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Abstract
Various brain structural and functional features such as cytoarchitecture, topographic mapping, gyral/sulcal anatomy, and
anatomical and functional connectivity have beenused inhumanbrain parcellation.However, thefine-grained intrinsic genetic
architecture of the cortex remains unknown. In the present study, we parcellated specific regions of the cortex into subregions
based on genetic correlations (i.e., shared genetic influences) between the surface area of each pair of cortical locations within
the seed region. The genetic correlations were estimated by comparing the correlations of the surface area between
monozygotic and dizygotic twins using bivariate twin models. Our genetic subdivisions of diverse brain regions were
reproducible across 2 independent datasets and corresponded closely to fine-grained functional specializations. Furthermore,
subregional genetic correlation profiles were generally consistent with functional connectivity patterns. Our findings indicate
that the magnitude of the genetic covariance in brain anatomy could be used to delineate the boundaries of functional
subregions of the brain and may be of value in the next generation human brain atlas.
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Introduction
Mapping fine-grained, anatomically distinct, and functionally
specialized cortical subregions is fundamental for understanding
brain function. Anatomical microstructure is currently primarily
used to define cortical boundaries, and cyto-, myelo-, and recep-
tor-architectonic maps have become the “gold standard” for

cortical parcellation (Brodmann 1909; Amunts et al. 2013). In add-
ition, many other techniques for parcellating the human brain,
such as topographic mapping (Wandell and Winawer 2011),
gyral/sulcal anatomy (Van Essen et al. 2012), and anatomical
(Behrens et al. 2003) and functional (Kim et al. 2010) connectivity
with in vivo magnetic resonance imaging (MRI), have been ex-
plored. These approaches used various brain imaging measures
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(i.e., phenotypes) that are unique to specific subregions. Evidence
has suggested that these phenotypes are under genetic control
(Karlsgodt et al. 2010; Blokland et al. 2011; Chiang et al. 2011;
Blokland et al. 2012). However, whether genetic information can
feasibly be used to identify fine-grained cortical subregions and
reveal the genetic basis of cortical regionalization is unknown.

The formation of brain phenotypes that show subregional
specialization has generally been believed to be strictly con-
trolled by molecular cascades. For example, the precise develop-
ment of the cortical circuitry of fiber tracts involves families of
molecules that direct the growth of axons (Dye et al. 2011) as
well as axonal path finding (Molnar and Blakemore 1995; Chedo-
tal andRichards 2010) and target selection (Ma et al. 2002). Prior to
axonal guidance, however, differential gene expression plays an
important role in the process of cortical regionalization in the
early brain (Bishop et al. 2000; Sur and Rubenstein 2005; O’Leary
et al. 2007). This occurs across the whole brain and in subregions
such as the frontal cortex (Cholfin and Rubenstein 2007, 2008). In
addition, the results of parcellations based on various structural
and functional features are consistent for some regions (Van
Essen and Glasser 2014), strongly implying that the distinguish-
able phenotypes may be influenced by an underlying genetic
mechanism. Taken together, accumulating evidence suggests
that the influence of genes may be vitally important for the
high level of specialization in cortical regions.

Although each phenotype is related to a number of genes and
their complex interactions, twin studies permit the investigation
of the overall contributions of genetic factors to the variance of
these phenotypes by comparing correlations between monozy-
gotic (MZ) twins, who share 100% of their genes, and dizygotic
(DZ) twins, who share ∼50% of their genes. This method can
also be used to examine genetic correlations, which represent
the shared genetic influences of different points of surface area
on cortical surface. A correlation coefficient of 1 indicates a per-
fect positive relationship, suggesting that the 2 points of surface
area are influenced by common genes (i.e., share a common gen-
etic basis). A correlation coefficient of 0 shows that there is no re-
lationship present, suggesting that the 2 points of surface area are
influenced by totally different genes. Given that genetic factors
play an important role in the process of brain development and
cortical patterning,wehypothesized that the geneticmechanisms
that underlie cortical segregation may be reflected by genetic cor-
relations. These could account for the magnitude of the genetic
covariation in brain anatomy at various cortical locations and be
used to delineate functional boundaries in the cortex. To test our
hypothesis, we used classical twin analysis (Neale and Cardon
1992) to detect genetic correlations between various locations of
the cortical surface area in a noninvasive manner. In the present
study, we collected 2 independent brain imaging datasets on
healthy young twins from different parts of China. Maps of the
genetic correlations were created between each vertex and all
other locations within the seed regions of interest for the purpose
of dividing them into subregions.We also explored the differences
between the genetic correlation profiles of the various subregions
by using genetic correlations between the locations in the seed
region and all locations across the entire brain hemisphere.

Materials and Methods
Participants

Discovery Dataset
The discovery dataset included a total of 222 healthy young
Chinese same-sex twins from the Beijing Twin Study (BeTwiSt)

of the Institute of Psychology, Chinese Academy of Sciences
(Chen et al. 2013). The exclusion of an individual with incomplete
scanning, an individual with excessive head motion, and their
co-twins resulted in 218 participants (109 pairs) comprising 124
MZ and 94 DZ individuals (mean age, 19.0 ± 1.5 years; 62 male
MZ, 62 female MZ, 48 male DZ, and 46 female DZ; all twins
were complete twins). None of the participants had a history of
psychiatric diagnoses or neurological or metabolic illnesses.
They all gave full written informed consent to participate in the
study. This study was approved by the Institutional Review
Board of the Institute of Psychology of the Chinese Academy of
Sciences and the Institutional Review Board of the Beijing MRI
Centre for Brain Research. The zygosity of the 109 pairs of
same-sex twins was determined by DNA analyses and by a ques-
tionnaire method (Chen et al. 2010). Of the 109 pairs of same-sex
twins, 104 pairs were determined by DNA analyses. The classifi-
cation accuracy of the DNA analysis approximated 100%. The re-
maining 5 pairs, whose saliva samples yielded insufficient DNA,
were determined by a combination of parent reports and chil-
dren’s self-reports about co-twin physical similarities and the
frequency of confusion. This questionnaire method held a pre-
dictive accuracy of 91% (Chen et al. 2010).

Replication Dataset
Tovalidate the reliability of the genetically based parcellation, we
also conducted our parcellation scheme on an independent data-
set. The replication dataset was obtained from another cohort of
young Chinese twins. At the time of this analysis, a total of 191
healthy young twins who, together with their first-, second-,
and third-degree relatives, had no history of psychotic disorder
had been scanned. We randomly excluded a triplet from a set
of same-sex trizygotic triplets to form a twin pair. The resulting
sample included 190 participants comprising 108 MZ and 82 DZ
(mean age, 17.9 ± 2.7 years; 44 male MZ, 64 female MZ, 10 male
DZ, 44 female DZ, and 28 opposite-sex pairs included in DZ
twins; all twins were complete twins). All subjects gave full writ-
ten informed consent to participate in the study. This study was
approved by the Institutional Review Board of the Guangzhou
Brain Hospital. The zygosity of each of the same-sex twin pairs
was determined using 16 multiplex STR markers (PowerPlex 16
system; Promega) at the Forensic Medicine Department of Sun
Yat-Sen University. Opposite-sex twin pairs were deemed to be
dizygotic without genotyping.

Image Acquisition and Processing

Images from the discovery dataset were acquired with a 3.0 T
Siemens TrioTim scanner. A three-dimensional T1-weighted
volumetric sequence was performed using a protocol with
repetition time (TR) = 2530 ms, echo time (TE) = 3.37 ms, flip
angle (FA) = 7°, field of view (FOV) = 256 × 256 mm2, acquisition
matrix = 256 × 192, slice thickness = 1.33 mm without gap and
slice number = 144. Resting-state fMRI data were obtained with
an echo-planar imaging sequence with the following para-
meters: TE = 30 ms, TR = 2 s, FA = 90°, acquisitionmatrix = 64 × 64,
FOV = 220 × 220 mm2, slice thickness = 4 mm without gap, 32
transversal slices, and 180 volumes. The replication dataset was
acquired on a different MRI machine with different scanning
parameters. Specifically, the images were acquired with a 3.0 T
Philips Achieva scanner. A three-dimensional T1-weighted
volumetric sequence was performed using a protocol with
TR = 8.25 ms, TE = 3.79 ms, FA = 7°, FOV = 256 × 256 mm2, acquisi-
tion matrix = 256 × 256, slice thickness = 1 mm without gap, and
slice number = 188.
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The cortical surface reconstructionused the publicly available
FreeSurfer software package, version 5.3.0 (http://surfer.nmr.mgh
.harvard.edu/). The details of the processing techniques have
been described elsewhere (Dale et al. 1999; Fischl et al. 1999;
Fischl and Dale 2000). Briefly, the following stages were included:
Talairach transformation, intensity inhomogeneity correction,
removal of nonbrain tissues, intensity normalization, tissue seg-
mentation, automated correction of topology defects, and sur-
face deformation to form gray matter/white matter (white) and
gray matter/cerebrospinal fluid (pial) boundary surface triangu-
lations (Dale et al. 1999; Fischl and Dale 2000). The generated cor-
tical surfaces were then carefully reviewed and manually edited
for technical accuracy. Vertex-wise estimates of the surface area
were calculated by assigning one-third of the area of each
triangle to each of its vertices. We used 2819-iteration nearest-
neighbor averaging to smooth the vertex-wise maps to ensure
an accurate estimation of genetic correlations, as previously
investigated by Chen and colleagues (Chen et al. 2012).

Definition of Seed Regions

Our genetically based parcellation scheme (Fig. 1) was investi-
gated using representative cortical regions with evolutionary
and functional diversity: the superior medial frontal cortex

(SMFC), frontal pole (FP), inferior frontal gyrus (IFG), and primary
motor cortex (M1). The seed SMFC was extracted from the AAL
template and then projected to a cortical surface model. We
used the same seed FP as our previous parcellation that used a
connectivity-based technique; see Liu et al. (2013) for the details.
In brief, the FP was manually edited on the basis of the FP
extracted from the Harvard–Oxford cortical structure atlas. The
volumetric FP was projected to a cortical surface to obtain a
surface-based region. The IFG in the present study represented
traditionally language-related regions, comprising the lateral
triangular and opercular areas (pars opercularis and pars trian-
gularis; approximately corresponding to Brodmann’s areas (BA)
44 and 45 [Nishitani et al. 2005]). This seed region was extracted
from the FreeSurfer Desikan surface-based atlas (Desikan et al.
2006). TheM1 seed regionwas obtained from the PALS Brodmann
area atlas (Van Essen 2005), a cortical surface parcellation atlas
included in the FreeSurfer software package.

Twin Analysis

In twin analyses, the variance of a phenotype can be accounted
for byadditive genetic influences (A), common environmental in-
fluences (C), or unique environmental influences, including
measurement errors (E). A univariate model is able to estimate

Figure 1. Genetic correlation-based parcellation pipeline.We used T1-weighed imaging data fromhuman twins (A) to explore the detailed division of the seed regions. The

cortical surface area of each vertex on the cortical surfacewas calculated (B). Each hemispherewas down-sampled from 163842 to 10 242 vertices. The left SMFC, which was

used as an example of a seed region (C), consisted of 280 vertices. Subsequently, bivariate AEmodels (C) were used to estimate the pairwise genetic correlations (rA) between

the surface area of the vertices within the seed regions. This stage generated 1 square genetic correlation matrix (D) using all the twins data, including those for both

monozygotic (MZ) and dizygotic (DZ) twins. Spectral clustering (E) was applied to the genetic correlation matrix, generating the parcellation results for the seed region (F).
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A, C, and E influences on the variance of the cortical surface area.
However, based on previous findings, the cortical surface area
shows little evidence of influences from C (Chen et al. 2011;
Eyler et al. 2011). Therefore, we used a twin model that only con-
tained A and E. The univariate AEmodel can be extended to a bi-
variate model, which can explain the sources of genetic and
environmental covariance. Specifically, in addition to examining
the genetic and environmental influences on the surface area of
each vertex in the seed region, the bivariate correlated-factors
model allows for estimates of the genetic (rA) and environmental
(rE) correlations between the surface area of every pair of vertices
(Neale and Cardon 1992). Here, rA represents the extent of overlap
of the genetic factors influencing the surface area, and rE indi-
cates the extent of the overlap of the environmental factors as
well as measurement errors. The analyses were performed
using the OpenMx package (version 1.3), a free structural equa-
tion modeling software integrated into the R environment
(Boker et al. 2011). Before the model fitting, the vertex-wise
surface area data were adjusted for age, sex, and global effects
(i.e., the vertex-wise surface area at each vertex was divided by
the total surface area).

Genetic Correlation-Based Parcellation

Agenetic correlationmapwas generated by pairwise correlations
between the vertices within the seed regions. These were first
down-sampled from the original 163 842 to 10 242 vertices per
hemisphere in order to reduce the computation time for genetic
estimation. Given the level of smoothing of the cortical surface
area, this down-sampling does not involve any significant
loss of information. After obtaining a genetic correlation map,
which consisted of the rA between the surface area measure-
ments for each pair of vertices, a spectral clustering algorithm
was used for automatic clustering (Ng et al. 2001) of the left and
right hemispheres, separately. Spectral clustering is an unsuper-
visedmachine learning algorithm that groups vertices that share
similar genetic correlations. The optimal number of clusters was
evaluated by the Calinski–Harabasz (CH) index (Caliński andHar-
abasz 1974), which calculates the ratio of the between-cluster (A)
and the within-cluster variance (B): CH = (A/B) × (N − k)/(k − 1),
where N is the number of observations and k is the number of
clusters. Generally, the optimal cluster number was chosen as
the one that maximizes the CH index, that is, when A is large
and B is small. Here, we synthesized the CH indices of the discov-
ery and replication datasets and previous phenotypically based
parcellation numbers to determine the optimal genetically
based number of clusters for each seed region.

Comparisons of Whole Hemisphere Genetic
Correlations of Subregions

To explore the specific genetic correlation profiles of the various
subregions, comparisons of the genetic correlations between the
subregions and the whole hemisphere were performed. Specific-
ally, for each vertex in a subregion, we calculated its genetic cor-
relations to all the vertices in the entire hemisphere, yielding a
genetic correlation matrix Mv × h, where v is the number of verti-
ces in a given subregion and h is number of vertices in the corre-
sponding hemisphere. We averaged each column of the matrix
and obtained the subregion’s mean genetic correlation to every
vertex in the hemisphere. Two-sample t-tests between every 2
subregions’ genetic correlations to all the vertices in the hemi-
sphere were then performed to obtain the contrast maps. Ran-
dom field theory was then used for a multiple comparisons

correction (Hayasaka et al. 2004). The statistical analysis was per-
formed using the SurfStat package (http://www.math.mcgill.ca/
keith/surfstat/).

Relationships between the Similarities in Genetic
Correlation Profiles and Brain Connectivity Patterns

We measured the consistency between 2 kinds of pairwise simi-
larities among the vertices within the SMFC. The 2 kinds of simi-
larities reflected genetic correlation profiles and functional
connectivity patterns, both of which were calculated based on
the correlations between the SMFC and the entire hemisphere.
Diffusion tensor imaging was not carried out in the discovery
dataset, which limits our measure of anatomical connectivity.
However, functional connectivity with resting-state fMRI is also
an important aspect of brain connectivity, which reflects brain
regions sharing functional profiles. The processing pipeline is
shown in Fig. 7A. For the genetic correlation analysis, the number
of surface area measurements was down-sampled to 2562 verti-
ces per hemisphere (as targets), of which 70were in the left SMFC
(as seeds). A genetic correlation matrix was generated by calcu-
lating the correlations between each seed and target (G70 × 2562).
A genetic similarity matrix (dimensions: 70 × 70) was then ob-
tained by calculating the similarity between each pair of seeds,
that is, Wg = G ×GT. In order to maintain the same numbers of
seeds and targets for both the genetic correlation and the brain
connectivity calculation, seed and target masks were generated
from the projection of the surface-based vertices to the vol-
ume-based voxels using FreeSurfer. The preprocessing of the
resting-state fMRI datawas carried out using the DPARSF toolbox
(http://www.restfmri.net/forum/DPARSF). The preprocessing
steps included: (1) discarding the first 10 volumes of each func-
tional time series to allow for magnetization equilibrium, (2) cor-
recting the slice timing for the remaining 230 images and
realigning them to the first volume for head motion correction
(2 subjects were excluded either because themaximumdisplace-
ment in the cardinal direction was >3 mm or because the max-
imum spin was >3°), (3) spatial normalizing of all the volumes
to the MNI EPI template, (4) spatial smoothing with a Gaussian
kernel of 6 mm full-width at half maximum, (5) removing linear
trends, (6) temporal band pass filtering (0.01–0.1 Hz), and (7) re-
gressing out nuisance signals, such as those from thewhite mat-
ter and cerebrospinal fluid, as well as global signals and 6motion
parameters. Pearson’s correlations were performed between
each seed and the target, generating a functional connectivity
matrix (F70 × 2562). The similarity between each pair of seeds was
then calculated as Wf = F × FT, resulting in a 70 × 70 functional
cross-correlation matrix for each subject. We randomly selected
1 twin from each of the 101 pairs of twinswithminimal headmo-
tion and averaged their functional similarity matrices (in total
101 matrices) to obtain an entry-wise mean functional similarity
matrix. Finally, the Mantel test was used to quantify the relation-
ship between the average functional similarity matrix and the
genetic correlation similarity matrix. The Mantel test was con-
ducted using the vegan package (Oksanen et al. 2015) in R.

Results
Parcellation of the SMFC and Subregional Genetic
Correlation Comparison

As shown in Supplementary Figure 1, a cluster number of 2 was
optimal for the SMFC. In agreement with existing structural-
and functional-based parcellations, we found that the genetic
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clustering of the SMFC showed anterior and posterior clusters
that correspond to the presupplementary motor area (pre-SMA)
and the SMA (Fig. 2A; for the re-arranged genetic correlation ma-
trices of the seed regions, see Supplementary Fig. 2). Specifically,
the anterior cluster was located just rostral to the vertical line
extending from the anterior commissure (y ≈ 0), whereas the
posterior cluster was located just caudal to the vertical line. The
genetic architecture of the SMA and pre-SMA is in line with
cytoarchitectonic (Zilles et al. 1996), anatomical (Johansen-Berg
et al. 2004), and functional (Kim et al. 2010) connectivity-based
parcellations. The parcellation topology was consistent between
the replicate datasets (Supplementary Fig. 3).

We further investigated the genetic correlation profiles, which
represent the genetic correlation distribution of the various
subregions across the entire brain hemisphere (Fig. 2B). A two-
sample independent t-test revealed significant differences
between subregions (Fig. 2C). We found that the genetic correla-
tions for the pre-SMAwere significantly stronger with regions in
the lateral prefrontal cortex and medial frontal cortex. In con-
trast, the significant correlations for the SMA were with regions
in themotor and visual cortices. Fiber tractography and function-
al connectivity studies have shown that the pre-SMA has many
projections to and from the prefrontal cortex and the anterior
cingulate cortex (ACC), whereas the SMA is mainly connected
to the nearby M1 (Johansen-Berg et al. 2004; Kim et al. 2010).
The subregional genetic correlation profiles were therefore large-
ly consistent with their anatomical and functional connectivity
patterns.

Parcellation of the FP and Subregional Genetic
Correlation Comparisons

In the case of the FP, the CH index indicated 3 or 4 solutions
(Supplementary Fig. 1). The optimal number of clusters was pre-
viously investigated using a cross-validation technique in a con-
nectivity-based parcellation scheme (Liu et al. 2013), and acluster
number of 3 was found to be the most appropriate value. This
cluster number was therefore selected in the present study,
which enabling a direct comparison of the genetic correlation-
and anatomical connectivity-based divisions. We identified 3

separable subregions, FPo, FPm, and FPl, from the regional
maps of the bilateral FP (Fig. 3A) using the genetic correlations
within the FP. The left and right FP subregions presented similar
patterns, which were consistent with the maximum probability
maps provided by a connectivity-based parcellation with diffu-
sion tensor imaging (Liu et al. 2013). The parcellation results
were consistent between the replicate datasets (Supplementary
Fig. 3).

Three subregions showed similar patterns with the highest
correlation being with the frontal lobe, the lowest with the oc-
cipital lobe, and the median with the temporal and parietal
lobes (Fig. 3B). Comparisons of the genetic correlation profiles
between subregions (Fig. 3C) showed that the FPo had a stron-
ger correlation with the temporal pole (TP) and the orbitofron-
tal cortex (OFC) compared with the FPl, as well as an increased
trend with the supramarginal gyrus and the OFC compared
with the FPm. The FPm showed a significantly increased correl-
ation with the medial prefrontal cortex (MPFC) compared with
the FPo. The FPl was found to have a stronger correlation
with the dorsal prefrontal cortex (DPFC) compared with either
the FPo or the FPm. A previous investigation based on white
matter and functional connectivity found that the FP subre-
gions are involved in distinct functional networks (Liu et al.
2013). In brief, the FPo anatomically connects with regions of
the social emotion network including the OFC and TP, the
FPm connects with areas of the default mode network includ-
ing the ACC and MPFC, and the FPl connects with regions of the
cognitive processing networks, including the DPFC. Therefore,
the genetic correlation profiles of the various subregions were
consistent with the connectivity patterns of the corresponding
subregions.

Parcellation of the IFG and Subregional Genetic
Correlation Comparison

Asshown in Supplementary Figure 1, a cluster numberof 5 reached
a local peak for the IFG. We also used a parcellation number of 3 in
order to test the resemblance to the cytoarchitectonic division. The
IFG can be divided into BA 44 and 45 and the frontal operculum
(FOP) in a three-cluster solution (Fig. 4A). Again, this finding was

Figure 2.Genetic correlation-based parcellation of the SMFC using the discovery dataset. The SMFCwas able to be reproducibly subdivided into the supplementarymotor

area (SMA, yellow) and pre-SMA (red) subregions, as shown in the medial views of the left and right SMFC (A). (B). Lateral and medial views of the genetic correlations

between the left SMFC subregions and the entire left hemisphere. The color bar indicates the genetic correlation strength. (C) Lateral and medial views of the contrast

maps between 2 subregions for the left hemisphere obtained using two-sample t-tests. Random field theory was used for multiple comparisons correction with a

threshold of P < 0.05. The color bar indicates T-values.
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largely in accordance with classical cytoarchitectonics, with a
boundary that aligned with the diagonal sulcus (Nishitani et al.
2005). BA44 was subdivided into dorsal and ventral areas, 44d
and 44v, and BA45 was subdivided into anterior and posterior
areas, 45a and 45p, in the five-cluster solution (Fig. 4A), which cor-
responds to the subdivisions identified using transmitter receptor
distribution data (Amunts et al. 2010).

BA44 and BA45 constitute the classical Broca’s area. Compar-
isons of the BA44 and BA45 subregions revealed that BA45 ex-
hibited higher correlations with regions in the temporal lobe
and prefrontal cortex compared with BA44. In contrast, for
BA44, the genetic correlations were stronger with regions in
the motor areas (Fig. 4C). The genetic correlation profiles of
BA44 and 45 corresponded to the functional roles of language

comprehension and speech production, respectively (Clos
et al. 2013).

Parcellation of M1

For M1, a cluster number of 5 was found to be preferable because
of the higher regional CH values in both datasets (Supplementary
Fig. 1). M1was able to be subdivided into 5 subregions, 5 of which
corresponded to motor representations of body parts: the face,
hand and arm, trunk, hip, and leg and foot (from ventrolateral
to dorsomedial). The single remaining subregion in the anterior
medial part of M1 was the SMA (Fig. 5). This is in line with widely
recognized topographic organization. A connectivity-based par-
cellation of the lateral precentral gyrus resulted in 4 distinct

Figure 3.Genetic correlation-based parcellation of the FP using the discovery dataset. The FPwas able to be reproducibly subdivided into orbital (FPo, yellow),medial (FPm,

red), and lateral (FPl, blue) subregions, as shown in themultiple views of the left and right FP (A). (B) Lateral andmedial views of the genetic correlations between the left FP

subregions and the entire left hemisphere. The color bar indicates the genetic correlation strength. (C) Lateral andmedial views of the contrastmaps between 2 subregions

for the left hemisphere obtained using two-sample t-tests. Random field theory was used for multiple comparisons correction with a threshold of P < 0.05. The color bar

indicates T-values.

Figure 4. Genetic correlation-based parcellation of the IFG using the discovery dataset. The IFG was able to be reproducibly subdivided into BA44 (yellow), BA45 (red), and

the FOP (green) in a three-cluster solution (A, displayed on an uninflated [top row] and inflated [middle row] brain surface, respectively) and into areas 44d, 44v, 45a, 45p,

and FOP in afive-cluster solution (A, bottom row), as shown in the lateral views of the left and right IFG. (B) Lateral andmedial views of the genetic correlations between the

left BA44 and BA45 subregions and the entire left hemisphere. The color bar indicates the genetic correlation strength. (C) Lateral and medial views of the contrast maps

between BA44 and BA45 for the left hemisphere obtained using two-sample t-tests. Random field theorywas used formultiple comparisons correctionwith a threshold of

P < 0.05. The color bar indicates T-values. prc, precentral sulcus; ifs, inferior frontal sulcus; ds, diagonal sulcus.
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regions (Schubotz et al. 2010), in accordancewith our parcellation
of the lateral convexity of M1.

Ruling out Potential Underestimation from the Twin
Models

To rule out the possibility that the power to detect genetic corre-
lationsmight have been limited because of the fairly modest MRI
twin samples, we combined the discovery and replication data-
sets to obtain a total of 204 pairs of healthy young twins. We
used the same processing procedure as that used for the discov-
ery dataset except that the site information was regressed out as

another nuisance variable before the model fitting. The division
of the seed regions displayed the same delineations as those ob-
tained using the discovery and replication datasets separately
(Fig. 6), demonstrating that our models are sufficient to detect
genetic correlations from bivariate twin analyses.

Relationships Between the Similarities in Genetic
Correlation Profiles and Brain Connectivity Patterns

To further characterize the quantitative relationships between
the similarity in genetic correlation profile and the similarity in
brain connectivity patterns, wemeasured resting state functional
connectivity (using resting-state fMRI) in the discovery dataset.
We found that the genetic correlation and functional connectiv-
ity similarity matrices were significantly correlated (r = 0.344,
P < 0.001, Fig. 7B).

Discussion
To the best of our knowledge, this is the first study to parcellate
fine-scale, functionally distinct subregions noninvasively based
on intrinsic genetic information obtained by twin analysis. We
found that the genetic clustering of the human SMFC, FP, IFG,
and M1 was predominantly bilaterally symmetric and reprodu-
cible between 2 independent datasets. The resulting clusters
closely resembled the subregions identified by other approaches
using structural and functional features. Furthermore, we
observed subregional genetic correlation profiles across each
hemisphere which were generally consistent with previously
identified structural and functional connectivity patterns. These
results establish the presence of a close relationship between gen-
etically driven andphenotypically driven cortical parcellations and
further indicate that cortical functional segregation is primarily
genetically determined.

Previous attempts at human brain parcellation have focused
on the use of neuroimaging measures of brain structure and
function. In the present study, we used a data-driven clustering

Figure 5. Genetic correlation-based parcellation of the primary motor cortex (M1)

using the discovery dataset. M1 was able to be reproducibly subdivided into 6

subregions, 5 of which corresponded to motor representations of the face, hand

and arm, trunk, hip, leg, and foot. The remaining subregion was the SMA. All

are shown in the lateral and medial views of the left and right M1.

Figure 6. Genetic correlation-based parcellation using a combination of the discovery and replication datasets. The seed regions were the SMFC (A), FP (B), IFG (C), and

M1 (D).

Fine-Grained Genetically Based Parcellation Cui et al. | 7



algorithm that automatically grouped cortical locations that
shared homogeneous genetic factors. Our identifications of the
genetic borders were largely in agreement with previously
defined structural and functional borders, indicating the validity
of our parcellation scheme. Genetic factors participate in many
aspects of cortical development, including neuron induction,
polarization, migration, differentiation, and the intra- and
inter-areal connections of nerve cells in the brain (Sanes et al.
2011), all of which are important for establishing and maintain-
ing the regional identity of cells and tissues. For instance, reelin
has been identified as a multifunctional protein that controls
the positioning of neurons, together with their growth, matur-
ation, and synaptic activity in the developing and adult brain

(Lee et al. 2014). A number of transcription factors, such as Pax6
and Emx2, which are expressed in opposing gradients across the
cortical surface, have also been shown to play an important role
in the regional identities of cortical areas at thewhole brain level
(Bishop et al. 2000; O’Leary et al. 2007; Rakic et al. 2009). At the
lobar level, evidence from animal studies using mutant mice
supports the concept that genetic mechanisms govern the pro-
cess of subdividing the frontal cortex (Cholfin and Rubenstein
2007, 2008). Specifically, frontal cortex subdivision patterning is
regulated by Fgf8, Fgf17, and Emx2, which play distinct roles in
molecular regionalization (Cholfin and Rubenstein 2008).
Although many genes are likely to be involved in cortical region-
alization, a particular set of genes may influence a specific

Figure 7. Relationships between the similarities in functional connectivity patterns and in genetic correlation profiles seeded from the left SMFC (B) and the processing

pipelines (A).
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subregion, and different subregionsmay be controlled by distinct
gene sets. High genetic correlations with respect to the surface
area between any 2 surface locations indicate that theywere con-
trolled by a common gene set, and vertices with similar genetic
correlations are considered to be located in the same subregion.
This is the basic concept behind the idea that genetic correlations
can provide the distinguishing features to parcellate subregions.
Recently, Chen and colleagues investigated older human adult
twins and demonstrated that genetic topography exhibited
anterior–posterior and dorsal–ventral organizational gradients
on a coarse level (Chen et al. 2011). This level of patterning by
opposing gradients is supported by animal studies that used ex-
perimental inhibition or overexpression of specific genes (Bishop
et al. 2000; O’Leary et al. 2007; Rakic et al. 2009). However, evi-
dence of genetic influences on a finer scale has been sparse.

We observed a consistency between the similarities in genetic
correlation profiles and in brain connectivity patterns. The evi-
dence suggests that families of molecules regulate the develop-
ment of the cortical circuitry, including the growth of axons
(Dye et al. 2011), path finding (Molnar and Blakemore 1995), and
target selection (Ma et al. 2002), which together impose cyto-
architectonic differentiation on the developing cortex. For in-
stance, the growth of projections correlates with Lhx2, Id2, and
COUP-TF1 expression (Dye et al. 2011), and some guidance mole-
cules have also been identified in the thalamocortical pathway
(Ma et al. 2002). Brain function is constrained by fiber connectiv-
ity, which reflects the capacity for information flow within and
between specific structures (Passingham et al. 2002). Because
we found that the correlation between genetic correlation and
brain connectivity similarity matrices is modest, it is likely that
genetic correlations influence many other phenotypes in add-
ition to brain connectivity.

The 4 regions examined in the present study are characterized
by various phylogenetic and functional features. The SMFC is a
phylogenetically older area, which is also part of the primate cere-
bral cortex. Its functional roles are clearly distinct, with the SMA
primarily related to a complete somatotopical representation of
body movement and the pre-SMA related to the control of move-
ment (Nachev et al. 2008). The boundaries obtained by different
approaches that used structural and functional features such as
cytoarchitectonic (Zilles et al. 1996), anatomical (Johansen-Berg
et al. 2004), and functional connectivity (Kim et al. 2010) are in
accord with one another in the SMFC; for these reasons, it was
explored first to test our hypothesis. This commonality across
approachesmay be due to distinct functional differences between
the subregions (Nachev et al. 2008) together with an older phylo-
genetic origin, which may result in modest inter-subject variabil-
ity (Mueller et al. 2013). These factors aid in the subdivision of this
area based on its genetic components as well as its various
phenotypes.

The human FP is the anterior-most region of the prefrontal
cortex. It is considered to be under substantial genetic control be-
cause its evolution has led to a considerable expansion in its size
and connectivity with other cortical areas, in particular with
higher-order association areas (Semendeferi et al. 2001). These
factors may have been crucial for the emergence of human-
specific cognitive processing and social emotion functions
(Kaas 2006; Van Essen and Dierker 2007). It should be noted
that, although the parcellation of the FP correlated with sulcal
patterns and fiber-driven divisions, the seed region was within
a cytoarchitectonic area, namely, the lateral frontopolar area 1
(Fp1) (Bludau et al. 2014). This is in line with previous findings
that the FP is a region with distinct anatomical connection pat-
terns (Liu et al. 2013) and diverse functions (Gilbert et al. 2006).

The diverse functional complexity of the FP is likely due to its
being one of the phylogenetically youngest and most diverse
regions in humans. Nevertheless, our results indicate that func-
tional segregation can be detected using genetic information,
suggesting a genetic origin for the functional subdivisions.

The IFG has long been associated with language functions,
which are among the most distinctive attributes of humans.
Our three-cluster solution for the genetically based parcellation
of the IFG is congruent with classical cytoarchitectonically
(Amunts et al. 1999) and connectivity-driven (Anwander et al.
2007) segregation schemes. BA44 and 45, which have clear cyto-
architectonic differences, form the classical Broca’s area
(Amunts et al. 1999). The segregation of the FOP and BA 44/45
agrees with previous findings that Broca’s area and the FOP are
functionally and phylogenetically distinct (Friederici et al.
2006). Furthermore, our five-cluster solution suggested a further
division within BA44 and 45, a finding which is consistent with
more finely detailed multiple receptor mapping (Amunts et al.
2010), functional activation (Heim and Friederici 2003; Molnar-
Szakacs et al. 2005), and connectivity-based studies (Neubert
et al. 2014). In the present study, these 2 parcellation levels
were independent of each other, providing powerful evidence
of a hierarchical organizationwithin BA 44 and 45. Indeed, genet-
ically controlled hierarchical segregation has previously been
found at the whole brain level (Chen et al. 2012). In addition, it
has been suggested that the functional role of BA44/45 is asso-
ciated with complex and hierarchical structure processing (Frie-
derici et al. 2006; Amunts et al. 2010). Notably, we found that BA45
was more closely genetically correlated to the auditory cortex
than was BA44, a correlation that is supported by the known
functional role of BA45 in language comprehension (Clos et al.
2013). In contrast, we found that BA44 was more closely genetic-
ally correlated to the motor area than was BA45. Again, this rela-
tionship is supported by the known relationship of BA44 with
speech production (Clos et al. 2013). Although lateralization in
structure and function has been found in the IFG, we identified
similar genetically based parcellation topology in the left and
right hemispheres. From a genetic point of view, symmetry be-
tween hemispheres is also a predominant feature on a whole
brain level (Chen et al. 2012).

M1 is located at the posterior convolution of the frontal lobe.
There is consensus that an orderly motor representation of the
human body (also called motor somatotopy) exists in M1. We
found that our genetic subdivisions corresponded to the gross or-
ganization of the motor homunculus. This is a typical region in
that its functional coding is based on locations, but not on struc-
tural morphology, as a result of which the cytoarchitectonic
division is not consistent with the topographic organization
(Geyer et al. 1996). In general, connectivity-based approaches
agree with functional topography. Nebel and colleagues have
reported a functional connectivity analysis of M1, with a five-
partition rough correspondence with the motor homunculus,
albeit that the middle lateral section showed an anterior–poster-
ior division (Nebel et al. 2014). Other tractography studies
revealed a dorsal/ventral division (Tomassini et al. 2007) and
detailed 4 subregions (Schubotz et al. 2010) of the lateral pre-
motor cortex, approximately corresponding to the lateral portion
ofM1. Our parcellation ofM1 indicated that the functional corres-
pondence is primarily genetically influenced, suggesting a genet-
ic basis for the functional subregions.

Taken together, the 4 regions examined in the present study
provide a representative example of the use of the current
phenotypically based parcellation approach incorporating evolu-
tionary and functional variety. Our results indicate that genetic
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correlation-based parcellation is reliable and robust and may be
universal and generalizable to other regions of the human brain.

Because MZ twins share all their genes whereas DZ twins
share an average of 50% of theirs, bivariate twin models present
a powerful strategy for estimating the degree of genetic overlap
(genetic correlations) between phenotypes. In addition, the abil-
ity to assess genetic sources usingMRI allows for an in vivo inves-
tigation of the basis of brain organization. We speculate that
genetic correlations of cortical surface area of the human brain
may reflect cortical regionalization that was established in
early development, but further study is needed to verify this.
Although our scanned twin sample was not extremely large,
because our parcellation patternswere validated byan independ-
ent dataset and because the combination of the 2 datasets
provided verification for 4 representative regions, we believe
our findings to be credible and reliable. In addition, other seed
regions and/or a more data-driven approach without predefined
ROIs as well as the match between their genetic correlation pro-
files and functional connectivity patterns needs to be explored in
future studies. It should also be noted that, although the spatial
and temporal resolution of brain imaging in the present study is
frequently used, it is not the highest available. In future studies,
we will consider making use of the much higher quality publicly
available data from the HumanConnectome Project on this topic.

In conclusion, this study provides in vivo evidence that the
genetic correlations of cortical surface area obtained by twin ana-
lysis can be used to identify fine-grained functional subregions.
Our findings suggest that genetic correlations are generally inter-
pretable by existing phenotypically based approaches, thereby
having the potential to unravel population-based fundamental
patterns of the cortex and of inter-regional connectivity. The pre-
sent study is important for understanding the genetic basis of
cortical regionalization and provides guidance and validation
for the delineation of the next generation human brain atlas.

Supplementary Material
Supplementary Material can be found at http://www.cercor.
oxfordjournals.org/ online.
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