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ABSTRACT

This paper proposes a novel real-time tracking algorithm by using
the relative hist model within particle filter framework. The target-
region is roughly enclosed with a rectangle as usual, and color fea-
tures are used to describe all the types of regions by calculating
their color histograms. Inevitably, the background pixels are in-
cluded in the target-region and the histogram of target-region may
be corrupted when performing tracking algorithm. Even the target
fails to track. Thus, the relative hist model is proposed to reduce
the influence of background pixels. In this model, we not only con-
sider the similarity between the candidate-region and target-region,
but also consider the similarity between the candidate-region and
background. In other words, the relative hist model tries to find a
candidate-region which is more similar to the target-region but less
similar to the background. By adopting this model, our tracking al-
gorithm can accurately track the object in real-time. Experiments
are performed in various tracking scenes. The experiment results
show that our algorithm is of appealing with respect to robustness
for real-time object tracking against various backgrounds.

Index Terms— Relative hist model, Particle Filter

1. INTRODUCTION

Real-time tracking is a fundamental task for various applications
such as surveillance, vision-based control, human-computer inter-
faces, and so on. In general, real-time tracking methods can be
mainly classified into two categories: either based on the detecting
and tracking of a sparse collection of features (feature-based track-
ers, such as Kanade-Lucas-Tomasi tracker [1]), or based on mini-
mizing the sum of squared differences between two corresponding
regions (blob-based trackers, i.e. mean-shift tracker[2, 3], kalman
filter tracker [4, 5], and particle filter tracker [5, 6, 7]).

The strategy of real-time tracking, either the feature-based track-
ing or the blob-based tracking, is to search a candidate-region in
the search-region between consecutive frames (Fig.1). For the blob-
tracking, a regular shape, i.e. a rectangular window, and color his-
togram from the enclosed region are perhaps the simplest but effec-
tive way to represent the appearance of target-region. However, this
inevitably includes background pixels when the foreground shape
cannot be closely approximated. As shown in the Fig.1, the target-
region is composed by the foreground-target and in-target-region’s
background. Accordingly, color histogram of target-region can be
corrupted by the background pixels and the corresponding track-
ing result will be unstable, or even failed. Thus, it is important to
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approximate the foreground-target exactly or reduce the influence
of background pixels significantly. Many methods are proposed to
solve the problem. In many applications, the foreground-target is al-
ways gained by background subtraction methods, i.e. the mixture of
Gaussians(MoG) proposed in [8]. However, these methods do not
work well in the case of un-stationary camera. In order to approxi-
mate the foreground-target under the un-stationary camera, segmen-
tation algorithms, such as graph cut in [9], are frequently applied
when performing tracking. Although these methods perform well in
many scenes, the main limitation is that both memories and com-
putation costs increase seriously with the increasing of the images
resolution. That is to say, real-time is a common problem by these
algorithm in many applications.

The core of particle filter algorithm contains two models, i.e. the
dynamic model and observation model. Traditionally, the observa-
tion likelihood (observation model) is represented by the similarity
between the target-region and candidate-region. The problem arising
from these algorithms is that, the similarity between the candidate-
region and background is not take into consideration. Thus, when the
target-region contains background pixels, the observation likelihood
may be not calculated exactly. Even the target fails to track.

In this paper, a novel relative hist model within the particle
filter framework is presented in order to reduce the influence of
background pixels. The observation likelihood is represented by the
novel relative hist model. In this model, we consider the observa-
tion likelihood as the probability that a candidate-region belongs to
target-region but not the simple similarity. Each candidate-region
has two relative probabilities, i.e. belongs to target-region or be-
longs to background. The purpose of relative hist model is to gain
the candidate-region which has max probability of belonging to
target-region but not belonging to background. Since all the proba-
bilities are represented by the similarity, the relative hist model tries
to find a candidate-region that is more similar to the target-region
but less similar to the background. Accordingly, the similarity
between the candidate-region and target-region as well as the sim-
ilarity between the candidate-region and background are taken into
consideration. When implementing our algorithm, the target-region
is roughly enclosed with a rectangle, and color features are used
to describe all the types of regions by calculating theirs color his-
togram, and the Bhattacharyya coefficient [10] is used to measure
the similarity between regions. Finally, experiments with various
scenes are performed to test our algorithm, and results show that our
algorithm is of appealing with respect to robustness.

This paper is organized as follows: our novel blob-tracking algo-
rithm are described in Section 2 in detail; experiment results on real
data compared with the traditional methods are reported in Section
3; the conclusive remark is addressed at the end of this paper.
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Fig. 1. The figure describes all types of regions. The target-region
is composed by foreground-target and in-target-region background.
The background includes in-target-region’s background and out-
target-region’s background.

2. METHOD DESCRIPTION

We present the details of the proposed tracking algorithm in this sec-
tion. First, the particle filter framework is presented in Subsection
2.1. Then, the details of the observation and state of our algorithm
is presented in Subsection 2.2. After that, the relative hist model as
observation model and gaussian model as dynamic model are illus-
trated in Subsection 2.3 and 2.4, respectively.

2.1. Particle Filter Algorithm

The Bayesian estimate is used to recursively estimate a time evolving
posterior distribution. This distribution describes the object state by
given all observations. Denote zt, xt as the evolution of observation
and state at time t, respectively. Two models are defined as follow.
The first one is the dynamic model, which calculates the evolution
of the state {xt, t ∈ T}, given by

xt = Ft(xt−1,wt−1) (1)

and the second one is the observation model, which recursively es-
timates xt, given by

zt = Ht(xt,vt) (2)

where Ft and Ht are nonlinear functions, wt and vt−1 are inde-
pendent and identically distributed noise process.

From the Bayesian perspective, the tracking problem is actually
to estimate the filter distribution recursively, i.e. to calculate the be-
lief of the state xt at time t by given observation z1:t. Thus, we need
to calculate the probability density function p(xt|z1:t). We assume
p(x0|z0) = p(x0) as initial probability density function. Then,
p(xt|z1:t) may be obtain recursively by two stages: prediction and
update.

PREDICTION: Suppose the required p(xt−1|z1:t−1) at time
t − 1 is available, the prediction stage obtained via the Chapman-
Kolmogorov formula:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (3)

where the probabilistic p(xt|xt−1) is defined by Equation (1).
UPDATE: When the measurement zt at time t is available, we

update the prior through the Bayesian rule,

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (4)

where the likelihood p(zt|xt) is defined by Equation (2).
Particle filter[5, 6, 7] algorithm obtains the Bayesian estimate

by Monte Carlo simulations, and describes p(xt|z1:t) by a set of N
particles, and associates them with weights {xk

t , ωk
t }Nk=1. Then, the

posterior density at time t can be approximated as follow,

p(xt|z1:t) =

N∑
k=1

ωk
t δ

(
xt − xk

t

)
(5)

where δ(.) is the dirac function and the weights are normalized by
the equation

∑
k ωk

t = 1.

2.2. Details on Observation zt and State xt

In our experiment, the target-region is roughly enclosed with a rect-
angle, and color features are used to describe all the types of regions
by calculating theirs color histogram q = {qi},

∑
i qi = 1. The

histogram of target-region, candidate-region and background are de-
noted as qo, qc, and qb, respectively. Meanwhile, the Bhattacharyya
coefficient [10] is used to measure the similarity between two regions
q1 and q2, given by,

ρ(q1,q2) =
∑

i

√
q1

i q2
i (6)

Accordingly, observation zt is represented by the histogram q.
Since we only record the position and size of a region, the state xt

is represented by {p = (px, py), s = (h, w)}, where p, s are the
center position and size of the region respectively.

2.3. Relative Hist Model as Observation Model

As described in subsection 2.1, the k-th particle weight is updated
by specifying prior density function as the importance density,

ωk
t = ωk

t−1p(zt|xk
t ) (7)

where ωk
t−1 is prior importance weight at time t − 1 and p(zt|xk

t )
is the observation likelihood at state xk

t .
Traditionally, the observation model (likelihood) is represented

by the similarity between the target-region and candidate-region.
Since all types of regions are represented by the histograms, this
similarity is defined by the Bhattacharyya coefficient, give by

ωk
t = ωk

t−1p(zt|xk
t ) = ωk

t−1ρ(qo
t−1,q

ck
t ) (8)

where qo
t−1, q

ck
t are the histogram of target-region at time t−1 and

the histogram of k-th candidate-region at time t.
The update Equation(8) works well when the target-region is

only composed by the foreground-target. However, its inevitably
includes background pixels when the target-region is enclosed with
a rectangle roughly. Therefore, this similarity may not exactly de-
scribe the probability that the k-th candidate-region is target-region.
For an instance, when the background ratio of the target-region
more than half, the similarity describes more about the similarity
between the candidate-region and background. The main reason
is that the traditional method only consider the similarity between
candidate-region and target-region, but not take the similarity be-
tween candidate-region and background into consideration. Thus,
different from the traditional method, we define the observation
likelihood as the probability that a candidate-region belongs to
target-region p(o|qck

t ). Accordingly, the weights ωk
t updated by

ωk
t = ωk

t−1p(zt|xk
t )

= ωk
t−1p(o|qck

t ) Bayesian

= ωk
t−1

p(q
ck
t |o)p(o)

p(q
ck
t |o)p(o) + p(q

ck
t |b)p(b)

= ωk
t−1

p(q
ck
t |o)

p(q
ck
t |o) + p(q

ck
t |b)λ

λ =
p(b)

p(o)
(9)

where, the p(q
ck
t |o) denotes that the probability that the histogram

of target-region in current frame is q
ck
t when the candidate-region
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belongs to target-region. Same as the definition of p(q
ck
t |o), the

p(q
ck
t |b) denotes that the probability that the histogram of back-

ground is q
ck
t when the candidate-region belongs to background.

From the definition of p(q
ck
t |o) and p(q

ck
t |b), the p(q

ck
t |o) can

be calculated by the similarity between the candidate-region and
target-region, while the p(q

ck
t |b) can be calculated by the similarity

between the candidate-region and background. That is, p(q
ck
t |o) =

ρ(qo
t−1,q

ck
t ) and p(q

ck
t |b) = ρ(qb

t−1,q
ck
t ). From Equation(9), the

coefficient λ = p(b)
p(o)

defines the prior density that a candidate-region

belongs to the background relative to target-region. Based on the
continuity of the movement, we assume that the position and size
recursive frames vary small. Thus, p(o) is defined by the weight
of previous particle, that is p(o) = ωk

t−1. Since we have no prior
density of background, the probabilities that the candidate-region be-
long to the background is defined as the uniform distribution, that is
p(b) = 1

N
. Accordingly the coefficient λ is given by

λ =
p(b)

p(o)
=

1

Nωk
t−1

(10)

where N is the number of particles. At last, from the Equation(9,10)
and the definition of p(q

ck
t |o), p(q

ck
t |b), we can gain that the k-th

particle weight ωk
t is updated as follow,

ωk
t = ωk

t−1

ρ(qo
t−1,q

ck
t )

ρ(qo
t−1,q

ck
t ) +

ρ(qo
t−1,qb

t)

Nωk
t−1

(11)

From the Equation(11), the k-th particle weight is updated by the
similarity between the candidate-region and target-region relative to
the similarity between the candidate-region and background. Thus,
we denote this observation model as relative hist model.

2.4. Gaussian Model as Dynamic Model

As described in subsection 2.2, the state is represented by the posi-
tion and size. So, the state xk

t of each particle is represented with the
position pk

t and size sk
t , that is, xk

t = [pk
t sk

t ]T. Generally, gaussian
model is adopted as dynamic model, given by

p(xk
t |xk

t−1) = N (xk
t−1 +

∂xk
t−1

∂t
, σx)

= N (

[
pk

t−1

sk
t−1

]
+

∂

[
pk

t−1

sk
t−1

]

∂t
,

[
σp

σs

]
) (12)

where σp, σs are the variance of position and size, and N (.) is the
normal distribution function.

3. EXPERIMENTS AND RESULTS

In the following experiments, a multi-color is adopted as observa-
tion model based on Hue-Saturation-Value color histograms[11], the
number of particles is selected as N = 50, the variance of position
and size are selected as σp = [10 10]T, σs = [4 4]T, and the initial
position and size are initialed at first frame.

The overview of our algorithm is illustrated in Fig.2. A pre-
vious frame is processed at first by calculating two histograms qo

and qb. Then, for each candidate-region, the observation likelihood
is initialed as the uniform distribution, that is 1

N
, and updated by

Equation(11) after the calculation of histogram qck . Meanwhile, the
prediction model is calculated by the Equation(12). Then, the poste-
rior distribution is estimated by Equation(5). Finally, we can get the

previous frame
calculating two histograms oq and bq

getting search-region

current frame

relative-hist-model tracking

oq

bq

kcq

current frame

Observation
model 

Dynamic
model Estimation 

of posterior

calculating candidate-region kcq

Fig. 2. Overview of our novel algorithm. The core of the algorithm
is the observation model boxed with bold red frame.

position and size of the target-region. Meanwhile, the histogram of
the target-region is updated by

qo
t = (1− η) · qo

t−1 + η · qo
t (13)

where η is the updating ratio (in our experiments η = 0.05).
Both visual and numerical methods are used to evaluate our al-

gorithm by comparing with the traditional methods and the ground
truth. First, the comparison between our algorithm and traditional
methods is illustrated in Fig.3. Then, the results of our algorithm
compared with the ground truth are illustrated in the Fig.4. Fig.4(b,c)
show the variations of the error ε, False Negatives and False Posi-
tives along with the variations of the size of the initial target-region.
Error ε is defined by the difference of two center points, given by

ε =
∑

t ‖ct−ĉt‖2
T

, where ct and ĉt are the center point of the out-
put target-region of our algorithm and the ground truth, and T is
total frame. False Negatives and False Positives are defined as∑

t
r̂t−rt∩r̂t

r̂t
T

,

∑
t

rt−rt∩r̂t
r̂t

T
respectively, where rt and r̂t are the out-

put target-region of our algorithm and the ground truth, respectively,
and the operation ∩ is denoted to gain the intersection region. As
illustrated in Fig.3, when the initial target-region is small, the re-
sult of our algorithm is same as the traditional one. However, when
the initial target-region is large, that is the target-region contains a lot
background pixels, our algorithm can still track the target but the tra-
ditional one can not. Furthermore, the target-region gradually closes
to the foreground-target by our algorithm. As shown in Fig.4(b,c),
when the initial target-region is increasing, error ε and False Posi-
tives are quite small and increasing slowly, and False Negatives is
stable. Accordingly, we can get the conclusions that our algorithm is
less sensitive to the quality of initialization than the traditional one.
The main reason is that the influence of background pixels on the
target-region representation is eliminated by the relative hist model.

In the Fig.5, the performance of our algorithm is tested on other
scenes. Although the acquisition equipment are difference (i.e. fish-
eye in the first scene and aerial cameras in the third scene), and the
illumination are changing (i.e. indoor in the first and second scenes
and outdoor in the third scene), all the target-region can still robust
to track by our algorithm.

The speed time of our algorithm is also measured. We use a
standard PC with a 1.8 GHz processor and 512 MB of memory, and
choose the C++ in our experiments. As illustrated in Fig.6(a), the
processing time is linearly proportional to the initial target-region’s
size, and in Fig.6(b) the max processing time is less than 0.1s. This
makes our algorithm suites to real-time processing systems.

4. CONCLUSIONS

In this paper, we present a novel relative hist model in real-time
tracking. The main contributions of this model is that it consider
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Traditional Particle Filter Relative Hist Model within Particle Filter
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Fig. 3. Tracking results in the same scene with different initial target-
region size compared with the traditional algorithm.
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Min target-region

Max target-region
Max target-region
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Fig. 4. Comparing our results with ground truth. Fig(a) shows the
initial size of target-region. Only the max and min size of target-
region are drawn in figure.

the observation likelihood as the probability that a candidate-region
belongs to the target-region but not the simple similarity. Accord-
ingly, the influence of background pixels can be reduced. At last,
the relative hist model is embedded with the particle filter frame-
work when performing tracking. Experimental results show that our
method is robust and suitable for many scenes.

5. REFERENCES

[1] Carlo Tomasi and Takeo Kanade, “Shape and motion from
image streams: a factorization method - part 3 detection and
tracking of point features,” Tech. Rep. CMU-CS-91-132,
CMU, School of Computer Science, 1991.

[2] Robert T. Collins, “Mean-shift blob tracking through scale
space,” in CVPR, 2003, pp. 234–240.

[3] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object
tracking,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 5, pp. 564–577, 2003.

[4] A.G.C. Plant, J.B. Chan, and Y.T. Hu, “A kalman filter based
tracking scheme with input estimation,” Aerospace and Elec-
tronic Systems, pp. 237–244, 1979.

Traditional Particle Filter Relative Hist Model within Particle Filter

Fig. 5. More tracking results compared with traditional algorithm.

( , ) ( , )h ws 70 80
Max target-region

Min target-region
( , ) ( , )h ws 30 40

Fig. 6. Fig(a) shows the time variations along with the variations of
the initial target-region’s size in the same scene. Fig(b) shows the
average processing time with different 10 scenes.

[5] S. Arulampalam B. Ristic and N. Gordon, “Beyond the kalman
filter: Particle filters for tracking applications,” 2004.

[6] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for online nonlinear/non-
gaussianbayesian tracking,” IEEE Transactions on Signal Pro-
cessing, vol. 50, pp. 174–188, Feb. 2002.

[7] Jaco Vermaak, Arnaud Doucet, and Patrick Pérez, “Maintain-
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