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ABSTRACT
In social media, users have contributed enormous behavior data
online which can be leveraged for user modeling and conduct
personalized services. Temporal user modeling, which incorpo-
rates the timestamp of these behavior data and understands users’
interest evolution, have attracted attention recently. With the recog-
nition that user interests are vulnerable to transient events, many
current temporal user modeling solutions propose to first identify
the transient events and then consider the identified events into user
behavior modeling. In this work, in the context of microblogs,
we propose a unified probabilistic framework to simultaneously
model the process of transient event detection and temporal user
tweeting. The outputs of the framework include: (1) one long-term
topic space spanning over general categories, (2) one short-term
topic space for each time interval corresponding to the transient
events, and (3) users’ interest distributions over the long- and
short-term topic spaces. Qualitative and quantitative experimental
evaluation are conducted on a large-scale Twitter dataset, with more
than 2 million users and 0.3 billion tweets. The promising results
demonstrate the advantage of the proposed topic models.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
temporal user modeling, topic model, event detection, microblogs

1. INTRODUCTION
The huge amount of User Generated Content (UGC) online

has made the exploration and discovery of interesting resources
extremely difficult. Traditional “one-to-all” strategy is no more
adequate towards users’ customized demands. Understanding
the customized interests by building user profiles has stood out
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for solutions, and enabled “one-to-one” personalized information
services. One of the most critical issues in building user profiles
is the dynamicity problem, i.e., users’ interests vary over time
and should be reflected in their profiles [1]. Modeling users’
temporal profiles can help providing more qualified services, e.g.,
recommending timely news to users by capturing their temporal
interest shifting [2, 3], providing the right ad at the right time by
analyzing users’ recent shopping-related activities [4, 5].

One fundamental solution for temporal user modeling is based
on the assumption that users’ dynamic preferences are affected
by both the long-term and the short-term interests [6, 2, 7, 8, 9,
10]. Long-term interests indicate users’ stable preferences and
distribute over general topic, e.g., the intrinsic interests in politics
and sports. While short-term interests are generally consistent
with long-term interests, they usually distribute over more specific
topics and are changeable over time, e.g., the focuses on “Crimean
crisis” at March, 2014, and “FIFA World Cup” around July, 2014.
Successfully capturing the short-term interest evolvement will
facilitate user preference understanding both in a timely fashion
and at a fine-grained level, which is critical for personalized
information services.

On microblogging websites, such as Twitter and Weibo, users’
temporal behaviors are recognized to be affected by transient
events [11], such as new product release and social breaking news.
The dominant solutions conduct short-term interest modeling by
investigating the interplay between users’ temporal behaviors with
the transient events detected in advance. For example, [2] first
recognizes trending entities at specific periods and then represent
users’ short-term interests over these trending entities; [12] models
user posting behavior as a generative process influenced by the
breaking news, which are identified in advance by examining the
bursty keywords. The current solutions separating the transient
event detection and temporal user modeling suffer from two prob-
lems: (1) As illustrated from the example in Figure 1, the transient
events and users’ temporal behaviors are mutually influenced [13]:
on one hand, transient events are identified from aggregated user
behaviors; on the other hand, users’ temporal behaviors are largely
affected by the transient events, which results in the short-term
interest evolvement. It is difficult to say influence in which
direction happens first and is more significant. (2) The identified
transient events beforehand are not well compatible with the task
of temporal user modeling. For example, in [2, 12], transient
events are represented by a set of bursty entities/keywords at each
time interval. Different events mix with each other if they happen
within the same time interval. However, for short-term interest
modeling, users’ interplay with the respective transient events is
desired. Moreover, independently performing event detection will
lead to loss of transient events which are important to understand
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Figure 1: The interplay between users’ temporal behaviors and
the transient events.

short-term interest evolvement. For example, a local event, though
significantly affecting the online behaviors of local users, will
be drowned in a global fashion and thus cannot be identified to
facilitate the task of temporal user modeling.

To address the above problems, in this paper, we propose a
probabilistic framework for temporal user modeling on microblogs,
where transient event detection and user tweeting modeling are
conducted simultaneously. The user tweets are modeled in a fully
generative way: one tweet by a specific user at a specific timestamp
is generated either from his/her long-term interest or from his/her
short-term interest at this time interval. The long-term interest is
expected to distribute over the general topics in a global timeline.
While, the short-term interest distributes over the temporal topics
discovered at each corresponding time interval, which basically
indicates the transient events. The model operates in a unified way,
by inputting the user tweets attached with the posted timestamps,
and outputting one long-term topic space, N short-term topic
spaces 1, and users’ long-term and short-term interest distributions.
The advantages of this framework include: (1) Event detection and
user modeling are conducted simultaneously in a unified topic-
based framework. The simultaneity is consistent with the event-
user behavior interplay that happened in real world. (2) The unified
framework makes it possible to describe events and model users at
the topic level. From the perspective of event detection, multiple
transient events within one time interval are allowed and the
compactness for each event representation is guaranteed. From the
perspective of user modeling, both user interests over the general
topics and user responses to the transient events are obtained.

The remainder of this paper is organized as follows: section 2
provides a brief review of related work on temporal user modeling,
section 3 formally presents the proposed probabilistic topic models
and elaborates the model learning and update solutions, followed
by the experimental results and analysis in section 4. Finally in
section 5, we conclude this work with future directions.

2. RELATED WORK
The goal of temporal user modeling is to capture the dynamic

characteristics of users’ interests over time. Researchers have
proposed many solutions towards this goal. One straightforward
idea is to record users’ behaviors in time order and build user
profiles at each time interval for temporal information services. For
example, Zimdars [14] conducted an early work by extending the
1 N is the number of time intervals. Each short-term topic space
corresponds to the identified temporal topics (transient events) within this
time interval. In the rest of this paper, we will mix using “temporal topics”
and “transient events” when no ambiguity is caused.

traditional collaborative filtering (CF) with time order information.
With the aim to predict future user behaviors based on the history
temporal data, this research line is much promoted by the famous
Netflix Prize competition. The Netflix award winning algorithm
timeSVD++ [15] records the history user ratings in a factorization
model and conducts prediction by setting bias at each specific
time interval. Another popular temporal solution on the Netflix
dataset is a Bayesian Probabilistic Tensor Factorization (BPTF)
model [16], where users, items and time are represented in three-
order tensors, and prediction is conducted in the shared low-
dimensional factor space. In the context of microblogs, Abel et
al. [17] proposed to represent temporal Twitter user profiles as
a set of weighted concepts at each time interval, and conducted
personalized website recommendation directly based on the cosine
similarity. A recent work on Weibo incorporates the time factor
into the matrix factorization model, SocialMF [18], and expresses
user dynamic interests as a series of temporal matrices [11].

Another line for temporal user modeling is to analyze the user
interest evolvement. The basic idea in most of the work is to
emphasize on the new data and reduce the data’s importance
by time. In [19], a modified collaborative filtering algorithm
weighted by time is proposed for temporal recommendation. An
exponential time decay function is designed to calculate the time
weights for different history user behaviors. A similar temporal
user modeling solution is introduced in [20], where the interests’
weights are reduced by time if they are not involved by the
user until they disappear. Michlmayr and Cayzer [21] modeled
user interest evolvement from two perspectives. They added
evaporation and reinforcement operations to reduce the weight of
old tagging data and increase the weight of repeated tagging data,
respectively. An online evolutionary collaborative filtering model
is proposed in [22], where temporal information is incorporated
into an incremental updating algorithm to track the user interest
evolvement over time. Recently, Ceren et al. [23] introduced their
user interest inference work from microblogs. For modeling the
interest evolution over time, a Markov like assumption is made: the
current user interest is a function of the interests in previous time
intervals and the estimate of interest at the current time interval.

Our work belongs to the third research line, which explicitly sep-
arates the dynamic component of user interests and build temporal
user profiles from both long- and short-term interests. Xiang et
al. [6] proposed a session-based temporal graph model to capture
users’ dynamic preferences on the social bookmarking websites,
where all items viewed by a user construct his/her long-term
interests and the items viewed at a given time interval construct the
short-term interests. In [7], regarding history queries and clicked
documents, the interaction between short- and long-term behaviors
is investigated. An effective hybrid model is proposed for search
personalization. Yang et al. [8] proposed a local implicit feedback
model for temporal music recommendation, where local and global
information are represented by implicit feedback and combined to
capture users’ stable and local changeable preferences.

As mentioned in Introduction, users’ temporal behaviors are
largely affected by the transient events, especially in the context of
microblogs. In [2], the interaction between user dynamic interests
and public trends on Twitter are investigated. The public trend at
a given time interval is identified as a set of weighted entities in
advance. Similarly in [12], the authors first detected the breaking
news on Twitter from emerging bursty keywords, and then model
the user tweeting behavior as influenced by the detected breaking
news. Recently, Deng et al. [10] presented a cross-network
solution to model the short-term interests, by discovering user-
specific transient events on Twitter and conducting personalized
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video recommendation on YouTube. These work largely ignore
the mutual influence between transient events and users’ temporal
behaviors. This leads to the mixed and biased events towards the
task of temporal user modeling. The most related work to this paper
is [9], which models the fully generative process of user ratings as
influenced both by the user-oriented topics and the time-oriented
topics. The user- and time-oriented topics generally correspond
to the long- and short-term interests. However, in their proposed
topic model: (1) The proposed topic model in [9] is designed and
evaluated on the bookmarking websites, e.g., MovieLens, Digg,
Douban Movie, etc. The rating behaviors from all time shared
the same time-oriented topic space, making it difficult to identify
the real transient events at each time interval, especially in the
context of noisy microblogs. For example, some long-standing
words will be mixed into time-oriented topics and disturb the
short-time interest modeling; (2) Within certain time interval, all
users share the same temporal context, i.e., time-oriented topic
distribution, and no user-specific temporal topic distribution is
obtained. This actually assumes that all users take unique responses
to the discovered transient events. In this paper, we obtain topic
spaces for different time intervals and short-term topic distribution
is assumed for each user: the derived short-term topics indicates the
transient events at each time interval, and the user-specific topic
distribution over the discovered short-term topics reflects user’s
response/interest to the transient events.

3. THE APPROACH

3.1 Preliminaries
To model the generation of user’ tweets, the proposed generative

model is based on the standard topic model, or Latent Dirichlet
Allocation (LDA [24]). Fig. 2(a) shows the graphical model of
LDA. The generative process is assumed in a corpus-document-
word structure, where the corpus consists of D documents and
document d has Nd words. α and β are fixed parameters of
symmetric Dirichlet priors for the D document-topic multinomials
θ and the K topic-word multinomials ϕ. For each document d, the
Nd words are generated by drawing a topic k from the document-
topic distribution p(z|θd) and then drawing a word w from the
topic-word distribution p(w|z = k, ϕk).

Since we intend to model the generation of user’ tweets as
influenced by alternative sources, an important extension to the
standard topic model, LDA with switch variable is also introduced
(as shown in Fig. 2(b)). The latent variable x acts as a switch: if
x = 1, the previously described standard topic mechanism is used
to generate the word, whereas if x = 0, words are sampled from
a background distribution specific for the corpus [25]. The corpus-
specific background distribution can be viewed as a general topic
consisting of words that are commonly used across a broad range of
documents in the corpus. The full generation process is described
in Table 1. The conditional probability of generating a word w
given a document d can be written as:

p(w|d) = λd · ψw + (1− λd) ·
K∑

k=1

θd,zkϕzk,w (1)

where λd = p(x = 0|d), 1 − λd = p(x = 1|d), ψw is
the probability of generating w from the background distribution,
θd,zk = p(zk|θd) is the document-topic distribution that document
d selects the kth topic, and ϕzk,w = p(w|zk) is the topic-word
distribution that generates w from the kth topic. By sampling the
switch variable x for each word token, the common words can be
identified (with sampled switch variable x = 0) and separated

(a) (b)

Figure 2: Graphical models for (a) the standard LDA topic
model; and (b) topic model with switch variable enabling
alternative generation sources.

Table 1: The generation process of LDA with switch variable.

1. Draw background multinomial distribution ψ ∼
Dir(β0).

2. For each topic k = 1, · · · ,K:
(a) draw topic-word multinomial distribution ϕk ∼

Dir(β1).
3. For each document d:

(a) draw document-topic multinomial distribution θd ∼
Dir(α);

(b) draw bernoulli distribution λd ∼ Dir(γ);
(c) for each word wd,i in document d:

i. draw a topic zd,i ∼ Multi(θd);
ii. draw a switch variable x ∼ Bernoulli(λd);

iii. draw wd,i ∼ Multi(ψ) if x = 0, and wd,i ∼
Multi(ϕzd,i) if x = 1.

to construct the background topic, making the K other topics
focused on specific aspects of the corpus. We can see that, by
introducing the switch variable, topic model is able to explain the
observed words in alternative ways. Extensive work have exploited
this potential of switch variable with topic models to discover the
broader structure of data [26, 27, 25].

3.2 The Proposed Topic Model
This subsection introduces the proposed probabilistic topic mod-

el for temporal user modeling on microblogs. Specifically, we take
tweets from Twitter as running example for elaboration. We follow
the notations used in the standard LDA when possible.

3.2.1 Temporal User Modeling (TUM) model
As mentioned in Introduction, we explain users’ temporal pro-

files as decomposed into long-term interests and short-term inter-
ests. From a generative perspective, user tweets can be assumed as
an aggregated result from users’ long-term and short-term interests.
Inspired by the above introduced topic model, we realize this
assumption by setting a similar binary switch variable x to control
the generation source of the observed words w, i.e., either from a
long-term topic zL or from a short-term topic zS . Since short-term
interests should distribute over different time intervals, an observed
variable t is further introduced to record the posted timestamp of
the tweet. That is, once the switch variable of generation source
is sampled as short-term interest, the short-term topic spaces ψt of
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Figure 3: Probabilistic generative model of TUM.

the specific time interval t that the tweet was posted is selected to
generate the word. In this case, since the topic spaces obtained for
different time intervals are expected to indicate the transient events,
users’ short-term interests actually distribute over the transient
events at the corresponding time intervals, i.e., the responses to
the transient events reflect users’ short-term preferences and affect
their temporal tweeting behaviors.

Fig. 3 illustrates the graphical structure of the proposed Temporal
User Modeling (TUM) model. The full generation process is de-
scribed in Table 2. This model includes three sets of variables, i.e.,
the parameters {Φ,Ψ,ΘL,ΘS ,λ}, the latent variables {X,Z},
and the observation W . We use Gibbs Sampling to generate
samples for the latent variables and then calculate the desired
parameters. Given the graphical model and generative process, it
is straightforward to derive the full conditional probability of the
latent variables for each word token wu,i:

p(xu,i = 0, zu,i = k|Xu,¬i, Zu,¬i,W ; ·) ∝
CU,X(u, 0) + γ

CU (u) + 2γ
· CU,X,Z(u, 0, k) + αL

CU,X(u, 0) +KLαL
·

CX,Z,W (0, k, wu,i) + βL

CX,Z(0, k) + |V|βL

(2)

p(xu,i =1, zu,i = k|Xu,¬i, Zu,¬i,W ; ·) ∝

CU,X(u, 1) + γ

CU (u) + 2γ
·
CU,X,T,KS (u, 1, tu,i, k) + αS

CU,X,T (u, 1, tu,i) +KSαS
·

CX,T,KS ,W (1, tu,i, k, wu,i) + βS

CX,T,KS (1, tu,i, k) + |V|βS

(3)

where |V| denotes the size of the word vocabulary, tu,i denotes
the time interval when the word wu,i was posted, and C(·) stores
the number of samples satisfying certain requirements during the
iterative sampling process. For example, CU,X,T,KS (u, 1, tu,i, k)
indicates the number of words for user u that are supposed to be
generated from the short-term topic zk at time interval tu,i. Note
that for model derivation simplification, we assume all parameters
follow symmetric Dirichlet priors 2.

After a sufficient number of Gibbs sampling iterations, the
approximate posterior can be used to obtain estimates of the
desired parameters of topic spaces and user-topic distributions,
by examining the counts of sampled latent variables of Z,X .

2 The assumption for symmetric prior is easy to relax [28].

Table 2: The full generation process of TUM.

1. For each long-term topic k = 1, · · · ,KL:
(1) draw topic-word multinomial distribution ϕk ∼

Dir(βL).
2. For each time interval t = 1, · · · , T :

(1) for each short-time topic k = 1, · · · ,KS at the tth

time interval:
a. draw topic-word multinomial distribution ψt,k ∼

Dir(βS).
3. For each user u = 1, · · · , U :

(1) draw long-term user-topic multinomial distribution
θLu ∼ Dir(αL);

(2) for each time interval t = 1, · · · , T :
a. draw short-term user-topic multinomial distribu-

tion θSu,t ∼ Dir(αS).
(3) draw bernoulli distribution λu ∼ Dir(γ);
(4) for each word i = 1, · · · , Du:

a. draw a switch variable xu,i ∼ Bernoulli(λu);
b. if xu,i = 0, first draw a topic zu,i ∼ Multi(θLu ),

then draw wu,i ∼ Multi(ϕzLu,i
);

c. if xu,i = 1, first draw a topic zu,i ∼ Multi(θSu,t),
then draw wu,i ∼ Multi(ψt,zSu,i

). t is the time
interval that the word wu,i was posted.

Specifically, the MAP estimates are as follows:

ϕk,w =
CX,Z,W (0, k, w) + βL

CX,Z(0, k) + |V|βL
,

ψt,k,w =
CX,T,KS ,W (1, t, k, w) + βS

CX,T,KS (1, t, k) + |V|βs
,

θLu,k =
CU,X,Z(u, 0, k) + αL

CU,X(u, 0) +KLαL
,

θSu,t,k =
CU,X,T,KS (u, 1, t, k) + αS

CU,X,T (u, 1, t) +KSαS

(4)

3.2.2 TwitterTUM model
We also pursued a variant of TUM. In the context of microblogs,

e.g., Twitter, single tweet is recognized to usually involve with
one single topic [29]. In the above TUM model, the words in
the same tweet are sampled separately from different topics. In
practical implementation, it is reasonable to assume that users
express unique interest in the same tweet. Therefore, we modify the
TUM model by introducing an additive tweet plate and assuming
that one tweet can be generated from only one long-term and
one short-term topic. For example, user posted a tweet about the
semifinal match between Germany and Brazil expressing his/her
long-term interest in sports and short-term interest in 2014 FIFA
World Cup.

Specifically, in the generative process, one long-term topic
zLu,e and one short-term topic zSu,e are firstly sampled for the
tweet eu. The words in eu are then generated from either zLu,e
or zSu,e according to the sampling of switch variable x. This
constraint is consistent with user tweeting behavior and improves
the compactness of the derived topics, which helps discover more
meaningful transient events. The modified model is referred to
as TwitterTUM, whose graphical structure is shown in Fig. 4.
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Figure 4: Probabilistic generative model of TwitterTUM.

Table 3: The generation process of one user in TwitterTUM.

For each user u = 1, · · · , U :

(1) (2) (3): same with TUM in Table 2;
(4) for each tweet e = 1, · · · , Nu:

a. draw long-term topic zLu,e ∼ Multi(θLu );
b. draw short-term topic zSu,e ∼ Multi(θSu,t). t is the

time interval that the tweet e was posted.
c. for each word i = 1, · · · , Nu,e:

i. draw a switch variable xu,e,i ∼
Bernoulli(λu);

ii. draw wu,e,i ∼ Multi(ϕzLu,e
) if xu,e,i = 0, and

wu,e,i ∼ Multi(ψt,zSu,e
) if xu,e,i = 1.

Since the generation of the long-term and short-term topics remain
unchanged, we only summarize the generation process within the
user and tweet plates in Table 3. The following equations list the
main update rules in the Gibbs Sampling for TwitterTUM:

p(xu,e,i = 0|Xu,e,¬i, Z
L,W ; ·) ∝

CU,X(u, 0) + γ

CU (u) + 2γ
·
CZL,W (zLu,e, wu,e,i) + βL

CZL(zLu,e) + |V|βL
;

p(xu,e,i = 1|Xu,e,¬i, Z
S ,W ; ·) ∝

CU,X(u, 1) + γ

CU (u) + 2γ
·
CT,ZS ,W (tu,i, z

S
u,e, wu,e,i) + βS

CT,ZS (zSu,e) + |V|βS
;

p(zLu,e = k|X,ZL
u,¬e,W ; ·) ∝

CU,ZL(u, k) + αL

CU (u) +KLαL
·
Nu,e∏
i=1

(
CZL,W (k,wu,e,i) + βL

CZL(k) + |V|βL

)1−xu,e,i

;

p(zSu,e = k|X,ZS
u,¬e,W ; ·) ∝

CU,ZS (u, k) + αS

CU (u) +KSαS
·
Nu,e∏
i=1

(
CT,ZS ,W (tu,i, k, wu,e,i) + βS

CT,ZS (k) + |V|βS

)xu,e,i

.

3.3 Batch Training v.s. Incremental Update
In the above introduced model learning, we assume the user

tweets at all time intervals are observed simultaneously, and the
long- and short-term parameters are estimated from all the observed

data. We refer to this learning strategy as batch training. While,
in practical implementation, data arrive in a stream. Moreover,
the addressed temporal user modeling task needs the capability to
update model continuously. These all necessitate the introduction
of an incremental learning strategy to the proposed topic models.
To this end, in this subsection, using TUM as example, we present
an incremental learning strategy to scan new data on the basis of
time interval, which is referred to as incremental update.

In the incremental update learning strategy, batch training is
initially run on data of the first T0 time intervals, and the model
parameters are initialized as {Φ(T0),Ψ1:T0 ,Θ

L(T0),ΘS
1:T0

} ac-
cording to Eqn. (4). Here the superscript ·(T0) indicates the
parameter value after observing T0 time intervals, and the subscript
·1:T0 denotes the parameters from the first to the T0

th time
intervals. Henceforth, with the arrival of data W (t+1) in every
new time interval, fixing the value of old switch and topic latent
variables {X1:t, Z1:t}, we sample {X(t+1), Z(t+1)} for each new
word token by applying Eqn. (2) and Eqn. (3) conditioning on the
words observed so far. We can see that for long-term topics, all
the three components in Eqn. (2) are vulnerable to the samples in
the previous time intervals, while for short-term topics the second
and third components in Eqn. (3) are only decided by the analyzed
samples at the current time intervals.

Subsequently, the MAP estimates of the parameters are updated
using the sampled assignments of topic and switch variables to the
data at the new time interval. According to the generative process
described in Table 2, the short-term topics Ψ1:t and users’ short-
term interest distribution ΘS

1:t at the previous t time intervals are
not dependent on the incoming data, and thus should be fixed
during update. This is easy to understand as Ψ1:t corresponds
the occurred transient events and ΘS

1:t indicates users’ responses
to these events. Therefore, after Gibbs sampling on the data at
t + 1 time interval, the model updates Φ(t) → Φ(t+1), ΘL(t) →
ΘL(t+1) and estimates Ψt+1,Θ

S
t+1.

Note that the sampled latent variables at the previous time
intervals actually add up to the counts on the number of times
words are sampled under certain conditions 3. This plays the same
role as hyper-parameters. Therefore, the generated model at the
previous time intervals can be interpreted as a prior for the model
at the successive time intervals. Specifically, users’ long-term topic
distribution is modified as follows:

ϕ
(t+1)
k,w ∼ Dir(βL

w + βL(t)
w ),

θ
L(t+1)
u,k ∼ Dir(αL

k + α
L(t)
k )

(5)

where βL(t)
w , C1:t

X,KL,W (0, k, w), α
L(t)
k , C1:t

U,X,KL(u, 0, k)
denote at the previous t time intervals the number of times that
wordw are generated from the kth long-term topic, and the number
of words for user u that are generated from the kth long-term
topic, respectively. To modify the contribution of history samples
in computing the priors for the incoming data, a time decay term
can be further added to define βL(t)

w and αL(t)
k as follows:

βL(t)
w ,

t∑
i=1

(1− e−
t−i
δ ) · C(i)

X,KL,W
(0, k, w),

α
L(t)
k ,

t∑
i=1

(1− e−
t−i
δ ) · C(i)

U,X,KL(u, 0, k)

(6)

3 Since the vocabulary enlarges over time due to the new words from the
incoming time intervals, we assume these words have zero count for all
topics at the previous time intervals.
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Figure 5: Perplexities for different learning strategies.

Table 4: Runtimes of different learning strategies (in seconds).

Batch Training Incremental Update
20% 50% 80%

TUM 9,325 4,658 6,525 8,621
TwitterTUM 14,772 6,639 9,383 12,199

whereC(i)

X,KL,W
(0, k, w) denotes the number of times that wordw

are generated from the kth long-term topic at the ith time interval,
δ is a tuning parameter to control the time decay speed 4.

In batch training, to simplify the learning process, we assume
the short-term topic spaces of different time intervals share the
same topic number KS . In incremental update, respective short-
term topic numbers are selected for each time interval by Bayesian
model selection [30]. Specifically, for each time interval t, the
likelihood p(W (t)|KS(t)) is calculated with different short-term
topic number KS(t). The KS,(t) that obtains the largest likelihood
is considered to best account for the structure of the data and thus
set as the short-term topic number for this time interval [?].

Different from the short-term topics, the long-term topic struc-
ture is fixed in the initialization stage, i.e., the number of long-
term topics has been decided after the first T0 time intervals, and
only the topic-word distributions are modified during incremental
update. For this reason, the model performance depends critically
on the accuracy of the topics inferred during the initialization
stage. To compare the performance with different time intervals
for initialization, we evaluate the held-out perplexity on a separate
validation set from the collected 10-month Twitter dataset. By
splitting the data from one month as one time interval, different
number of initialization time intervals T0 = 1, · · · , 9 is examined,
using the best short- and long-term topic number settings. Figure 5
shows the results for both TUM and TwitterTUM. The perplexity
of the batch training strategy is also examined.

It is shown that the perplexity of incremental update learning
strategy initially decreases as a function of the data utilized for
initialization. This is due to the fact that more initialization time
intervals will lead to more accurate long-term topic structure. The
perplexity reaches the lowest point around 60% initialization data
and then increases thereafter. With the increase of initialization
time intervals, the flexibility in optimizing short-term topic number
reduces. Therefore, a balance between the long- and short-
term topic structures is critical to the final model performance.
The results suggest that, by setting proper percent of data for
initialization, the incremental update strategy can find a solution

4 In our experiments on a 10-month Twitter dataset, we set δ → ∞ to
remove the temporal difference.

as good as the batch training strategy. Moreover, we can see that,
by introducing an extra tweet plate, TwitterTUM generally obtains
lower perplexity than TUM, showing its ability to find better topic
structure. Table 4 summarizes the total runtimes before converge
for different learning strategies. We can see that the batch training
strategy generally converges slower than the incremental learning
strategy, by costing more computation time on resampling all the
latent variables in each iteration. For similar reason, TwitterTUM
is slower than TUM in sampling additive latent variables.

4. EXPERIMENTS

4.1 Data Set
Twitter API is used to collect the dataset for the experiments.

We started from a random Twitter user and crawled his followees
using Breadth First Search. All the examined users’ public tweets
from Feb.1, 2012 to Nov.30, 2012 are collected. After removing
non-English tweets, this results in 852,800 Twitter users with
599,818,231 tweets. To focus on the active Twitter users for
temporal modeling, we further removed Twitter users with less
than 1,000 tweets within the examined 10 month period. The final
dataset contains 228,921 Twitter users and 362,217,995 tweets,
with an average of 40 tweets for each user per week.

4.2 Perplexity Results
We first examine the performance of the proposed topic modesl

in terms of perplexity. The perplexity in the context of this study
measures the accuracy in predicting the coming of new tweets,
which can be calculated over all test tweets:

Perplexity(Dtest) = exp

(
−
∑

d∈Dtest

∑Nd
i=1 log pΘ(wd,i)∑

d∈Dtest
Nd

)
(7)

where Dtest is the test tweet set, pΘ(wd,i) is the predictive
probability of a word according to the derived model parameters.
We randomly split the tweets of each user per month into 90%
training tweets and 10% test tweets.

We compare the perplexities of the proposed TUM and Twit-
terTUM with two non-temporal and two temporal user modeling
methods:
• Author-Topic model (AT) [31]: assuming the tweets are gen-

erated considering the authorship, i.e., the user static interests.
• TwitterLDA [29]: adding an additional tweet plate to the AT

model, and constraining that only one topic is allowed within
the same tweet.

• Mixture Latent Topic model (Mixture) [12]: a temporal
user modeling solution assuming user posting is influenced
by breaking news, social friends, as well as users’ intrinsic
interests. Since social influence is not the focus of this paper,
we implemented a modified version of Mixture for comparison
that removes the social friend influence.

• TTCAM [9]: a temporal user modeling solution that integrates
the discovery of long-term and short-term topics in a unified
model.

To simplify the performance comparison, we learned the pro-
posed TUM and TwitterTUM using the batch training strategy.
The examined topic models are run ten times and the obtained
perplexity is averaged over the ten times and shown in Fig. 6. Time
intervals for the temporal user modeling methods are changed from
T = 1 day to T = 2month. It is shown that: (1) The perplexities
remain unchanged for the AT and TwitterLDA models. Basically,
considering the temporal characteristics, the four temporal user
modeling methods obtain better predictive performances than the
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Figure 6: Perplexity with different time interval settings.

Table 5: Examples of discovered long-term topics by
TwitterTUM.

Topic No. Top words
Long 3 app apple google android kinect
Long 7 film movie festival films trailer
Long 14 game team live cup sports
Long 19 social twitter marketing search brand

non-temporal user modeling methods in terms of perplexity. (2)
Mixture obtains the best predictive performance when the time
interval is relative short (T = 1 − 3 day). This is due to that
when T becomes longer, the breaking news identified by Mixture
are more likely to be the mixtures of several transient events. (3)
When T increases, the perplexity of TTCAM first decreases, obtains
the lowest value when T = 7 day, and then increases. The reason
for the early decreasing perplexity is that longer time intervals
contribute to adequate user data and improved topic discovery.
As the time interval gets longer, the reduced temporal influence
leads to the increasing perplexity. (4) The proposed TUM and
TwitterTUM follow the similar trend with TTCAM, and obtain
the lowest perplexities when T = 15 day. However, by setting
respective short-term topics at each time interval and allowing
users to have different responses to the short-term topics, TUM and
TwitterTUM achieve even lower perplexities than TTCAM. This
demonstrates that the proposed topic models are more consistent
with the users’ temporal tweeting behaviors on microblogs.

4.3 Discovered Topic Results

4.3.1 Long-term Topics
We first examine the discovered long-term topics using the

proposed topic models. In the following, unless specified, the
results of TUM and TwitterTUM are obtained with time interval
T = 15 day and using the batch training strategy. Therefore, the
number of time interval is 20. The number of long-term and short-
term topics is selected by Bayesian model selection, thatKL = 25,
KS = 10.

Table 5 shows four of the discovered 25 long-term topics by
TwitterTUM, with each topic represented by the five most probable
words. We can see that within each topic, the probable words
are semantic-consistent with each other. The discovered long-term
topics basically describe some general topics like digital goods,
movie, sports, social marketing, etc, which is consistent with our
understanding and expectations.

To analyze the steadiness of long-term topics, we examine the
popularity of the discovered long-term topics at different time
intervals. The popularity of a long-term topic k at time interval

Figure 7: The popularity of long-term topics over time.

t is measured by the proportion of words that sampled from this
topic, i.e., CT,ZL,X(t, k, 0)/CT,X(t, 0). Fig. 7 visualizes the
popularity evolvement of the long-term topics. The colorbar on
the right shows the corresponding popularity values. We can see
that users’ macro interests over the long-term topics are generally
steady, with slight fluctuation at some time intervals. For example,
the interest over the topic 14 increases at time interval 12 and 13,
which is possibly due to the 2012 London Olympics between July
27 to August 12. This inter-relationship between the long-term and
short-term topics will also be reflected and discussed in the later
experiments.

For individual user’s long-term topical interest evolvement, we
examine into the results from incremental update learning with
three month (30%) for initialization and 15 day as one time interval
for update. Therefore, for each user, we obtained 15 long-term
topic distributions, one derived from initialization and the other 14
derived at each update time interval. 3,000 users who have posted
more than 100 tweets at each of the examined time intervals, are
randomly selected to construct an active test user set Uactive. For
each of the active users, we fitted his/her 15 topical distribution
vectors with a multivariate normal distribution. The long-term
topic distribution variance is defined as follows:

Long-term interest variance(u) =
∑15

i=1 d(u
L
i ,µu)

15
(8)

where d(·, ·) is the Euclidean distance, uL
i is user u’s ith topical

distribution vector over the long-term topics, µu is the mean vector
of u’s fitted multivariate normal distribution. The results find that
over 85% users have a long-term interest variance less than 0.002.
This demonstrates that most users hold stable long-term interests
and validates the steadiness of the long-term topic distribution at
micro user level.

4.3.2 Short-term Topics
We then investigate into the discovered short-term topics. At

each time interval t, a short-term topic space with KS = 10 topics
are obtained. These topics are ranked by their popularity, which is
defined as the proportion of words that sampled from the topic, i.e.,
CT,ZS ,X(t, k, 1)/CT,X(t, 1). The most popular short-term topics
are expected to represent the transient events. Table 6 presents
the three most popular short-term topics at time interval 12, with
each topic represented by the five most probable words. It is easy
to see that three transient events are identified and well described,
i.e., “2012 London Olympics”, “The Dark Knight Rises”, “Syrian
civil war”. The identified short-term topics derive from the co-burst
usage of tweet words and reflect users’ increasing interests during
this period.

For comparison, Table 7 presents the bursty words detected by
Mixture at the same time interval, which is derived by examining
the word frequency. The first row shows the top bursty words
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Table 6: Examples of discovered short-term topics by
TwitterTUM at time interval 12: from July 16 to July 31.

Topic No. Top words
Short 3 olympic london2012 game ceremony beijing
Short 4 batman knight bane dark nolan
Short 7 syrian war bomb arab uprising

Table 7: Busty words by Mixture at the time interval 12.
Time interval Top words

July 16-31 olympic london2012 vincente sports batman
July 27 london2012 game olympic heywood sports

between July 16-31, the same time span with the results from
Table 6. It is shown that the words representative of different
events are mixed, due to the fact that multiple transient events
happen during the 15-day time interval. The second row shows
the detected bursty words on July 27, when the opening ceremony
of 2012 London Olympics took place. We can see, even reduce
the time interval to one day, the top words detected by Mixture
still have a very loose structure that different events mix with each
other. The reason for this result is that, the word frequency is
considered independent and the word-word co-occurrence in tweet
usage is ignored. Moreover, without the separation from long-
term topics, some general words also emerges as the bursty words,
e.g., “game”, “sports”, which limits the capability to represent the
transient events.

We further quantitatively evaluate the effectiveness of the discov-
ered short-term topics in identifying transient events. Specifically,
from the trending searches revealed by Google Zeitgeist 2012 5,
we selected 20 transient events with different categories happened
from Feb.1, 2012 to Nov.30, 2012. By examining the top probable
words, we found that 19 out of the 20 transient events were
successfully identified from the top three ranked short-term topics
at different time intervals. Table 8 shows four of the transient events
and the corresponding short-term topics. We can see that the top
probable words are consistent with each other and together serve
as good indication for the transient events. In addition to the global
events, we also found some local transient events. For example, at
time interval 2 a short-term topic is discovered with the top words
of “NUS, dog, singaporean, china, scholarship”, which indicates
the event of “NUS student insulting Singaporean” happened at
Singapore on Feb.18, 2012. We examined the users who have high
topical probability on this topic and found that many of them come
from Singapore. The configuration of short-term topic spaces at
each time intervals make it possible to identify the transient events
popular in local users. This type of local events are neglected in a
global scale by the methods of Mixture and TTCAM.

4.4 User Modeling Results

4.4.1 Personalized Information Recommendation
One significant application of user modeling on microblogs is

to recommend users with interested information. On Twitter,
retweet is the behavior to broadcast users’ interested tweets to
their followers and therefore can serve as the ground-truth for
users’ interests. In this subsection, we evaluate the different user
modeling methods in the context of predicting whether a tweet will
be retweeted by a test user.

5 https://www.google.com/zeitgeist/2012.

Table 8: Transient events and the corresponding short-term
topics.

Transient events Time interval
/Topic No. Top words

Whitney
Houston’s death 1/3 whitneyhouston, whitney,

drug, bobby, tragic
Gangnam Style

upsurge 15/3 gangnamstyle, gangnam, spy,
korean, youtube

Hurricane Sandy 18/1 sandy, hurricane, cyclone,
pacific, victim

US presidential
election 2012 19/5 obama, election, romney,

democratic, immigration

Specifically, two experimental settings are conducted. (1) In the
first setting, for each user in every time interval t, five random
tweets that were retweeted by this user are assumed as relevant
documents and construct the positive testing set. Since we focus
on modeling the tweet content and ignore the social structure, the
selected tweets are required to contain at least 50 characters. In
this way, we identified 19,271 test users. For each test user, the
selected five retweets at each time interval are removed from the
topic model learning. 20 other tweets that were not retweeted
at the same time interval are added as the negative test samples.
(2) In the second setting, the goal is to simulate the process of
personalized news recommendation. Within the collected tweet
dataset, we identified 90,883 retweets to 75 tweets that (a) were
originally posted by the official accounts of BBC or CNN, (b) were
retweeted totally more than 10,000 times, and (c) contain more than
50 characters. These identified tweets are more likely in reporting
some transient events, and the retweets from the examined users
indicate the interest/response to the events. We selected 500 users
who have retweeted at least five out of the 75 tweets to construct the
test user set for the second setting. The average number of relevant
tweets for each test user is 6.6.

Therefore, the tasks for the first (denoted as retweet prediction)
and the second (denoted as news recommendation) settings, are
to retrieve the five and on average 6.6 relevant retweets from the
tweet collection consisting of 25 and 75 tweets, respectively. The
predictive probability of user u retweeting d is estimated as:

p(d) =
1

Nd

Nd∑
i=1

pΘu(wd,i)

where pΘu(wd,i) is the probability of seeing word wd,i according
to the learned model parameters for user u. The tweets are ranked
according to the above predictive probability. We use Average
Precision (AP) for evaluation, which is calculated as:

AP =

∑N++N−

i=1 (
∑i

j=1
rel(j)

i
× rel(i))

N+
(9)

whereN+, N− are the number of positive and negative tweets, i, j
are the rank of the tweet, rel(i) equalizes 1 if the tweet at rank
i is relevant and 0 otherwise. The final result is shown in mean
Average Precision (mAP), which is averaged over 500 users (for
news recommendation), or 19,271 users and 20 time intervals (for
retweet prediction).

The comparison results with the four baseline methods of the
two experimental settings are shown in Fig. 8. It is easy to have the
following observations: (1) The experimental results in terms of
mAP are consistent with that of perplexity. The four temporal user
modeling methods generally outperforms the two non-temporal
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Figure 8: mAP of personalized information recommendation.

user modeling methods. The proposed two topic models obtain
the best performance in both settings with a fixed time interval of
15 day. (2) The improvement over the baseline methods is more
significant in news recommendation than retweet prediction. In
the task of news recommendation, users’ responses to the transient
events are expected to contribute more to the final recommendation
accuracy. However, Mixture mixes different transient events, and
TTCAM assumes all users share the same interest distribution
over time-oriented topics. This significant improvement shows
the advantage of the proposed topic models in capturing users’
responses to respective transient events.

4.4.2 Long-term and Short-term Interests
In this subsection, to understand the advantage in personalized

information recommendation, we further investigated into the re-
sults of users’ long-term and short-term interests. As shown in the
previous experimental results, the discovered long-term and short-
term topics are in different granularities and thus may semantically
mix with each other. We invited three graduate students who
are very familiar with Twitter to match each of the discovered
20*10=200 short-term topics to one of the 25 long-term topics,
according to the most probable words of the topic. The final
short-term and long-term topic matching pairs are obtained by
aggregating the three labelers’ votes, and recorded as Long(zS(t)

i ).
For example, the short-term topic 12/3 and 12/4 (shown in Table 5)
are labeled as matching the long-term topic 14 and 7 (shown
in Table 4), respectively. These matching pairs are recorded as
Long(zS(12)

3 ) = 14, Long(zS(12)
3 ) = 7.

In the proposed TwitterTUM, for each tweet, only one long-term
topic and one short-term topic are allowed. We first examined the
consistency of the sampled long- and short-term topics within the
same tweet. We randomly selected 1,000,000 tweets and found
that 74.4% were sampled with matched long- and short-term topics
according to the labeled matching pairs. We then examined this
consistency at user level. For each test user u ∈ Uactive, we
investigated how his/her most significant short-term interest at each
time interval matches the significant long-term interests. Top-k
accuracy is utilized as the evaluation metric, which is calculated
as follows:

Top-k accuracy =

∑20
t=1 I(τu(Long(u

S(t).max)) ≤ k)

20
(10)

where uS(t).max denotes user u’s maximum short-term topic at
time interval t, τu(zL) denotes the ranking position of zL in user
u’s long-term topic distribution, I(·) is indicator function returning
1 if it is true and 0 otherwise.

The final results are averaged over all the test users and shown
in Fig. 9. We can see that for both proposed topic models,

Figure 9: Consistency between long- and short-term interests.

about half of the users/time intervals have consistent short-term
and long-term interests, i.e., the most significant short-term topic
exactly matches the most significant long-term topic. Over 80%
of users/time intervals have the matched long-term interest within
the top-3 ranks. This indicates that users do not equally follow
all the transient events as assumed by TTCAM, but choose to
concern more about those consistent with their long-term interests.
This result also interprets the phenomenon that long-term topic
popularity fluctuates with the short-term topics as shown in Fig. 7.
Moreover, one limitation for the proposed topic models is that,
the accurate short-term topic distribution is conditioned on the
adequate tweeting behavior at each time interval. This observation
can be leveraged to make up for this limitation. For example,
if users’ tweeting behavior at one time interval is sparse, the
discovered short-term topic distribution will be modified by its
matching relation with the discovered long-term topic distribution.

5. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a probabilistic framework to

model the mutual interaction between users’ temporal behavior
and the transient events. At each time interval, a short-term topic
space is discovered from users’ co-burst tweeting patterns, which
corresponds to the transient events popular during this period.
We evaluated the performance of the proposed framework from
three perspectives: perplexity, the discovered topic investigation,
and the user modeling performance in personalized information
recommendation. In the future, we will be working on: (1)
addressing the limitation of requiring adequate behavior data within
each time interval by leveraging the observed long- and short-term
interest consistency, and (2) implementing the incremental learning
strategy in real applications and exploring the potentials in transient
event tracking.
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