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ABSTRACT
Background subtraction is an important component of many com-
puter vision systems. In this paper, we present a fast and efficient
texture-based method for background subtraction in a video se-
quence. At first, a novel LBP (Local Binary Pattern) operator called
εLBP is applied to extract the local description of each pixel. Then,
the kernel of background subtraction is performed based on two
principle phases, i.e. the background building phase and the fore-
ground detection phase. In the former phase, the probability that
a pixel belongs to foreground is calculated based on the difference
between the current εLBP and the adaptive mean εLBP. In the
later phase, a thresholding operator is applied on the probability to
determine whether a pixel can be classified as foreground, and the
adaptive mean εLBP is updated by a user-settable learning rate.
Finally, our approach is evaluated against several video sequences
compared with the traditional MoG model. Experiments show that
our method is suitable for various scenes and is appealing with
respect to robustness.

Index Terms— Background Subtraction,εLBP

1. INTRODUCTION

Background subtraction is a convenient and effective method for de-
tecting foreground objects from a stationary camera. Its mainly de-
pends on the background modeling module. The central idea behind
this module is to utilize the visual properties of the scene for build-
ing an appropriate representation, that can then be used to classify a
new observation as foreground or background.

Existing methods for background modeling can be classified as
predictive and statistical. The predictive methods model the scene
as a time series and develop a dynamical model to recover the current
input based on past observations [1, 2], while the statistical methods
neglect the order of the input observations and roughly build a prob-
abilistic representation of the observations [3, 4, 5, 6, 7]. A popular
statistical method is to model each background pixel with a sin-
gle Gaussian distribution [3]. However, This method does not work
well in the case of dynamic natural environments including repeti-
tive motions, i.e. waving vegetation, rippling water, and camera jit-
ter. In [4], the mixture of Gaussians(MoG) approach is proposed to
solve these complex, non-static backgrounds. Unfortunately, back-
ground with fast variations can not be accurately modeled by just a
few Gaussians. To overcome the limitations of parametric methods
(i.e. single Gaussian in [3], MoG in [4]), a nonparametric technique
is developed in [5]. This utilizes a general nonparametric kernel den-
sity estimation technique for building a statistical representation of
the scene background. However, both the parametric methods and

This research is sponsored by the National ’863’ High-Tech Program of
China under the grant No. 2009AA012104 and Natural Science Foundation
of China under the grant Nos: 60675012, 60873161.

nonparametric method may fail when foreground objects have sim-
ilar color to background, or even when the illumination variations
occur due to sunlight changing outdoor and light switching indoor.
The main reason is that, these methods only use the pixel color or
intensity information to detect foreground objects. To deal with this
weak description, [6, 7] use a novel and powerful approach based on
discriminative texture features represented by LBP [8, 9] to capture
background statistics. In [6], each pixel is modeled as a group of
adaptive LBP histograms that are calculated over a circular region
around the pixel, while in [7], each pixel is modeled as a mixture of
LBP mode by combining the hysteresis update step and the bilateral
filter together. The main limitation of those two methods is that both
memories and computation costs increase greatly with the increasing
of the images resolution.

In this paper, we propose a fast background subtraction method
based on the novel LBP called εLBP for detecting moving objects.
Our method is able to overcome two drawbacks brought by the tradi-
tional LBP operator, i.e. the neighboring pixels are conditional inde-
pendent under the center pixel, and it is weakly to measure the differ-
ence between the center pixel and its neighborhood. The overview
of our method is illustrated in Fig.2. Compared with the LBP ap-
proaches, our method improves greatly memories and computation
efficiency by a simple measurement, which is linearly proportional
to the images resolution. And compared with the MoG model, the
illumination variations and the color similarity between foreground
and background are eliminated in some degree as discriminative tex-
ture feature εLBP is used in our approach.

The rest of this paper is organized as follows. A brief intro-
duction on the novel texture description εLBP compared with the
LBP is given in Section 2; Background subtraction method, which
is composed by background modeling and foreground detection, is
described in Section 3 in detail; experiment results on real data com-
pared with the MoG are reported in Section 4; the conclusive remark
is addressed at the end of this paper.

2. FROM LBP TO εLBP

LBP [8, 9] is a robustly gray-scale invariant texture primitive statis-
tic. The original version of the operator labels the pixels of an image
by thresholding the value of center pixel with the 3× 3 neighbor-
hood and describing the result as a binary number (binary pattern):

LBPP,R(xc, yc) =

P−1∑

p=0

s(gp − gc)2
p s(t) =

{
1 t � 0
0 t < 0

(1)

where gc corresponds to the gray value of the center pixel (xc, yc),
and gp to the gray values of P equally spaced pixels on a circle of
radius R. The LBP operator describes the pixels of an image only by
the signs of the differences in a neighborhood, which are interpreted
as a P -bit binary number.
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The advantage of the LBP operator is its tolerance against illu-
mination changes and its computational simplicity. However, it has
two main drawbacks as follows: 1. the neighboring pixels are con-
ditional independent under the center pixel. In fact, the assumption
that the neighboring pixels are conditional independent under the
center pixel is too strong to give the local description of the center
pixel. 2. the measurement between the center pixel and its neigh-
borhood only takes the signs of the differences into consideration.
Obviously, this kind of measurement may lead to some wrong re-
sults. For example, when all the gray values (the center pixel and
the corresponding neighboring pixels) increase or decrease a certain
equivalent amount, the result of the original LBP does not change.
Thus, only using the signs of the differences loses a lot of usable in-
formation. In order to overcome two drawbacks, we propose a new
εLBP operator as follows, and its comparison with LBP is illustrated
in Fig.1.

εLBPP,R(xc, yc) =

P∑

p=1

s(
ĝp − ǧp

gc
− ε)2p

(2)

where ĝp and ǧp correspond to the gray value of the clockwise and
counter-clockwise neighborhood of gp. The parameter ε is a noise
parameter which makes the LBP more stable against noise. The
advantages of εLBP compared to LBP are from two aspects. Using
the difference of ĝp and ǧp in εLBP operator has an intuitive motiva-
tion in that it explodes the conditional independent of neighborhood.
While using the ratio of ĝp− ǧp and gc in εLBP operator strengthens
the measurement the center pixel and its neighborhood.
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Fig. 1. Overview of LBP and εLBP operators for a neighborhood of
8 pixels.

3. BACKGROUND SUBTRACTION BASED ON εLBP

Background subtraction algorithm can be divided into two basic
phases: background modeling and foreground detection. The
flow chart of the novel background subtraction method is sum-
marized in Fig.2. A gray value input image is first analyzed by
performing εLBP operator. Then, the probability that a pixel be-
longs to foreground is calculated on each pixel (in the background
modeling phase). Finally, foreground mask is gained by a thresh-
olding operator and the adaptive mean εLBP is updated (in the
foreground detection phase) by a user-settable learning rate.

3.1. Background Modeling

In order to eliminate the illumination variations and the color simi-
larity between foreground and background, we choose to utilize tex-
ture information when modeling the background and measure the
texture by the εLBP. Background modeling consists of two basic
steps: εLBP calculating and probability calculating.

The first step of background modeling is εLBP calculating.
Compared with the local description of the pixel in [6], which uses
the LBP histogram computed over a circular region of radius around
the center pixel, we only calculate the εLBP of the center pixel

input image volume computation and updatingLBP

of 8 neighborhood in current image

LBP of 8 neighborhoodmean

LBP

updating

probability calculating foreground detection

background modeling

Fig. 2. Overview of the novel background subtraction algorithm.

for the purpose of improving the performing speed. Since all the
neighboring pixels around the center pixel are equivalent in εLBP
calculating, considering them separately is better than using a single
number (the original LBP representation) calculated from Eqn.2. In
other words, we calculate

πp = s(
ĝp − ǧp

gc
− ε) p ∈ {1, 2, ..., P} (3)

for each neighboring pixel gp of the center pixel gc, and then the
current εLBP is represented by π = {π1, π2, ..., πP } instead of
Eqn.2. Therefore, each neighboring pixel gp has their own binary
pattern πp. After performing the εLBP operator, 8 binary images of
different neighborhood can be obtained when using the 3× 3 neigh-
borhood (Fig.2 illustrates this in detail).

The background model presented in our approach follows the
single Gaussian model proposed in [3], which attempts to model
each pixel with two Gaussian parameters the mean and the variance.
However, different from the single Gaussian model [3], only the
mean (called adaptive mean εLBP) is maintained, and the variance
is ignored. Since all the neighboring pixels are consider separately,
so the adaptive mean εLBP is denoted as μ = {μ1, μ2, ..., μP },
where each μp is the mean of the πp with a series of frames.

The second step of background modeling is probability calcu-
lating, which is to calculate the probabilistic that a pixel belongs to
the foreground. We define that a pixel belongs to the foreground
as foreground probabilistic ϕ. As all neighboring pixels are consid-
ered separately, we can calculate each of them first and then sum up
them as the foreground probabilistic ϕ. Let us denote that the prob-
abilistic that all neighboring pixels belong to foreground as ω =
{ω1, ω2, ..., ωP }, where each ωp is the probability that a neigh-
bor gp belongs to foreground. Because the foreground probability
ωp describes the difference between the current observation (current
εLBP) and the model (adaptive mean εLBP), ωp can be calculated
as follows,

ωp =
| πp − μp |

max {H (μp), δ}
H (μp) = μp log μp + (1− μp) log (1− μp) (4)

where the parameter δ (we set δ = 0.1) is small positive number
that prevents dividing by zero and H (μp) is defined as entropy of
the mean εLBP of the neighboring pixel gp. The definition of Eqn.4
comes from two folds. First, foreground probability is determined
by the different between the current observation and the model (rep-
resented in numerator). It means that the foreground probability is
liner to the difference. Second, the foreground probability is also de-
termined the certainty degree of the current observation (represented
in denominator). We utilize of the entropy of the mean εLBP to de-
scribe the certainty degree of the observation. As mentioned above,
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the foreground probabilistic ϕ can be calculated by the sum of ωp,
given by

ϕ =

P∑

p=1

ωp (5)

As shown in Eqn.3, Eqn.4, and Eqn.5, the computation com-
plexity is quite low as they require simple operations only. The com-
plexity is linear to the number of neighborhood O(P ).

3.2. Foreground Detection

Foreground mask is calculated before updating of the background
model (the adaptive mean εLBP). At the foreground mask calcu-
lating procedure, a thresholding operator is applied to determine
whether a pixel can be classified as foreground, given by

m =

{
1 ϕ > TB

0 else (6)

where TB is a user-settable threshold. In our experiment, we set
TB = 10 when using the 3× 3 neighborhood. The processing
of updating (the adaptive mean εLBP) is required after obtaining
foreground mask. Following the update approach proposed in [10],
which is called selective background update, our εLBP is updated
by the new observation,

μ = mμ + (1−m) (αμ + (1− α)π) (7)

where α is a user-settable learning rate and m is the foreground
mask. As illustrated in Eqn.7, if the mask m = 1, that is the pixel
belongs to foreground, the adaptive mean εLBP μ is not updated,
while if the mask m = 0, that is the pixel belongs to background,
the adaptive mean εLBP μ is updated with the learning rate α. The
adaptation speed of the background model is controlled by the learn-
ing rate parameter α. The bigger the learning rate, the faster the
adaptation.

4. EXPERIMENT RESULTS

Three experiments are performed to compare our method with the
MoG method. In these experiments, the neighborhood size is se-
lected by 3× 3, and the learning rate α is evaluated with α = 0.1.

First Experiment: Both numerical and visual methods are used
to evaluate our approach compared with the MoG model. In this se-
quence, there is obviously shadow besides the walking people. Fig.3
shows the result of false negatives (FN), which is the number of fore-
ground pixels that were missed, and false positives (FP), which is the
number of background pixels that were marked as foreground, by the
numerical method. As illustrated in Fig.3, the FN of our approach
is more stable than the MoG model, and the FP of our approach is
much more smaller than the MoG model. Fig.4 shows the result of
foreground detection result compared with the ground truth by the
visual method. As illustrated in Fig.4, the correct foreground detec-
tion marked with salmon pink color accounted for the main part of
the foreground mask.

Second Experiment: It consists of seven video sequences, each
of them represents a different, potentially problematic scenario for
background subtraction. We compared our approach with the ground
truth and the results are illustrated in Fig.5. Although the illumi-
nation variations occur in Light Switch and Time of Day scenes,
and the obvious shadow exists in Bootstrapping scene, all the fore-
grounds can be correctly detected by our approach. The main reason

Fig. 3. Comparison results of our method with the MoG method.
The left and right figures are illustrate the number of (FN) and (FP)
for the two methods, respectively. Note that, in the right figure, the
original result data z are replaced by lg(z + 1) for the purpose of
illustrating the comparison obviously.

Original
 Image

Actual
Result

Fig. 4. Background subtraction results of our method compared with
the ground truth. The salmon pink color points mark the correct
results compared with the ground truth. The red color points mark
the FN, while the blue color points mark the FP.

is that the discriminative texture features represented by εLBP elim-
inate the effect of illumination variations.

Third Experiment: We compared the performance of our ap-
proach to the MoG model based on visual expression. As illustrated
in Fig.6, our approach is less sensitive on shadow than the MoG
model, especially when the shadow is strong. Fig.6 gives the com-
parison results.

We also measured the computational speed of the proposed
method. We use a standard PC with a 1.8 GHz processor and 2048
MB of memory, and choose the program language with Matlab
in our experiments. As illustrated in Fig.7, the process times on
middle resolution 360× 240 approximate to 0.0625 (this resolution
is frequently used in surveillance system), that is 16 frames per a
second. This makes our approach well-suited to systems that require
real-time processing, i.e. tracking, detection in surveillance.

5. CONCLUSION

A fast and effective texture based background subtraction method is
proposed in this paper. The contributions in this paper are two-fold.
First, we improve the original LBP operator. The εLBP method
are quite fast to compute, which is an important property from the
practical implementation point of view, and less sensitive to the illu-
mination variations or the color similarity between foreground and
background. Second, applied the εLBP operator in background sub-
traction. The novel background subtraction method provides us with
many advantages and improvements on the the limitation of memo-
ries and computation costs in the LBP approaches and the sensitive
to illumination variations or the color similarity between foreground
and background in the traditional MoG model. Although there are
more advantages in this approach, a disadvantage is that the back-
ground image can not be gained, which is the common disadvantage
of the texture based method. Fortunately, in many computer vision
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Fig. 6. Background subtraction results of our method compared with MoG for the test sequences. The second and third rows contain the
corresponding processed frames by the our method and MoG method respectively. The images resolution are 320× 240 pixels.
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Fig. 5. Background subtraction results of our method for the test
sequences. The images resolution are 160× 120 pixels.

tasks, i.e. detection and tracking, only the foreground is enough.
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