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Abstract—Outlier detection can usually be considered as a pre-processing step for locating, in a data set, those objects that do not

conform to well-defined notions of expected behavior. It is very important in data mining for discovering novel or rare events,

anomalies, vicious actions, exceptional phenomena, etc. We are investigating outlier detection for categorical data sets. This problem

is especially challenging because of the difficulty of defining a meaningful similarity measure for categorical data. In this paper, we

propose a formal definition of outliers and an optimization model of outlier detection, via a new concept of holoentropy that takes both

entropy and total correlation into consideration. Based on this model, we define a function for the outlier factor of an object which is

solely determined by the object itself and can be updated efficiently. We propose two practical 1-parameter outlier detection methods,

named ITB-SS and ITB-SP, which require no user-defined parameters for deciding whether an object is an outlier. Users need only

provide the number of outliers they want to detect. Experimental results show that ITB-SS and ITB-SP are more effective and efficient

than mainstream methods and can be used to deal with both large and high-dimensional data sets where existing algorithms fail.

Index Terms—Outlier detection, holoentropy, total correlation, outlier factor, attribute weighting, greedy algorithms

Ç

1 INTRODUCTION

OUTLIER detection, which is an active research area [1],
[2], [27], [25], refers to the problem of finding objects in

a data set that do not conform to well-defined notions of
expected behavior. The objects detected are called outliers,
also referred to as anomalies, surprises, aberrants, etc.
Outlier detection can be implemented as a preprocessing
step prior to the application of an advanced data analysis
method. It can also be used as an effective tool to discover
interest patterns such as the expense behavior of a to-be-
bankrupt credit cardholder. Outlier detection is an essential
step in a variety of practical applications including
intrusion detection [28], health system monitoring [2], and
criminal activity detection in E-commerce [45], and can also
be used in scientific research for data analysis and knowl-
edge discovery in biology, chemistry, astronomy, oceano-
graphy, and other fields [2].

According to [1], [2], if the existing methods for outlier
detection are classified according to the availability of labels
in the training data sets, there are three broad categories:
supervised, semi-supervised, and unsupervised ap-
proaches. In principle, models within the supervised or
the semi-supervised approaches all need to be trained
before use, while models adopting the unsupervised
approach do not include the training phase. Moreover, in
a supervised approach a training set should be provided

with labels for anomalies as well as labels of normal objects,
in contrast with the training set with normal object labels
alone required by the semi-supervised approach. On the
other hand, the unsupervised approach does not require
any object label information. Thus the three approaches
have different prerequisites and limitations, and they fit
different kinds of data sets with different amounts of label
information. The three broad categories of outlier detection
techniques are discussed below.

The supervised anomaly detection approach learns a classi-
fier using labeled objects belonging to the normal and
anomaly classes, and assigns appropriate labels to test
objects. The supervised approach has been studied exten-
sively and many methods have been developed. For
instance, the group of proximity-based methods includes
the cluster-based “K-Means+ID3” algorithm [4], which
cascades K-Means clustering and an ID3 decision tree for
classifying anomalous and normal objects. The work of
Barbará et al. [42] is based on statistical testing and an
application of Transduction Confidence Machines, which
requires k neighbors. Moreover, one-class SVMs [38], [39]
have been applied broadly in this field as they do not have
to make a probability density estimation. A variety of
methods [40], [41] based on information theory have also
been proposed. The work of Filippone and Sanguinetti [40]
proposes a method to control the false positive rate in the
novelty detection problem. In [41], a formal Bayesian
definition of surprise is proposed.

The semi-supervised anomaly detection approach primarily
learns a model representing normal behavior from a given
training data set of normal objects, and then calculates the
likelihood of a test object’s being generated by the learned
model. Zhang et al. [5] propose an adapted hidden Markov
model for this approach to anomaly detection, while Gao
et al. [46] propose a clustering-based algorithm which
punishes deviation from known labels. Methods that
assume availability of only the outlier objects for training
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are rare [2], because it is difficult to obtain a training data
set which covers all possible abnormal behavior that can
occur in the data.

The unsupervised anomaly detection approach detects
anomalies in an unlabeled data set under the assumption
that the majority of the objects in the data set are normal.
Angiulli et al. [30] propose a KNN distance-based method.
Clustering is another widely implemented method, of
which [13] is an example. Moreover, this approach is
applied to different kinds of outlier detection tasks and data
sets, e.g., conditional anomaly detection [29], context-aware
outliers [14], and outliers in semantic graphs [32]. As this
approach does not require a labeled training data set and is
suitable for different outlier detection tasks, it is the most
widely applicable.

To implement supervised and semi-supervised outlier
detection methods, one must first label the training data.
However, when faced with a large data set with millions of
high-dimensional objects and a low anomalous data rate,
picking the abnormal and normal objects to compose a good
training data set is time-consuming and labor-intensive. The
unsupervised approach is more widely used than the other
approaches because it does not need labeled information. If
one wants to employ a supervised or semi-supervised
approach, an unsupervised method can be used as the first
step to find a candidate set of outliers, which will help
experts to build the training data set. The unsupervised
approach is our research focus in this paper.

1.1 Unsupervised Categorical Outlier Detection

In real applications, a large portion or the entirety of the
data set is often presented in terms of categorical attributes.
Examples of such data sets include transaction data,
financial records in commercial banks, demographic data,
etc. The problem of outlier detection in this type of data set
is more challenging since there is no inherent measurement
of distance between the objects. Existing unsupervised
outlier detection methods, e.g., LOF [19], LOCI [24], and
[13], [31], are effective on data sets with numerical
attributes. However, they cannot be easily adapted to deal
with categorical data.

Outlier detection methods for categorical data can be
characterized by the way outlier candidates are measured
w.r.t. other objects in the data set. In general, outlier
candidates can be assessed based either on data distribution
or on attribute correlation, which provides a more global
measure. They can also be assessed using a between-object
similarity or local density, which provides a local measure.
Various techniques such as proximity-based [11], rule-
based [10], and information-theoretic [36] methods have
been proposed (Section 2 provides a more detailed
discussion) and fall into one of these two categories. The
common problem with the existing methods is the lack of a
formal definition for the outlier detection problem. Without
a formal definition, outlier detection is often designed as an
ad-hoc process. In particular, several user-defined para-
meters are often required to define whether an object
possesses properties sufficiently different from others to be
qualified as an outlier. The parameter-laden results are
heavily dependent on suitable parameter settings, which
are very difficult to estimate without background knowl-
edge about the data. Many existing methods also suffer

from low effectiveness and low efficiency due to high
dimensionality and large size of the data set, high-complex-
ity statistical tests, or inefficient proximity-based measures.

1.2 Objectives

The goal of this paper is twofold. First, we deal with the lack
of a formal definition of outliers and modeling of the outlier
detection problem; second, we aim to propose effective and
efficient methods that can be used to solve the outlier
detection problem in real applications. In this paper, these
two goals are achieved by exploring the information-
theoretic approach [6].

First, in our approach, we adopt the deviation-based
strategy which, according to [22], avoids the use of
statistical tests and proximity-based measures to identify
exceptional objects. We explore information theory [6] to
derive several new concepts. In particular, we combine
entropy and total correlation with attribute weighting to
define the concept of weighted holoentropy, where the
entropy measures the global disorder of a data set and the
total correlation measures the attribute relationship. Based
on this concept, we build a formal model of outlier
detection and propose a criterion for estimating the
“goodness” of a subset of objects as potential outlier
candidates. Then outlier detection is formulated as an
optimization problem involving searching for the optimal
subset in terms of “goodness” and number of outliers.
Finally, to solve the optimization problem, we carry out a
deep investigation of the analytical and statistical proper-
ties of the proposed criterion and propose two greedy
algorithms that effectively bypass probability estimation
and the high complexity of exploring the whole outlier
candidate space.

1.3 Contributions

The contributions of this work are as follows:

1. We propose a formal optimization-based model of
categorical outlier detection, for which a new
concept of weighted holoentropy which captures
the distribution and correlation information of a data
set is proposed.

2. To solve the optimization problem, we derive a new
outlier factor function from the weighted holoentropy
and show that computation/updating of the outlier
factor can be performed without the need to estimate
the joint probability distribution. We also estimate an
upper bound of outliers to reduce the search space.

3. We propose two effective and efficient algorithms,
named the Information-Theory-Based Step-by-Step
(ITB-SS) and Single-Pass (ITB-SP) methods. These
algorithms need only the number of outliers as an
input parameter and completely dispense with the
parameters for characterizing outliers usually re-
quired by existing algorithms.

The rest of this paper is organized as follows. Section 2
discusses related work and gives a detailed description of
the methods which will be compared. Section 3 presents the
concepts of holoentropy and modeling of outlier detection
as an optimization problem. Section 4 describes the
proposed algorithms for solving the detection problem.
Major experimental results, including comparisons with
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existing methods, are presented in Section 5. Section 6
discusses a potentially interesting avenue for developing a
true parameter-free detection algorithm. The conclusion is
given in Section 7.

2 RELATED WORK

Mainstream methods/algorithms designed for outlier de-
tection from categorical data can be grouped into four
categories. Some of these algorithms are compared with the
proposed algorithms in Section 5.

2.1 Proximity-Based Methods

Being intuitively easy to understand, proximity-based
outlier detection, which measures the nearness of objects
in terms of distance, density, etc., is an important technique
adopted by many outlier detection methods. For numerical
outlier detection, there are a variety of methods [3], [19],
[30], [33] in this category. For instance, LOF [19] is an
effective method that utilizes a concept of local density to
measure how isolated an object is w.r.t. the surrounding
Minpts objects.

For categorical data sets, the proximity-based methods
must confront the problems of how to choose the
measurement of distance or density and how to avoid
high time and space complexity in the distance computing
process. For instance, ORCA [33] uses the Hamming
distance and CNB [11] employs a common-neighbor-based
distance to measure the distance between categorical
objects. The CNB algorithm consists of two steps, the
neighbor-set generating step and the outlier mining step.
The neighbor-set of the k nearest neighbors with similarity
threshold � to all objects is computed in the neighbor-set
generation step. Both k and � are user-defined parameters.
In the second step, an outlier factor for each object is
computed by summing its distance from its neighbors. The
objects with the o (number of outliers) largest values are set
to be outliers. The proximity-based approach has many
prerequisite parameters, which need repeated trial-and-
error to attain the desired result. Proximity-based methods
also suffer from the curse of dimensionality when using
distance or local density measures on the full dimensions.
In general, these methods are time- and space-consuming
and consequently are not appropriate for large data sets.

2.2 Rule-Based Methods

Rule-based methods borrow the concept of frequent items
from association-rule mining. Such methods consider the
frequent or infrequent items the data set. For instance, in the
work of [20], [21], objects with few frequent items or many
infrequent items are more likely to be considered as
anomalous objects than others.

Frequent Pattern Outlier Factor (called the FIB method in
this paper) [10] and Otey’s Algorithm (called the OA
method in this paper) [7] are two well-known rule-based
techniques. The procedure of the FIB algorithm includes an
initial computation of the set of frequent patterns, using a
predefined minimum support rate. For each object, all
support rates of associated frequent patterns are summed
up as the outlier factor of this object. The objects with the
o smallest factors are considered as the outliers. Contrary to
the FIB algorithm, OA begins by collecting the infrequent
items from the data set. Based on the infrequent items, the

outlier factors of the objects are computed. The objects with
the o largest scores are treated as outliers. The time
complexity of both algorithms is determined by the
frequent-item or infrequent-item generating processes. For
instance, the time complexity of the FIB method is
exponentially increasing with the number of attributes due
to the Apriori algorithm [12]. Therefore, this approach is
limited to low-dimensional data sets.

2.3 Information-Theoretic Methods

Several information-theoretic methods have been proposed
in the literature. For anomaly detection in audit data sets,
Lee and Xiang [36] present a series of information-theoretic
measures, i.e., entropy, conditional entropy, relative condi-
tional entropy, and information gain, to identify outliers in
the univariate audit data set, where the attribute relation-
ship does not need to be considered. The work of He et al.
[23] employs entropy to measure the disorder of a data set
with the outliers removed. In these methods, heuristic local
search is used to minimize the objective function. The
methods proposed in [8] and [9] set a threshold of mutual
information and obtain a set of dependent attribute pairs.
Based on this set, an outlier factor for each individual object
is defined. In general, information-theoretic methods focus
either on a single entropy-like measurement or on mutual
information, and require expensive estimation of the joint
probability distribution when the data set is shrunk
following elimination of certain outliers.

2.4 Other Methods

Several other approaches using the Random Walk, Hyper-
graph theory, or clustering methods have been proposed to
deal with the problem of outlier detection in categorical
data. For instance, based on hypergraph theory, HOT [18]
captures the distribution characteristics of an object in the
subspaces and these characteristics are then used to identify
outliers. In the random-walk-based method [34], outliers
are those objects with a low probability of jumping to
neighbors. In other words, they have a high probability of
staying in their states. In [35], the relationships among the
neighbors are considered and a mutual-reinforcement-
based local outlier factor is proposed to identify outliers.
This can also be viewed as a random-walk method with a
fixed number of walk steps. In [37], a cluster-based local
outlier detection method is proposed to identify the
physical significance of an object. The outlier factor in this
method is measured by both the size of the cluster the object
belongs to and the distance between the object and its
closest cluster. These methods are not very efficient for
large or high-dimensional data sets because they contain
some high-complexity procedures, e.g., frequent-item gen-
erating processes in HOT [18], similarity computation in the
random-walk-based methods [34], [35], and the clustering
process in the cluster-based method [37].

3 MEASUREMENT FOR OUTLIER DETECTION

In this section, we first look at how entropy and total
correlation can be used to capture the likelihood of outlier
candidates. We propose the concept of holoentropy and
formulate the outlier detection problem.
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3.1 Entropy and Total Correlation

Consider a set X containing n objects fx1; x2; . . . ; xng, each xi
for 1 � i � n being a vector of categorical attributes
½y1; y2; . . . ; ym�T , where m is the number of attributes, yj
has a value domain determined by ½y1;j; y2;j; . . . ; ynj;j�
(1 � j � m) and nj indicates the number of distinct values
in attribute yj. Considering each yj as a random variable, the
random vector ½y1; y2; . . . ; ym�T is represented by Y. xi can be
denoted as ðxi;1; xi;2; . . . ; xi;mÞT . We useHXðÞ, IXðÞ, and CXðÞ,
respectively, to represent entropy, mutual information, and
total correlation computed on the set X ; e.g., IXðyi; yjÞ
represents the mutual information between attributes yi and
yj. Sometimes, we drop off the index term X when there is
no ambiguity, e.g., using Iðyi; yjÞ in place of IXðyi; yjÞ.

Now, based on the chain rule for entropy [6], the entropy
of Y, denoted as HXðYÞ can be written as follows:

HXðYÞ ¼ HXðy1; y2; . . . ; ymÞ ¼
Xm
i¼1

HXðyijyi�1; . . . ; y1Þ

¼ HXðy1Þ þHXðy2jy1Þ þ � � � þHXðymjym�1; . . . ; y1Þ
ð1Þ

where

HXðymjym�1; . . . ; y1Þ
¼ �

X
ym;ym�1;...;y1

pðym; ym�1; . . . ; y1Þ log pðymjym�1; . . . ; y1Þ:

The entropy can be used as a global measure in outlier
detection. In information theory, entropy means uncertainty
relative to a random variable: if the value of an attribute is
unknown, the entropy of this attribute indicates how much
information we need to predict the correct value. A subset
of objects is good outlier candidates if their removal from
the data set causes significant decrease of the entropy of the
data set. The method proposed in [36] makes use of entropy
as a quality measure in outlier detection from unidimen-
sional audio data. He et al. [23] extend this schema to
measure the disorder of a multidimensional data set with
the outliers removed, where a heuristic local search is
employed to minimize the objective function.

Let us look at how total correlation can also be used in
outlier detection. The total correlation [16] is defined as the
sum of mutual information of multivariate discrete random
vectors Y, denoted as CXðYÞ.

CXðYÞ ¼
Xm
i¼2

X
fr1...rig�f1;...;mg

IXðyr1
; . . . ; yriÞ

¼
X

fr1;r2g�f1;...;mg
IXðyr1

; yr2
Þ þ � � � þ IXðyr1

; . . . ; yrmÞ;

ð2Þ

where r1 . . . ri are attribute numbers chosen from 1 to m.
IXðyr1

; . . . ; yriÞ ¼ IXðyr1
; . . . ; yri�1

Þ � IXðyr1
; . . . ; yri�1

jyriÞ [6] is
the multivariate mutual information of yr1

. . . yri , where
IXðyr1

; . . . ; yri�1
jyriÞ ¼ EðIðyr1

; . . . ; yri�1
ÞjyriÞ is the condi-

tional mutual information. The total correlation is a quantity
that measures the mutual dependence or shared informa-
tion of a data set.

Taking the case of total correlation CXðy1; y2Þ with two
attributes y1 and y2 as an example, CXðy1; y2Þ ¼ IXðy1; y2Þ
denotes the total correlation for a random vector Y with two

attributes y1 and y2. Its value corresponds to the reduction in
the uncertainty of one attribute value yielded by knowledge
of the other. If the value of CXðy1; y2Þ is large, it means that
the number of duplicate pairs of attribute values is small in
these two attributes compared with the situation when the
value of CXðy1; y2Þ is small. In general, for the case where
there are more than two attributes, larger CXðYÞ means a
smaller number of objects sharing common attribute values,
which in turn implies fewer number of frequent item sets
and worse cluster structure. Thus, similar to entropy, the
total correlation can be used to measure the goodness of the
outlier candidates in a subset O by evaluating CX0ðYÞ for
X0 ¼ XnO. Again, the smaller the value of CX0 ðYÞ, the better
the subset O as a set of outlier candidates.

3.2 Holoentropy

We begin here with an example to show that entropy alone is

not a good enough measure for outlier detection and the

contribution of the total correlation is necessary. Looking at

the example in Table 1, where 14 objects with four attributes

are illustrated, we represent the data set byX .X includes two

objects x13 and x14 which can be identified as the most likely

outliers by comparison with the other 12 objects. Moreover,

x14 is clearly more exceptional than x13 since it shares none of

its attributes with the rest of objects. Now, HXnx14
ðYÞ ¼

HXnx13
ðYÞ ¼ 3:7 means that, if only the entropy is used, x14

and x13 are equally exceptional as outlier candidates. On

the other hand, if we combine the total correlation and

the entropy, we obtain HXnx14
ðYÞ þ CXnx14

ðYÞ ¼ 9:414 and

HXnx13
ðYÞ þ CXnx13

ðYÞ ¼ 10:030, which allows object x14 to be

distinguished as a more likely outlier than x13. Interestingly,

given the distributions of attributes in a data set, there is a

complementary relationship that exists between the entropy

and total correlation of Y. It is based on Watanabe’s proof

[17] that the total correlation can be expressed as CXðYÞ ¼Pm
i¼1 HXðyiÞ �HXðYÞ. This motivates the following defini-

tion of holoentropy as a new measure for outlier detection.

Definition 1 (Holoentropy of a random vector). The

holoentropy HLXðYÞ is defined as the sum of the entropy

and the total correlation of the random vector Y, and can be

expressed by the sum of the entropies on all attributes
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Adjusting Total Correlation



HLXðYÞ ¼ HXðYÞ þ CXðYÞ ¼
Xm
i¼1

HXðyiÞ: ð3Þ

Note that when the components of Y are independent or
Y has only one component, HLXðYÞ ¼ HXðYÞ, i.e., the
holoentropy coincides with the entropy.

The example in Fig. 1 illustrates how holoentropy is
more appropriate than entropy or total correlation for
describing outliers. Fig. 1a is the original data set containing
six objects, in which the object ðb1; c2Þ and to a lesser extent
the object ða1; b2Þ are most likely to be outliers. Figs. 1b, 1c,
and Fig. 1d illustrate three possible data sets which result
when one object is removed. Similar to the example in
Table 1, Figs. 1c and 1d show that entropy provides no hint
as to which one, ðb1; c2Þ or ða1; b2Þ, is more likely to be an
outlier. On the other hand, if only the total correlation is
taken into consideration, Fig. 1c indicates the smallest total
correlation for CXnfðb1 c2ÞgðYÞ for ðb1; c2Þ, while Figs. 1b and
1d indicate that ða1; a2Þ and ða1; b2Þ are equally likely to be
outliers, which is wrong. The holoentropy allows us to
clearly establish appropriate outlier likelihoods among
ðb1; c2Þ, ða1; b2Þ, and ða1; a2Þ.
Proposition 1. 0 � HLXðYÞ � m logðnÞ.
Proof. For an attribute yi ofY, if all its values are the same, the

minimum entropy of this attribute satisfies HXðyiÞ ¼ 0. If
all the values of yi are different, the maximum entropy is
noted as HXðyiÞ ¼ logðnÞ. Since HLXðYÞ ¼

Pm
i¼1 HXðyiÞ,

the inequalities hold. tu

3.3 Attribute Weighting

The proposed holoentropy assigns equal importance to all
the attributes, whereas in real applications, different
attributes often contribute differently to form the overall
structure of the data set. In this section, after demonstrating
the need for attribute weighting, we will propose a simple
method for weighting attributes and then modify the
holoentropy by incorporating the attribute weights. The
proposed weighting method computes the weights directly
from the data and is motivated by increased effectiveness in
practical applications rather than by theoretical necessity. In
the outlier detection algorithms proposed in Section 4, the
attributes are assumed to be weighted. The “unweighted”
version of the proposed algorithms can be obtained simply
by setting all the weights to one. In Section 5, both weighted
and unweighted algorithms are evaluated.

As an example, let us look at the data from a survey on
positive attitude toward science given in Table 2, where the
observations (surveyed persons) are described by their
education level and age range. We will argue that for outlier
detection from this survey data, the attribute Degree is more
important than the attribute Age.

According to the column HLXnfxogðYÞ in Table 2, the
cases 4, 5, 6, 7, and 8 are equally likely to be outliers since
the removal of each results in the same decrease in the value
of HLXnfxogðYÞ. In fact, each of the cases 4, 5, 6, 7, and 8 is
distinguished by its value on either the Degree or the Age
attribute. By looking at the internal structure of the values
of each attribute, we see that High-School is more out-
standing within Degree than, for example, [40, 50) is within
Age, since [40, 50) is one of the four values that are different
from the dominating value [30,40), while High-School is the
only value different from the dominating values Master and
PhD. In other words, it is the good cluster structure of the
attribute Degree, compared to that of Age, that makes High-
School more outstanding than [40,50). The weighting
strategy proposed in this paper aims to give more
importance to the attribute Degree so that the case (High-
School, [30,40)) is identified as a more likely outlier
candidate than, for example, the case (PhD, [40,50)).

Given that the holoentropy is defined as the sum of
entropies of individual attributes and outliers are detected
by minimizing the holoentropy through the removal of
outlier candidates, our strategy consists in weighting the
entropy of each individual attribute in order to give more
importance to those attributes with small entropy values,
e.g., Degree in the example of Table 2. This increases the
impact of removing an outlier candidate that is outstanding
on those attributes. To weight the entropy of each attribute,
we propose to employ a reverse sigmoid function of the
entropy, as follows:

wXðyiÞ ¼ 2 1� 1

1þ expð�HXðyiÞÞ

� �
: ð4Þ

This reverse sigmoid is a decreasing function ranging
between (0, 2). In practice, because the entropies are all
positive, the weight coefficients range between 0 and 1. The
weighted holoentropy is defined as follows.

Definition 2 (Weighted Holoentropy of a Random Vector).

The weighted holoentropy WXðYÞ is the sum of the weighted
entropy on each attribute of the random vector Y

WXðYÞ ¼
Xm
i¼1

wXðyiÞHXðyiÞ: ð5Þ
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TABLE 2
Weighted Holoentropy in Outlier Detection



The weighted holoentropy is bounded according to the
following proposition.

Proposition 2. 0 � WXðYÞ � 2m
nþ1 logðnÞ.

Proof. Since

@½wXðyiÞHXðyiÞ�
@HXðyiÞ

¼ expð�HXðyiÞÞ
1þ expð�HXðyiÞÞ

� �2

> 0;

WXðYÞ of each attribute is monotonically increasing with
the attribute weight. When HXðyiÞ ¼ 0, the minimum
wXðyiÞHXðyiÞ ¼ 0. When HXðyiÞ ¼ logðnÞ, the maximum
value is 2

nþ1 logðnÞ. Since HLXðYÞ ¼
Pm

i¼1 HXðyiÞ, the
inequalities hold. tu
To illustrate the effectiveness of weighted holoentropy as

an outlier factor, let’s look back at the example in Table 2.
The WXnfxogðYÞ column, which is impacted more by
attribute Degree than by attribute Age, indicates Case 4 is
more likely to be an outlier than the Cases from 5 to 8. In
Section 5, we provide extensive experimental results that
show it is generally more advantageous to use attribute
weighting in practical applications. In Section 4, we show
that the attribute weighting in (5) can be efficiently handled
within the detection process.

3.4 A Formal Definition of the Outlier Detection
Problem

To formally define outliers, we need to describe the
condition for judging how exceptional a subset of objects
is. The following definition of outliers is based on the
weighted holoentropy, supposing that the number of the
desired outliers o is given. A set of o candidates is the best if
its exclusion from the original data set X causes the greatest
decrease in the weighted holoentropy value, compared to
all the other subsets of X of size o.

Definition 3 (Outliers). Given a data set X with n objects and
the number o, a subset OutðoÞ is defined as the set of outliers if
it minimizes JXðY; oÞ, defined as the weighted holoentropy of
X with o objects removed

JXðY; oÞ ¼ WXnSetðoÞðYÞ; ð6Þ

where SetðoÞ is any subset of o objects from X . In other words

OutðoÞ ¼ argmin JXðY; oÞ: ð7Þ

Hence, outlier detection is now formulated be stated as

an optimization problem. For a given o, the number of

possible candidate sets for the objective function is

Co
n ¼ n!

o!ðn�oÞ! , which is very high. Moreover, one might have

to determine the optimal value of o, i.e., how many outliers

a data set really has. A possible theoretical approach to this

problem is to search for a range of values of o and decide on

an optimal value of o by optimizing a certain variational

property of JXðX ; oÞ. We leave this as a future research

direction. For now, we will focus on developing practical

solutions to the optimization problem.

4 NEW OUTLIER DETECTION ALGORITHMS

In this section, we propose two greedy algorithms to solve
the above optimization problem for outlier detection. Our

algorithms are built upon several important properties of
the holoentropy. In the following discussion, we first show
how the holoentropy can be efficiently estimated when only
one object is removed from the data set. This can be done
using the information of the removed object, without the
need of estimating the probability distribution of each
attribute. In addition, we propose a method to estimate the
upper bound number and the candidate set of outliers to
further reduce the search space for the optimization
problem. Finally, we present the two algorithms accom-
panied with a complexity analysis.

4.1 A New Concept of the Outlier Factor

In addition to the high computational complexity of
searching for the optimal subset, solving (7) also involves
the problem of repeatedly estimating the weighted holoen-
tropy, which in turn requires estimation of probability
distribution of each attribute. Thus, (7) is considered as a
theoretical model of outliers for which approximate solutions
need to be found. Interestingly, the difference in weighted
holoentropy can be estimated, especially when only one
object is removed, without having to estimate attribute
probabilities. This opens up the possibility of an efficient
heuristic approach to solving optimization problem (7).

Definition 4 (Differential Holoentropy). Given an object xo
of X , the difference of weighted holoentropy hXðxoÞ between
the data set X and the data set Xnfxog is defined as the
differential holoentropy of the object xo

hXðxoÞ ¼ WXðYÞ �WXnfxogðYÞ

¼
Xm
i¼1

�
wXðyiÞHXðyiÞ � wXnfxogðyiÞHXnfxogðyiÞ

�
:
ð8Þ

Since wXðyiÞ is defined as a reverse sigmoid function of
the entropy HXðyiÞ, the difference between wXðyiÞ and
wXnfxogðyiÞ is significantly smaller than the entropy HXðyiÞ.
So we simplify the differential holoentropy using the
following expression:

ĥXðxoÞ ¼
Xm
i¼1

wXðyiÞ
�
HXðyiÞ �HXnfxogðyiÞ

�
: ð9Þ

Our preliminary experiment indicates that the perfor-
mance of exact and approximate outlier factor are very
similar. To avoiding the high time complexity of exact factor
computation, we use the approximate factor to represent
the approximate one in this work. The approximate
differential holoentropy ĥXðxoÞ can be directly computed
according to the following proposition.

Proposition 3. The approximate differential holoentropy ĥXðxoÞ
can be represented as follows:

ĥXðxoÞ ¼
Xm
i¼1

wXðyiÞ log a� a
b

log b
� 	

� aWXðYÞ

þ a
Xm
i¼1

0; if nðxo;iÞ ¼ 1;

wXðyiÞ � �
�
nðxo;iÞ

�
; else:

( ð10Þ

where �ðxÞ ¼ ðx� 1Þ logðx� 1Þ � x logx, and xo;i means the

value appears in the ith attribute of the object xo. nðxo;iÞ is the

simplified form of nði; xo;iÞ, which means the times xo;i appears
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in the ith attribute. b and a are reciprocal values of the

cardinality of X and Xnfxog.
Proof. ĥXðxoÞ ¼

Pm
i¼1 wXðyiÞ½HXðyiÞ �HXnfxogðyiÞ�; when

nðxo;iÞ ¼ 1, HXðyiÞ �HXnfxogðyiÞ is written as

a
Xni�1

j¼1;j6¼o

�
nðxj;iÞ lognðxj;iÞ þ nðxj;iÞ log a

�

� b
Xni�1

j¼1;j6¼o

�
nðxj;iÞ lognðxj;iÞ þ nðxj;iÞ log b

�
� b log b;

when nðxo;iÞ > 1, HXðyiÞ �HXnfxogðyiÞ is written as

a
Xni�1

j¼1;j6¼o

�
nðxj;iÞ lognðxj;iÞ þ nðxj;iÞ log a

�

� b
Xni�1

j¼1;j 6¼o

�
nðxj;iÞ lognðxj;iÞ þ nðxj;iÞ log b

�
� a log a

þ ða log a� b log bÞnðxo;iÞ � b � nðxo;iÞ lognðxo;iÞ
þ a
�
nðxo;iÞ � 1

�
log
�
nðxo;iÞ � 1

�
:

Combining these two situations, the deduced form of
ĥXðxoÞ is expressed as follows:

ĥXðxoÞ ¼ a
Xm
i¼1

wXðyiÞ � � nðxo;iÞ
� �

þ
Xm
i¼1

log
a

b
þ ab � log

nðx1;iÞ
n

nðx1;iÞ
n

. . .
nðxni;iÞ
n

nðxni;i Þ
n

0
@

1
A

2
4

3
5:

Since log ðnðx1;iÞ
n

nðx1;iÞ
n � � � nðxni;i Þn

nðxni;i Þ
n Þ ¼ � 1

b ðEðyiÞ þ log bÞ,
the simplified deduced form is

ĥðxoÞ ¼
Xm
i¼1

wXðyiÞ log a� a
b

log b
� 	

� aWXðYÞ

þ a
Xm
i¼1

0; if nðxo;iÞ ¼ 1;

wXðyiÞ � �
�
nðxo;iÞ

�
; else:

(

ut

If we consider only the unweighted holoentropy, i.e., all

the attribute weights are treated as 1, Proposition 3 holds

for the differential holoentrepy hXðxoÞ. We will use this

exact equation to derive the formula for updating entropies

and attribute weights in the next section. Also, according to

Proposition 3, ĥðxoÞ is determined by the data set X , i.e., in

the first two terms,
Pm

i¼1 wXðyiÞðlog a� a
b log bÞ � aWXðYÞ,

and by the object xo itself in the third terms. Based on these

discussions, we define the outlier factor of an object as

follows.

Definition 5 (Outlier Factor of an Object). The outlier factor

of an object xo, denoted as OF ðxoÞ, is defined as

OF ðxoÞ ¼
Xm
i¼1

OF ðxo;iÞ

¼
Xm
i¼1

0; if nðxo;iÞ ¼ 1;

wXðyiÞ � �
�
nðxo;iÞ

�
; else:

(

where OF ðxo;iÞ is defined as the outlier factor of xo on the ith

attribute.

OF ðxoÞ can be considered as a measure of how likely it is

that object xo is an outlier. An object xo with a large outlier

factor value is more likely to be an outlier than an object with

a small value. Here are a few other interesting properties of

the outlier factor.

Proposition 4. OF ðxu;iÞ � OF ðxj;iÞ, if nðxu;iÞ ¼ 1 and

nðxj;iÞ � 1.

Proof. The outlier factor has a negative or zero value on an

attribute; when xu;i is unique, the outlier factor achieves

its largest value, zero. So the proposition holds. tu
Proposition 5. OF ðxj;iÞ � OF ðxk;iÞ, if nðxj;iÞ � nðxk;iÞ and

nðxj;iÞ > 1.

Proof. Set �ðxj;iÞ ¼ ½ nðxj;iÞnðxj;iÞ

ðnðxj;iÞ�1Þnðxj;iÞ�1�wX ðyiÞ, ’ðxj;i; xk;iÞ ¼ �ðxk;iÞ
�ðxj;iÞ

and

�ðxj;i; xk;iÞ ¼ logð’ðxj;i; xk;iÞÞ ¼ OF ðxj;iÞ �OF ðxk;iÞ:

Since

�0ðxj;iÞ ¼ wXðyiÞ
xj;i

xj;i ½Inxj;i � Inðxj;i � 1Þ�
ðxj;i � 1Þxj;i�1

nðxj;iÞnðxj;iÞ

ðnðxj;iÞ � 1Þnðxj;iÞ�1

" #wX ðyiÞ�1

> 0;

�ðxj;iÞ > 0, hence ’ðxj;i; xk;iÞ � 1, and thus �ðxj;i; xk;iÞ �
0. When nðxj;iÞ ¼ nðxk;iÞ, the equality holds. tu
According to Propositions 4 and 5, for each attribute, the

outlier factor is monotonically decreasing w.r.t. the fre-

quency of the object value on that attribute. This corre-

sponds to the following intuitive idea: given an object,

regardless of the weight of an attribute, the higher the

frequency of the object value on that attribute, the less likely

it is that the object is an outlier.

4.2 Updating the Outlier Factor

In this section, we discuss the issue of updating the outlier

factor within a constant time in a step-by-step process. To

update OF ðxoÞ, according to Definition 5 and the definition

of attribute weight in (4), we should first update the entropy

of each attribute. Since the attribute entropy is always

changing when outliers are detected and removed from the

data set, the direct computation of HXnfxogðyiÞ is very time-

consuming. By a line of reasoning similar to the proof of

Proposition 3, the unweighted differential holoentropy

HLXðYÞ �HLXnfxogðYÞ can be deduced as follows:

HLXðYÞ �HLXnfxogðYÞ

¼ m a

b
� a

� 	
log a� bþ 1ð Þ log b

h i
� bHLXðYÞ

þ a
Xm
i¼1

0; if nðxo;iÞ ¼ 1;

� nðxo;iÞ
� �

; else:

( ð11Þ

Based on this expression, we can obtain the simple

updated form of the holoentropy HLXnfxogðYÞ as
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HLXnfxogðYÞ ¼ ð1þ bÞHLXðYÞ �m
a

b
� a

� 	
log a� bþ 1ð Þ log b

h i

� a
Xm
i¼1

0; if nðxo;iÞ ¼ 1;

�
�
nðxo;iÞ

�
; else:

(

From this, the formula for each individual attribute entropy
HXnfxogðyiÞ is obtained

HXnfxogðyiÞ ¼ ð1þ bÞHXðyiÞ

� a

b
� a

� 	
log a� bþ 1ð Þ log b

h i

� a
0; if nðxo;iÞ ¼ 1;

� nðxo;iÞ
� �

; else:

( ð12Þ

This can be efficiently implemented in a step-by-step process.
After calculating the entropy by (12), we can easily compute
the updated attribute weight using (4). Finally, using
Definition 5, the outlier factor can be efficiently updated.

4.3 Upper Bound on Outliers

In unsupervised outlier detection, the majority of objects in
a data set are supposed to be normal objects [1]. How can
we estimate an upper limit on the number of outliers in a
data set? And how can we divide the data set into normal
objects and anomaly (outlier) candidates? In this section, we
introduce three new concepts: the upper bound on outliers
(UO), the anomaly candidate set (AS), and the normal
object set (NS).

These concepts are constructed on the assumption that
eliminating outliers will improve the purity of the data set
and that this process reducesWXðYÞ. When a normal object
is removed from the data set, the value of WXðYÞ should
increase. Thus, the objects with positive ĥðxiÞ are defined as
the anomaly candidate set (AS), AS ¼ fxi; jĥðxiÞ > 0jg. The
objects with nonpositive ĥðxiÞ are defined as elements of the
normal object set (NS), NS ¼ fxi; jĥðxiÞ � 0jg. The number
of objects in AS is defined as UO

AS ¼ fxi; jĥðxiÞ > 0jg;

UO ¼ NðASÞ ¼
Xn
i¼1



ĥðxiÞ > 0

�
:

ð13Þ

AS will be used as the outlier candidate set; i.e., only the
UO objects from AS will be examined by our algorithms.
For instance, the UO in Fig. 1a is 2, the AS contains two
elements {a1, b2} and {b1, c2}, and the rest of the objects
fa1; a2g are normal objects. Later in the paper, we will
provide extensive evidence on the adequacy of limiting the
outlier search to AS. It is worth pointing out that the normal
object set NS can be of great interest as the candidate set for
frequent-item mining and class-profile building. In this
paper, we are focusing only on the use of AS for outlier
detection. For the experimental data sets, the UO values are
listed in Table 5. Note that the average UO is about 0:21n.

4.4 ITB-SP and ITB-SS Algorithms

In this section, we make use of the outlier factor defined in
section 4.1 to derive two greedy algorithms for outlier
detection. One is named ITB-SS for Information-Theory-
Based Step-by-Step (or SS for short), the other one is named
ITB-SP for Information-Theory-Based Single-Pass (or SP

for short). Both algorithms detect outliers one by one. At
each step of SS, the object with the largest OF ðxoÞ is
identified as an outlier and is removed from the data set.
Following this removal, the outlier factor OF ðxÞ is updated
for all the remaining objects. The process repeats until o
objects have been removed. In SP, the outlier factors are
computed only once, and the o objects with the largest
OF ðxÞ values are identified as outliers. In both algorithms,
search is conducted only within the anomaly candidate set
AS, although this does not make any difference for the
algorithm ITB-SP since the initialization of AS requires
computation of the outlier factors of all the objects. ITB-SS
does benefit, however, from the reduced search space. In
designing the two algorithms, we assumed that the number
of requested outliers o is always smaller than UO.
Experimental results in the next section show that AS is
indeed large enough to include all the candidate objects
that can reasonably be considered as outliers. Nevertheless,
only minor modifications need to be made if a user wants
to obtain more than UO “outliers.”

Let’s look at the time complexity of ITB-SP (Algorithm 1).
In ITB-SP, the attribute weights wXðyiÞð1 � i � mÞ, the
OF ðxiÞ of all the objects, initialization of AS and
the heapsort search to find the top-o outlier candidates are
computed. The time complexity of computing wXðyiÞ and
OF ðxiÞ, including initialization of AS, is OðmnÞ, and the
time cost of top-o searching is OðnlogðoÞÞ. Since the value of
logðoÞ is always much smaller than the number of attributes
m in real applications, the final time complexity of ITB-SP
can be written as OðnmÞ.

Algorithm 1. ITB-SP single pass

1: Input: data set X and number of outliers requested o

2: Output: outlier set OS

3: Compute wXðyiÞ for ð1 � i � mÞ by (4)

4: Set OS ¼ �
5: for i ¼ 1 to n do

6: Compute OF ðxiÞ and obtain AS by (13)

7: end for

8: if o > UO then

9: o ¼ UO
10: else

11: Build OS by searching for the o objects with greatest

OF ðxiÞ in AS using heapsort

12: end if

For ITB-SS (Algorithm 2), the attribute weights, initial
outlier factors including initialization ofAS, and the step-by-
step top-ooutlier selection procedure are computed. The time
cost of attribute weights, initial outlier factors, and initializa-
tion of AS is OðmnÞ, and the time complexity of step-by-step
top-o outlier selection from step 11-15 is OðomðUOÞÞ. Thus,
the overall complexity isOðnmþ omðUOÞÞ. Considering that
oðUOÞ is usually larger than n, it is possible to say that the
final complexity of ITB-SS is OðomðUOÞÞ. Compared with
ITB-SP, the time complexity of the ITB-SS method is a little
higher.

Algorithm 2. ITB-SS Step-by-Step

1: Input: data set X and number of outliers requested o

2: Output: outlier set OS

3: Set OS ¼ �
4: Compute wXðyiÞ for ð1 � i � mÞ by (4)
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5: for i ¼ 1 to n do

6: Compute OF ðxiÞ and obtain AS by (13)

7: end for

8: if o > UO then

9: o ¼ UO
10: else

11: for i ¼ 1 to o do

12: Search for the object with greatest OF ðxoÞ from

AS

13: Add x0 to OS and remove it from AS

14: Update all the OF ðxÞ of AS
15: end for

16: end if

5 EXPERIMENTS

In this section, we conduct effectiveness and efficiency tests

to analyze the performance of the proposed methods. To test

effectiveness, we compare ITB-SS and ITB-SP with compet-

ing methods on synthetic and real data sets. For the

efficiency test, we conduct evaluations on synthetic data

sets to show how running time increases with the number of

objects, the number of attributes and the number of outliers.

5.1 Compared Methods and Experiment Outline

For our experiments, we implement and compare our

algorithms with several mainstream methods for categorical

outlier detection. These representative methods include

CNB from the proximity-based approach and FIB and OA

from the rule-based approach. Since the anomaly candidate

set (AS) is utilized as a pruning facility to reduce the time

complexity of the proposed methods, ITB-SS and ITB-SP

can be considered as top-N outlier detection methods [47].

To the best of our knowledge, for categorical outlier

detection, there is no other clear claim in the literature of

a top-N outlier detection method. Some efficient top-N

methods do exist for numerical outlier detection [43], [44],

but these methods cannot be easily adapted to deal with

categorical data because to reach the top-N they explore

properties of their distance measures that are difficult to

generalize to categorical data. In a preliminary test, we tried

to adapt the LOF method [19] and its efficient top-N

variation [43] with a microcluster pruning mechanism [44]

to categorical data sets. The adapted methods did not work

very well in our experiments. For reasons of fairness, we

decided not to include any comparison with an adapted
method from numerical outlier detection.

Various experimental results are reported in this section.
To evaluate the proposed methods, we begin by comparing
the performance of ITB-SS and ITB-SP with the optimal
solutions obtained by exhaustive search on a small real data
set. Although limited in the size of the test data set, this
experiment illustrates that the proposed methods are able to
provide very good solutions to the high-complexity
optimization problem. Experiments on different synthetic
data in this section can be used as evidence to illustrate the
effectiveness and stability of the proposed methods for
large-scale data sets. Outlier factors of different methods are
compared to gain a better understanding of the advantage
of the proposed methods. Extensive comparisons on real
data sets allow us to judge the effectiveness of the proposed
methods in comparison with other methods. Moreover, we
include in these comparisons the detection performance of
ITB-SS and ITB-SP in both their weighted and unweighted
versions. This illustrates the benefit and importance of
weighting the attributes. Finally, to evaluate the efficiency
of the proposed methods, synthetic data sets are utilized to
test the run time w.r.t. increasing numbers of objects,
attributes, and outliers.

5.2 Effectiveness Test

5.2.1 Evaluation of Approximation

This section reports on experiments conducted to see
whether the solutions obtained by ITB-SS and ITB-SP are
close to the optimal solutions obtained by optimizing the
object function JXðY; oÞ. The data set used is the public,
categorical “soybean data” [50], with 47 objects and
35 attributes. This data contains a very small class of
10 objects (numbers 11 to 20 in the original data set). Since
the data does not have explicitly identified outliers, it is
natural to treat the objects of the smallest class as “outliers.”
Therefore, we should check whether objects from this class
will be detected for o ¼ 1; . . . ; 10.

Table 3 shows different sets of “outliers” obtained by
ITB-SP, ITB-SS, and the optima for different values of o. The
JXðY; oÞ values in bold-faced letters indicate the cases
where non-optimal sets were detected by either ITB-SP or
ITB-SS, while the subsets of objects 11 to 20, which
originally belong to the smallest class, found by strictly
optimizing the JXðY; oÞ are taken as reference sets of
optimality. It can be observed that ITB-SS seems to be quite

WU AND WANG: INFORMATION-THEORETIC OUTLIER DETECTION FOR LARGE-SCALE CATEGORICAL DATA 597

TABLE 3
Comparison among ITB-SP, ITB-SS, and Optimal Solutions on Soybean Data



effective, since it falsely detects an outlier subset only once
in the 10 tries. As can be anticipated, ITB-SP makes more
mistakes (5 out of 10 subsets). Nevertheless, the ITB-SP
process is able to approximate the optimal solutions quite
well when more and more outliers are detected. Also, if we
look at the outlier output of each detection step, there is
never more than one wrongly detected object. Similar
phenomena have been observed with our other evaluations
of approximation experiments.

5.2.2 Test of Outlier Factors

The experiments reported in this section help to understand
why ITB-SS and ITB-SP are effective in solving the outlier
detection problem. Here, we show some important differ-
ences between the outlier factors used in different algo-
rithms. For this purpose, we make use of a synthetic data
set, illustrated in Table 4 by y1; . . . ; y8, and compare the
outlier factor values, also illustrated in Table 4. The
13 objects are different from each other. In order to visualize
the data set, we draw a two-dimensional representation in
Fig. 2, using the principle of graph drawing [26]. In this
graph, the vertices indicate the objects and the edges
represent the similarity between objects, where all the
similarities are 1. The columns CNB, FIB, OA, and ITB show
the outlier factor values of each object obtained by the
compared methods. Note that for OA, CNB, and ITB, an
object with a larger outlier factor is more likely to be an
outlier, while for FIB the opposite is true. The column ITB
represents OF ðxoÞ defined in this paper. The settings of the
parameters for the other methods, are as follows: similarity
threshold and number of nearest neighbors in CNB are set
to � ¼ 0:1 and k ¼ 2; minimum support rate in OA and FIB
is set to SupRate ¼ 0:1.

The results indicate that our proposed factor OF ðxoÞ
for ITB better reflects the intuitive understanding of the
data set. Specifically, the column CNB shows that all
objects obtain the same outlier factor value. So for CNB,
all the objects are equally likely to be outliers. FIB and
OA make a similar distinction between objects 5-9 and
the rest of the objects. They improve on the assessment of
CNB by assigning a greater likelihood of being outliers to
objects 1-4 and 10-13. It is ITB that provides the most
precise assessment. It indicates that object 7 in the middle
of the data set is less likely to be an outlier than objects 5,
6, 8, and 9, which are similar to each other but have a

common similar object 7. Moreover, objects 5, 6, 8, and 9
are less likely to be outliers than objects 1-4 and 10-13,
each of which is similar to only two other objects. These
differences are important indices used by ITB-SP and ITB-
SS to accurately identify the most likely outlier candidate.

5.2.3 Test on Real Data Sets

A large number of public real data sets, most of them from
UCI [50], are used in our experiments, representing a wide
range of domains in science and the humanities. Some of
them have already been used as benchmarks for intrusion
and outlier detection [7], [10], [11]. Some data sets such as
web-advertisement [50]1 and sampled KDD Cup 1999 Data
[50]2 contain already labeled anomaly objects. The others
are categorical or mixed-type data sets with class labels
representing many different data distributions in the real
world. For these data, we use the same strategy as [10], [11]
to choose the objects in the smallest classes as the most
likely anomalies.

Numeric attributes in these real data sets are, for the sake
of simplicity, discretized by 10-bin discretization [48]. It is
possible to adapt ITB-SS and ITB-SP to continuous
attributes either through extending the holoentropy, or
through a more sophisticated discretization method [48],
e.g., equal distance discretization, equal frequency discre-
tization, unsupervised clustering methods and so on. But
this may require an extensive effort and will be investigated
as part of our future work. For the experiments in this
paper, the adopted discretization scheme is fair for all the
tested algorithms.

The other general setting of our experiments is as
follows: all the missing values are replaced with the modes
in the corresponding categorical attributes. The Area Under
the Curve (AUC) (curve of detection rate and false alarm
rate) [1], [2] and significance test are used to measure the
performance. The AUC results of different methods and the
characteristics of all test data sets, such as the numbers of
objects (#n), attributes (#m) and outliers (#o), and the upper
bound on outliers (#UO), are summarized in the upper part
of Table 5. There is no result for CNB on the KDD data set
because the time and space complexities of CNB are too
high for this large set. Similarly, there is no result for either
FIB or OA on the web advertisement data set, because the
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Fig. 2. Graph drawing of the synthetic data set.

TABLE 4
Outlier Factors of Different Methods on a Synthetic Data Set

1. The web-advertisement data represents a snapshot of image
advertisements that have appeared on Internet pages. It is composed of
major objects of “normal” images and some “bad” images, i.e.,
advertisements.

2. The 10-percent KDD Cup 1999 Data has some attacks and “good”
normal connections. Since the number of attacks is greater than the number
of normal connections, we select a total of 157,663 normal objects and
randomly choose 11,213 attacks to make the “bad” objects occupy a small
part of the whole data set.



dimensionality of this set is too large for FIB and OA. The
bold-faced AUC indicates the best method(s) for a
particular data set. The parameters in the compared
algorithms are set as suggested, i.e., � ¼ 0:3, k ¼ 5 in CNB
and SupRate ¼ 0:3, MaxItem ¼ 5 in FIB and OA.

The results reported in Table 5 warrant a number of

comments. First, between the weighted and unweighted

versions of the proposed methods, the results in the last

four columns of Table 5 show that the performance of the

weighted version generally surpasses that of the un-

weighted version. These results are evidence of the

importance of capturing attribute weights. Moreover, the

Average line indicates that the improvement of ITB-SS over

unweighted ITB-SS is much more significant than the

improvement of ITB-SP over unweighted ITB-SP. This

difference can be explained by the repeated weight

updating in the ITB-SS method each time an outlier is

detected and removed, whereas ITB-SP does not involve

weight updating. We remark that the unweighted ITB-SP

and the unweighted ITB-SS do outperform their weighted

counterparts occasionally. This may be caused by the way

“outliers” are determined and by nonrepresentative objects

that do not allow reliable estimation of attribute weights.
Now, let us look at the comparison between our

proposed methods and the compared methods. The results
in Table 5 reveal that our proposed methods are more
effective than CNB, FIB, and OA. The table shows that ITB-
SS outperforms these methods on more than 70 percent of

all data sets. The Average row of the AUC value also

indicates that ITB-SS performs much better overall than the

other methods, followed by ITB-SP, FIB, and OA. More

importantly, ITB-SS is effective on the large data set KDD

and on the high-dimensional data set web-ad.
In order to determine whether the differences in outlier

detection accuracy are statistically significant, we perform a

pairwise comparison. The results are presented in Table 6.

Each cell in the table contains the number of data sets for

which the method in the row, i.e., ITB-SP or ITB-SS, wins,

loses, or ties relative to the corresponding method in the

column, over the selected 21 data sets. For detecting ties

(statistically similar results), we use a two-tailed T-Test [15]

with a significance level of 0.005. The pairwise comparison

shows that ITB-SP and ITB-SS are more accurate than the

other methods on these data sets. ITB-SS outperforms every

other method in at least 13 data sets, and underperforms in

at most 4 of them. ITB-SP, although not as effective as ITB-

SS, outperforms the other compared methods on at least

11 data sets and loses on at most 5 data sets.
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TABLE 5
AUC Results of Tested Algorithms on the Real and Synthetic Data Sets

TABLE 6
Results of Significance Test (Win/Lose/Tie)



5.2.4 Test on Synthetic Data Sets

We also compare the effectiveness of different methods on
synthetic data sets in a relatively ideal setting, since the
generated outliers are usually more distinctive than those in
real data and the outliers “truth” can be used to verify
whether an outlier algorithm is able to find them. Four
experiments are reported in the bottom part of Table 5,3

where the outliers take up 5 percent of the corresponding
data set. In fact, to generate each test set, the data generator
[51] is first used to generate rule-based categorical data sets
with 10 clusters. Then 95 percent of the objects of the test set
are obtained by randomly choosing from three of the ten
generated clusters. These are considered to be normal
objects. On the other hand, 5 percent of objects are
randomly chosen from the remaining clusters and are
considered to be outliers.

The results in Table 5 and in our other nonreported
experiments show that synthetic data sets are in general too
easy for ITB-SS and ITB-SP, as they often achieve near-
perfect results. In general, these experiments confirm that
the performance of CNB, FIB, and OA is acceptable when
the dimensionality of the data is not too high. Their
performance declines quickly with an increasing number
of dimensions. Increasing data size seems to hurt the
performance of these methods too, but more extensive
experiments are needed to draw a definitive conclusion.

5.3 Efficiency Test

To measure the time consumption with increasing num-
bers of objects, attributes and outliers, we employ GAClust
[49] to generate synthetic data sets for these experiments.
In the “objects increasing” test, the number of objects
is increased from 3,000 to 120,000. In the “attributes
increasing” test, the number of attributes increases from 6
to 30.4 In the “percentage of outliers increasing” test, we
assume the percentage of outliers in a data set is increased
from 10 to 50 percent. The results are shown in Fig. 3. All
of the compared methods were implemented with C++,

and run on a desktop with Intel Core 2 Quad processor
(clocked at 2.4 GHz) and 4 G memory.

As Fig. 3a indicates, the run times of ITB-SP, ITB-SS, and
FIB are almost linear functions of the number of objects. FIB
has a higher increase rate than ITB-SP and ITB-SS. From the
theoretical analysis, we know that the time complexity of
CNB [11] increases quadratically with the number of objects,
which is confirmed by the experimental data of Fig. 3a. For
the attributes increasing test, Fig. 3b shows that the run
times of the FIB and OA increase rapidly with the number of
attributes, which closely matches the theory that the time
complexities of FIB [10] and OA [7] increase quadratically
with the number of attributes. Compared with the time
increase of FIB and OA, the increases for the other methods
are too small to be noticeable on the figure. Fig. 3c illustrates
the run time as a function of the percentage of “outliers” in
the data set each method is asked to search for. The time axis
is in the log(10) scale. The run times of CNB, OA, and FIB
remain almost fixed with the “outlier percentage.” Those of
ITB-SP and ITB-SS methods increase linearly, but remain
much lower than those of other methods even for very high
“outlier percentages.”

The three efficiency tests suggest ITB-SP and ITB-SS are
efficient. They are particularly appropriate for large data
sets with high dimensionality, and are also suitable for data
sets with a high percentage of outliers. The CNB algorithm
is not suitable for large data sets. The FIB and OA
algorithms are not suitable for high-dimensional data sets,
due to their high time complexities.

6 CONCLUSION

In this paper, we have formulated outlier detection as an
optimization problem and proposed two practical, unsu-
pervised, 1-parameter algorithms for detecting outliers in
large-scale categorical data sets. The effectiveness of our
algorithms results from a new concept of weighted
holoentropy that considers both the data distribution and
attribute correlation to measure the likelihood of outlier
candidates, while the efficiency of our algorithms results
from the outlier factor function derived from the holoen-
tropy. The outlier factor of an object is solely determined by
the object and its updating does not require estimating the
data distribution. Based on this property, we apply the
greedy approach to develop two efficient algorithms, ITB-SS
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3. Since FIB and OA have high time complexities with attributes and
CNB is not able to deal with large data sets, we have set relatively small
upper limits for the numbers of attributes and of objects, i.e., 100 and 5,000,
respectively. Our algorithm is effective to deal with large-scale data sets,
e.g., the KDD data set with 168,876 objects and the web advertisement data
set with 1,558 attributes.

4. To avoid the high time costs of FIB and OA, we set a relatively small
upper limit on the number of attributes, i.e., 30 in this test.

Fig. 3. Results of efficiency test on synthetic data sets.



and ITB-SP, that provide practical solutions to the optimiza-

tion problem for outlier detection. We also estimate an

upper bound for the number of outliers and an anomaly

candidate set. This bound, obtained under a very reasonable

hypothesis on the number of possible outliers, allows us to

further reduce the search cost.
The proposed algorithms have been evaluated on real

and synthetic data sets, and compared with different

mainstream algorithms. First, our evaluations on a small

real data set and a bundle of synthetic data sets show that

the proposed algorithms do tend to optimize the selection

of candidates as outliers. Moreover, our experiments on real

and synthetic data sets in comparison with other algorithms

confirm the effectiveness and efficiency of the proposed

algorithms in practice. In particular, we show that both of

our algorithms can deal with data sets with a large number

of objects and attributes.
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