model. An evaluation factor termed as the average rela-
tive error (ARE) was used to quantitatively describe the discrepancy between the numerical 
models and MOSE:

( )∑
=

( − ) ( )
=

abs f f f

N
ARE

/max

,i

N

i i i
1

std cal std

 (19)

where fi is the light partial current at the ith sample point; N is the total number of sample 
points; the superscript std denotes the light partial current obtained by MOSE and cal repre-
sents the light partial current calculated by the numerical models, including HSDE, SP3 and 
DE. In the following comparisons, all of the calculations were conducted on a personal com-
puter with a 3.1 GHz Inter(R) Core(TM) i5-2400 CPU and 8.00 GB RAM.
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3.1.1. Simple regular geometry. First, the accuracy of the HSDE model was validated with 
the simple regular geometry based simulations. The geometry is comprised of two cylinders 
with their centers at the origin of the coordinates. The outer cylinder has a 10 mm radius and 
20 mm height, and the inner one has a 5 mm radius and 16 mm height. A sphere with the 
radius of 1 mm is located at the position of (7,0,0) mm to mimic an internal light emission 
source. Figure 1(a) shows intuitive information of the geometry. For simplicity, the power of 
the light emission source was set to be 1nW. To exclude the occasionality of the results, five 
groups of optical properties were utilized for the comparisons, as listed in table 1. To obtain 
smooth and reliable calculation results for the HSDE, SP3 and DE models, the geometry was 
discretized into 11 190 nodes and 56 822 tetrahedrons. Comparisons between the calculation 
results of the numerical models (HSDE, SP3, and DE models) and simulation results of MOSE 
are described in figure 1. Profiles of light flux density distribution at a height of =Z 0 mm 
(indicated by a red arrow in figure 1(a)) were sampled around the surface of the outer cylinder 
for all of the five groups of comparisons, and one of the representative profiles is shown in 

Figure 1. Comparison results of the simple regular geometry-based simulation. (a) 
Physical model used in the simulation; (b) One of the representative profiles of light 
flux density distribution at a height of =Z 0 mm; (c) Point relative error of (b); (d) 
Mean and variance of AREs for all five groups of simulations. In (b) and (c), the blue 
asterisks, green crosses and black lines show the calculation results of HSDE, SP3, and 
DE respectively, and the red solid lines are on behalf of the simulation results of MOSE.
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figure 1(b), where the blue asterisks, green crosses and black lines show the calculation results 
obtained by the HSDE, SP3, and DE models respectively, and the red solid lines are on behalf 
of the simulation results of MOSE. To more intuitively observe the discrepancy, the relative 
error at each sampled point was also calculated and plotted in figure  1(c). The mean and 
standard deviation of AREs for all five groups of simulations are shown in figure 1(d). From 
figure 1, the following conclusions can be addressed. First of all, almost the same accuracy 
is obtained for the HSDE and SP3 models, with a roughly identical tendency as the result of 
MOSE. Secondly, HSDE exhibits a much better accuracy than the DE model. The maximum 
relative error at the sampled point is less than 0.1, which is much smaller than that of the DE 
model (with the value larger than 0.25). In terms of ARE, the mean value of AREs for all the 
five groups of simulations is less than 0.01, which is also better than that of the DE model 
(with the value of 0.017). In order to further observe how the HSDE model improves the 
accuracy of the DE one, we extracted two groups of observed points from the high scatter-
ing and other tissues respectively and calculated the relevant AREs regarding the results of 
SP3 as the standard. Very similar means and standard deviations of AREs are obtained for the 
HSDE and DE models in the high scattering regions, with the values of 0.019   ±   0.008 and 
0.029   ±   0.010 respectively. However, in the other tissues, the HSDE model performs better 
than the DE one, with the smaller ARE (0.011   ±   0.003 versus 0.068   ±   0.011). This reveals 
that the HSDE model improves the accuracy of DE one in the other tissues’ region. All in all, 
the HSDE model exhibits almost the same accuracy as SP3 and has a much better performance 
than DE when the low scattering or high absorption regions exist in a regular geometry.

3.1.2. Complicated regular geometry. Second, a complicated regular geometry was employed 
to perform the accuracy demonstration simulation. The geometry is comprised of five objects, 
with their geometrical parameters and optical properties shown in figure 2(a) and table 2. Sim-
ilarly, a sphere with a radius of 1.5 mm is located at position of (6,6,0) mm to mimic an inter-
nal light emission source, and the power of the source was set to be 1 nW. In this simulation, 
this geometry was discretized into 61 326 tetrahedrons and 11 427 nodes. Similar to simple 
regular geometry based simulations, a profile of light flux density distribution at a height of 

=Z 0 mm (indicated by a red arrow in figure 2(a)) was extracted for displaying the compari-
sons, as shown in figure 2(b). In figure 2(b), the blue asterisk, green cross and black solid lines 
show the calculation results of the HSDE, SP3, and DE models respectively, and the red solid 
lines are the simulation results of MOSE. The ARE between HSDE and MOSE is 0.6724%, 
which is almost the same as that between SP3 and MOSE (0.6723%) and much smaller than 

Table 1. Optical properties used in simple regular geometry-based simulations.

Group μa(mm−1) μs(mm−1) g Classification

1 Outer 0.09 4.5 0.9 Othera

Inner 0.02 3 Higha

2 Outer 0.2 4 Other
Inner 0.02 4 High

3 Outer 0.4 10 Other
Inner 0.01 4 High

4 Outer 0.08 4 Other
Inner 0.002 2 High

5 Outer 0.4 2 Other
Inner 0.01 10 High

a High: high scattering tissues; other: other tissues.
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the value between DE and MOSE (2.6755%). In addition, the point relative errors were also 
calculated on the sampled points and shown in figure 2(c). From figures 2(b) and (c), we find 
that the HSDE model exhibits almost exactly the same performance as the SP3 model, both 
of which are consistent with MOSE and much better than the DE model. In figure 2(c), the 
maximum relative error for HSDE is about 7.5%, while that for DE is up to 28.8%. Similarly, 
the AREs in the high scattering tissues and the other tissues were also calculated respectively, 
which shows a better accuracy of the HSDE model than the DE one when they were compared 
with the SP3 model. The AREs for the HSDE and DE are 0.019 and 0.03 in the high scattering 
tissue, and 0.01 and 0.044 in the other tissues. Results of this complicated regular geometry 
based simulation also reveal the superiority of the HSDE over the DE model in processing 
light propagation in the geometry with low scattering regions.

3.1.3. Digital mouse model. Third, a digital mouse model was used to verify the accuracy of 
the HSDE model in the irregular medium. The digital mouse model is comprised of several 
main organs, including adipose, heart, stomach, liver, kidneys, and lungs, which are extracted 
from the CT and cryosection data (Dogdas et al 2007), as presented in figure 3(a). The opti-
cal properties used in the simulation were calculated around the wavelength of 670 nm and 
are listed in table 3 (Alexandrakis et al 2005). A light emission source with a radius of 1 mm 
and power of 1nW was positioned at (20,11,20) mm. In the following simulation, the digital 

Figure 2. Comparison results of complicated regular geometry-based simulation. (a) 
Physical model used in the simulation; (b) Profiles of light flux density distribution at 
a height of =Z 0 mm; (c) Point relative error of (b). In (b) and (c), the blue asterisks, 
green crosses and black lines show the calculation results of HSDE, SP3, and DE 
respectively, and the red solid lines are on behalf of the simulation results of MOSE.
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Table 2. Geometrical and optical parameters used in the complicated regular geometry-
based simulation.

Tissue Shape μa(mm−1) μs(mm−1) g Classification

T1 Cylinder 0.2 4 0.9 Othera

T2 Cylinder 0.01 4 Higha

T3 Cylinder 0.04 6 High
T4 Cylinder 0.004 2 High
T5 Sphere 0.06 8 High

a High: high scattering tissues; other: other tissues.

Figure 3. Comparison results of the digital mouse model based simulation. (a) Physical 
model used in the simulation; (b)–(c) Profiles of light flux density distribution at height 
of Z = 20, 18, 16 mm respectively; (e)–(g) Point relative errors of (b)–(d) repectively. In 
(b)–(g) the blue asterisks, green crosses and black lines show the calculation results of 
HSDE, SP3, and DE respectively, and the red solid lines are on behalf of the simulation 
results of MOSE.
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mouse model is discretized into 93 112 tetrahedrons and 16 765 nodes. Three profiles of 
light flux density distribution at heights of =Z 20, 18, 16 mm (indicated by red arrows in fig-
ure 3(a)) were extracted and are shown in figures 3(b)–(d), where the blue asterisk, green cross 
and black solid lines are the calculation results of the HSDE, SP3, and DE models respectively, 
and the red solid lines are the simulation results of MOSE. From figure 3(b)–(d), we can find 
that almost the same curvilinear tendency was obtained for the HSDE and SP3 models, and 
both of them are in agreement with MOSE, which can also be observed from the values of 
ARE. The AREs between HSDE or SP3 and MOSE are 2.0659% and 2.0641% respectively, 
which are smaller than that between DE and MOSE (with a value of 3.6383%). The point rela-
tive error at each sampled point also illustrates the superiority of HSDE over the DE model, as 
presented in figures 3(e)–(g). The largest point relative error for HSDE is smaller than 20%, 
while that for DE is larger than 25% and even up to 30%. Additionally, the ARE between the 
HSDE and SP3 in the high scattering tissues is calculated as 0.0026, which is better than that 
between the DE and SP3 models (0.034). Oppositely, in the other tissues, the accuracy of the 
HSDE is much better than that of the DE, with the rather smaller ARE (0.004 versus 0.07). 
Results of this simulation prove the accuracy of the HSDE model as well as reveal its superior-
ity over the DE model in whole-body small animal imaging, for which the light propagation 
in the animal body with both the high scattering and other tissues should be processed better.

3.2. Efficiency investigation of the HSDE model

The accuracy of the HSDE model has been validated with regular geometries and digital 
mouse model based simulations in the previous section, whose results reveal the same accu-
racy as the SP3 model and the superior accuracy over the DE model. Due to the low computa-
tion burden of DE, the HSDE model should take less time than the SP3 one. Particularly, the 
time cost will become less and less with the increase in volume of the high scattering regions, 
in which DE will be executed. In this section, we investigated the execution efficiency of the 
HSDE model and how it will be affected by the ratio of the high scattering regions to the 
whole solving domain.

First, the computation times of the HSDE, SP3, and DE models for the simulations pre-
sented in section 3.1 were recorded. To quantitatively observe the efficiency improvement of 
HSDE over SP3, the following time saving ratio (TSR) is introduced and defined as:

( − )t t t/ ,SP3 HSDE SP3

where tSP3 denotes the time cost of the SP3 model, and tHSDE is that of the HSDE one. 
Figures 4(a) and (b) present the computation time and relevant time saving ratio for the simple 
regular geometry based simulations. From figure 4(a) and (b), we find that the HSDE model 

Table 3. Optical properties around the wavelength of 670 nm for the digital mouse 
model based simulation.

Tissue Shape μa(mm−1) μ′
s(mm−1) g Classification

T1 Adipose 0.087 0.429 0.9 Othera

T2 Heart 0.059 0.643 Higha

T3 Stomach 0.011 0.144 High
T4 Liver 0.352 0.678 Other
T5 Kidneys 0.066 1.609 High
T6 Lungs 0.196 3.623 High

a High: high scattering tissues; other: other tissues.
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indeed takes less time than the SP3 one. Although the computation time is still much longer 
than the DE one, the efficiency is improved up to approximately 15–20% TSR compared with 
that of SP3. For the complicated regular geometry based simulation, we also recorded the 
computation times for the HSDE, SP3, and DE models. The time costs of the HSDE, SP3, and 
DE models are 631.74, 871.28, and 30.07 s respectively. The computation efficiency is also 
improved with a TSR of 27.5%. For the digital mouse model based simulation, the time costs 
of the HSDE, SP3, and DE models are recorded as 265.37, 324.87, and 22.35 s respectively, 
and the efficiency improvement is about 18.3%, which can be seen from the first group in 
figures 4(c) and (d). From these recorded computation times and improved efficiency, a very 
interesting phenomenon can be observed that all of the values of TSR are lower than 30%. 
By analyzing the experimental settings of the simulations, we find that all of the outer tissues 
of the geometries used in section 3.1 belong to the category of the other tissues which should 
be processed with the SP3 equation and have more of a computation burden. If the outer tis-
sue is changed to a high scattering one, the computational time should be less. To verify this 
hypothesis, we conducted another three groups of simulations using the digital mouse model. 

Figure 4. Computation times and relevant time saving ratios for the simulations 
presented in sections 3.1.1 and 3.1.3. (a) Computation times of the HSDE, SP3, and 
DE models for the simple geometry used in section  3.1.1; (b) Time saving ratios 
corresponding to (a); (c) Computation times of the HSDE, SP3, and DE models for the 
digital mouse model used in section 3.1.3; (d) Time saving ratios corresponding to (c). 
In the figures, the blue, green, and black bars are the time cost of HSDE, SP3, and DE 
respectively. The computation time is in seconds.
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In the simulations, the outer tissue (T1) was changed from adipose to muscle, which is a high 
scattering tissue around the wavelength of 670, 690, and 710 nm. The detailed optical proper-
ties are listed in table 4. The computation times of the HSDE, SP3, and DE models for the 
three groups of simulations are recorded and plotted in the 2nd–4th groups in figure 4(c). We 
find that great improvements on computational efficiency were obtained in all of the observed 
cases. The computation time of the HSDE model is only about two times longer than that of 
the DE one and much shorter than that of the SP3, which can also be seen from the TSR plot-
ting in figure 4(d). More than 80% of time can be saved by utilizing the HSDE model com-
pared with the SP3 one when the outer tissue is a high scattering tissue (the 2nd–4th groups in  
figure 4(d)). Thus, a conclusion can be made that the volume of the high scattering tissue will 
greatly affect the computational efficiency of the HSDE model, which has been validated with 
the following investigation simulations.

In the following investigation, simple regular geometry based simulations were conducted. 
The geometry is comprised of two cylinders with the centers at the origin of the coordinates. 
The outer cylinder has a dimension with a 10 mm radius and 24 mm height, and the inner one 
has an 18 mm height and a variable radius. With the changes in the radius of the inner cylin-
der, different values of the ratio between the volume of the high scattering region (simplified 
as V2) and that of the other region (simplified as V1) can be obtained, which also reflects the 
ratio between the volume of the high scattering region (V2) and that of the whole solving 
domain (simplified as V). The varying radii and relevant volume ratio are listed in table 5. 
The optical properties of the cylinders are specified as: for the outer cylinder, the absorption 
coefficient is 0.1 mm−1 and the reduced scattering coefficient is 0.2 mm−1; for the inner one, 
the absorption coefficient is 0.02 mm−1 and the reduced scattering coefficient is 0.4 mm−1. To 
mimic the light emission source, a sphere with a radius of 1.5 mm is located at position of (−3, 
0, 0) mm, with the source power of 1 nW.

Using HSDE, SP3, DE, and MOSE, the light flux distribution on the geometry surface 
is obtained. Subsequently, AREs between the numerical models of HSDE, SP3, DE and the 

Table 4. Optical properties around the wavelength of 670, 690, and 710 nm for the 
digital mouse model based simulation in the efficiency investigation. In units of mm−1.

Tissue Shape

No. 2: 670 nm No. 3: 690 nm No. 4: 710 nm

Classificationμa μ′
s μa μ′

s μa μ′
s

T1 Muscle 0.004 2.013 0.003 1.982 0.003 1.952 Higha

T2 Heart 0.059 0.643 0.044 0.616 0.033 0.591 High
T3 Stomach 0.011 0.144 0.009 1.746 0.007 1.698 High
T4 Liver 0.352 0.678 0.261 0.657 0.200 0.638 Othera

T5 Kidneys 0.066 1.609 0.049 1.539 0.038 1.474 High
T6 Lungs 0.196 3.623 0.145 3.567 0.111 3.513 High

a High: high scattering tissues; other: the other tissues.

Table 5. Varying radii and the related volume ratios.

Group No. Radius (mm) V2/V1 V2/V (%)

1 5.2900 4/15 20.99
2 6.1721 6/15 28.57
3 6.8101 8/15 34.78
4 7.3030 10/15 40.00
5 7.6980 12/15 44.44
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simulation one of MOSE are calculated. Figure 5(a) presents the AREs under the different vol-
ume ratios of the high scattering region to the whole solving domain. In the figures, the blue, 
green, and black bars are results of the HSDE, SP3, and DE models respectively. We find that the 
accuracies of the HSDE and SP3 models are almost the same as the stable AREs (smaller than 
1%) with the change in volume ratio, which are much better than those of the DE model (greater 
than 7%). However, the ARE of the DE model becomes smaller with an increase in the ratio of 
the high scattering region. On the other hand, the time costs for executing the numerical models 
of HSDE, SP3, and DE are recorded and plotted in figure 5(b). From figure 5(b), we can find 
that the time costs of the SP3 and DE models stay relatively unchanged under different volume 
ratios. DE is the biggest timesaver model and SP3 is the most time consuming one. In addi-
tion, HSDE exhibits good performance in efficiency, with less time cost than SP3 under all of 
the observed volume ratios. Particularly, the efficiency of executing the HSDE model improves 
with less and less time as the volume of the high scattering region increases, which could also 
be observed from figure 5(c). Figure 5(c) presents efficiency improvement in the HSDE model 
compared with SP3 as the volume ratio changes. From figure 5(c), we find that a 20–44% time-
saver is obtained with the increase in the portion of the high scattering region. Results of this 
investigation reveal that the HSDE model integrates both a high-precision advantage of SP3 and 
a low-computation-cost advantage of DE, so that it provides a perfect balance between accuracy 
and computation time.

4. Conclusion

In conclusion, the hybrid simplified spherical harmonics with diffusion equation (HSDE) 
based light transport model is proposed to describe fluorescence propagation in tissue for 
fluorescence tomography (FMT). The HSDE model can make full use of the advantages 
of SPN and DE and abandon their disadvantages at the same time, so that it could provide 
a perfect balance between accuracy and computation time. Regular geometries and digital 
mouse model based simulations were conducted, whose results demonstrated the accuracy 
and efficiency of the HSDE model. Our future work will focus on the implementation and 
extensive applications of the HSDE based FMT reconstruction method, such as in longi-
tudinal and quantitative monitoring of the development of in situ liver cancer as well as its 
drug therapy.

Figure 5. Results of the efficiency investigation simulation. (a) AREs between the 
numerical models (HSDE, SP3, DE) and MOSE under different volume ratios; (b) Time 
cost for the numerical models of HSDE, SP3, and DE under different volume ratios, 
presented in seconds; (c) Efficiency improvement of HSDE compared with SP3 as the 
change in volume ratio. In the figures, the blue, green, and black bars are results of 
HSDE, SP3, and DE respectively.
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Appendix

The concrete forms of coefficients ( )∇ΦC rk, 1 , ( )∇ΦC rk, 2 , ( )ΦC rk, 1 , ( )ΦC rk, 2 , and ( )( = )C r k 1, 2k S,
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