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Abstract. The past few years have witnessed the rapid growth of online social 

networks, which have become important hubs of social activity and conduits of 

information. Identifying social influence in these newly emerging platforms can 

provide us with significant insights to better understand the interaction 

behaviors among online users. However, it is difficult for us to measure the 

influence quantitatively among user peers, since many key factors such as 

homophily and heterogeneity, can not be observed in our real world 

conveniently. More recent work mainly focuses on developing theoretical 

models based on explicit causal knowledge. Nevertheless, such knowledge is 

usually not available and often needs to be discovered. In this paper, we 

introduce a model free approach to formulate causal inferences of behaviors 

among user peers. Experimental results show that influence measured by our 

approach could successfully reconstruct the underlying networks structure. 

Furthermore, two additional case studies based on this approach reveal that 

influentials wield power through specific venues, which constitute a 

comparatively small portion of the whole channels. 
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1   Introduction 

Online social networks have become the hub of information generation and contagion. 

The ever-increasing amount of information flowing through online social networks 

forces the participants of these networks to struggle for attention and influence 

through social messaging [1, 2], adoption of political opinions and technologies [3, 4]. 

Consequently, identifying influential users among them and quantify their influence 

becomes an important problem with applications in viral marketing [5], information 

dissemination [6, 7], search [8], security informatics discovery [9], and influence 

standings prediction [10]. 

However, identifying peer influence in online social networks is challenging 

because of several confounding factors, such as homophily [11], unobserved 

heterogeneity [12], simultaneity [13], time-varying factors [14], and other contextual 
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effects [15]. Correlated outcome patterns in homophily may lead to upward bias 

estimations of influence by involving plausible causal influence. Population 

heterogeneity may also confound casual inference. Simultaneity emerges when the 

superficially related outcomes of peer users occur within the same time interval 

randomly. Time-related factors may vary peer influence measured at different 

timestamps. As for contextual effects, users‘ intension to behave varies with the 

exogenous traits of his neighbors to some extent. 

Unfortunately, most existing work is pale to solve these problems well. Roughly 

speaking, recent work targeting at the aforementioned confounding factors mainly 

used structural measures and dynamic measures. For structural measures, one 

particularly salient characteristic is their heavy dependence on the assumed network 

structure. However, Cha et al. suggest that structural measures alone reveals very little 

about the influence of a user [16]. This point is further supported by the weak 

correlation between popularity and influence uncovered by Romero et al. [1]. In 

addition, structural measures are relatively unreliable, since the ranking of the most 

influential users differs depending on the measure [17-19]. As an advance over 

structural measures, researchers attempt to introduce dynamic information through 

epidemiology simulation [20, 21], information cascades [18], and Influence-Passivity 

conception [1]. One serious drawback of such work is the requirement of explicit 

causal knowledge, which is highly scarce in many scenarios. 

To obtain causal knowledge, a new line of research has examined casual 

relationships [22]. According to this research essence, if we could discover causal 

relationships in user peers, we then identify influence based on their capacity to 

predict the behavior of other users. However, identifying causal relationships covers 

only part of dynamics in social media — a large part of its participants‘ activity is 

internally generated. Actually, for internally generated dynamics, it is hard to infer 

causal relationships, since a comprehensive observation of specific user‘s behavior is 

extremely difficult.  

Fortunately, information theoretic techniques provide an ideal basis to accurately 

formulate causal inference in a model free manner. In this paper, we introduce a 

model free approach, named as transfer entropy (TE) or interchangeably information 

transfer, to identify peer influence in online social networks. Transfer entropy is 

originally formulated by Saito and Harashima [23], and further developed by 

Kamitake et al. [24]. Since then, transfer entropy has been widely used to study causal 

relationships in neuroscience, such as complex nonlinear behavior analysis [25], 

influence of intelligent agents over their environments [26], and inducing emergent 

neural structure [27]. Later, this approach was introduced to measure influence in 

social media by Ver and Galstyan [28], where no specific modeling for dyadic 

interaction are requested as before. From the perspective of information theory, 

transfer entropy can be viewed as a nonlinear generalization of Granger causality (GC) 

[29], and surpasses GC and other model based approaches because of its sensitivity to 

all order correlations. This is particularly useful for unknown non-linear interactions. 

As it is inherently asymmetric, transfer entropy incorporates directional and 

dynamical information based on transition probability. This is a key advantage over 

mutual information measure [30]. Also interestingly, transfer entropy can be 

reformulated as a conditional mutual information [31, 32]. This brings a convenient 

way for calculating, and will be shown in section 3 afterwards. 



In brief, our work in this paper contributes in two folds. 

(1) We propose a new estimator for transfer entropy. Choice of this estimator is 

critical to the final performance of casual relationship inference. In contrast to 

existing statistical based work, our estimator is data-driven and could give 

higher accuracy in entropy estimation. 

(2) By applying our approach d in two case studies, we conduct quantitative 

analysis for the pattern of wielding venue for peer influence. 

The rest of the paper is structured as follows. Section 2 reviews related work in 

influence identification. In section 3, we present the architectural design and detailed 

technical information of our influence identification framework. Section 4 reports the 

results of our evaluation study. Section 5 concludes this paper with a summary. 

2   Related Work 

To deal with the confounding factors in influence identification, there has been a long 

history of extensive study on information diffusion in general, and the attributes and 

roles of influencers specifically [18, 33]. Irrespective of various approaches used, 

previous work can be broadly categorized into two families: structural measures and 

dynamic measures. 

For structural measures, researchers have tried numerous topological 

characteristics such as in/out-degree [34], number of followers [16, 19, 35, 36], and so 

on. As this line of approaches heavily depend on the underlying network structure 

assumed, this may cause drawbacks for three reasons. First, the underlying networks 

assumed is empirical to some extent, and could reveal little information about the 

actual social dynamics. This point is well exemplified by the classic link farming 

problem [37-39]. Secondly, it is challenging to select the most influential nodes based 

on network structure, which proves to be NP-hard [5]. What is worse, when a graph is 

updated, the measurement score need to be recomputed from scratch. Finally, the 

ranking of the most influential users differ depending on the measure used [16]. 

In this regard, more recent work tried to involve the dynamic information into 

influence model. One of the first and most influential work in this direction is 

proposed by Bass [40]. This work does not explicitly consider the underlying 

structure of social networks. Rather, it involves the concept of adoption rate among 

online users. Afterwards, Romero et al. devise an Influence-Passivity algorithm by 

defining user passivity in a social network and propose an algorithm accordingly to 

measure peer influence in the network. A limitation inherent in all these approaches, 

however, is that they require the a priori assumptions of a model to describe the 

interaction mechanism. Since the required model parameters are usually unknown, 

there calls for approaches to depict temporally varying causal interactions. 

As such, researchers turned to another line of research to examine casual 

relationships, which traces back to Granger [22]. Various measures of causal 

relationships exist, and they can be divided into two large classes: those quantify 

causal relationships based on the information of random variables [41], and those 

based on specific models of data generation. Methods in the latter class are widely 

used to study casual relationships in neuroscience, with Granger causality [22] and 



dynamic causal modeling (DCM, [42]) two aptly paragons in this filed. However, GC 

requests a linear restriction on the two units under observation, which is not 

guaranteed in user behavioral dynamics. Whereas DCM assumes a bilinear state space 

model (BSSM), which could cover non-linear interactions. As a cost, DCM requires a 

priori knowledge about the network of connectivity under investigation. This scenario 

requires a potential new method to be as model-free as possible, and naturally leads to 

the application of information theoretic techniques. 

3   Methodology 

While Wiener defines causal dependencies resting on an increase of prediction power 

[43], a causality measure can be naturally expressed in terms of information theoretic 

concepts by associating prediction enhancement with uncertainty reduction. 

Essentially, transfer entropy is a rigorous derivation of a Wiener causal measure 

within the information theoretic framework [41]. It generalizes the mutual entropy 

measure, with even fewer formal restrictions. In the following section, we will present 

detail descriptions about this approach. 

3.1 Definition of Transfer Entropy 

Theoretically, transfer entropy specifies the directed information flow between two 

signal sources using their multivariate nonparametric signal statistics. In light of this 

backdrop, two stochastic processes X = xt and Y = yt can be approximated by Markov 

processes according to the generalized Markov condition: 

 (    |  
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where   
  (           ),   

  (           ), while m and n are the orders 

(memory) of the Markov process X and Y, respectively. Eq. (1) is fully satisfied when 

the transition probabilities or dynamics of Y is independent of the past of X, this is in 

the absence of causality from X to Y. To measure the departure from this condition (i.e. 

the presenceof causality), Schreiber [41] used the expected Kullback-Leibler 

divergence between the two probability distributionsat each side of Eq. (1) to define 

the transferentropy from X to Y as: 
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Paluš has shown that transfer entropy can be rewritten as a conditional mutual 

information [31, 32]. Then we can rewrite Eq. (2) as: 

  (   )   ∑  (       
 )   (

 (       
 )

  
 )

       
 

 



 ∑  (       
    

 )   (
 (       

    
 )

  
    

 )

       
    

 

 
(3) 

To estimate the entropy given by Eq. (3) based on limited amount of data samples, 

we tend to use binning method from numerical techniques. To this end, we need to 

reformulate Eq. (3) as follows. First, we deem the chronological user activities as a 

stochastic process. And then, for each user (denoted as X) in online social networks, 

we record the history of his activities into a stochastic process SX. The activities can 

be arbitrarily in your interests, e.g. tweet, retweet, reply, or a hybrid of them. For 

convenience, we adopt compress storage by record the timestamps of specific activity 

chronologically. 

   {            } (4) 

As we are limited by finite data to investigate the casual relationship between two 

stochastic point processes, a binary indicator variable need to be introduced to tell 

where an event occurred in given time intervals or bins [28]: 
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Then, based on the observation of user actions within a long time span T, we 

define the probabilities with fixed     as: 
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And a joint probability distribution can be defined similarly over a sequence of 

adjacent bins: 

 (  (      )       (            )        ) (7) 

With more succinct representation: 

  
(   )  *         + (8) 

For two distinct users X and Y, their joint probability can be defined over a 

common set of bins denote with widths   ,   , …   as  (  
(   )   

(   )). 
With all the notations given above, we can now redefine transfer entropy from Eq. 

(3) to: 
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In particular, the behavior of user X is said to cause that of user Y when the future 

behavior of user Y is better predicted by adding knowledge from the past and present 

behavior of user X than by using the present and past behavior of Y alone. For the 

sake of simplicity, we take l=k henceforth. Besides, previous study has shown that the 

distribution of user response exhibit a long tail [44]. This indicates that more recent 

bin width should be narrower than older ones. According to our data statistics, we set 

the width of bins as:         ,          , and             in the 

experiment section. 



3.2 Computation of Transfer Entropy 

Any estimator of the transfer entropy based on limited data will inevitably lead to 

biases and statistical errors [32, 45]. Sources of bias mainly come from two aspects: 

systematical deviation and statistical deviation. Systematical deviation can be tackled 

with randomized experiments, as will be involved in our experimental design in 

section 4. While for statistical deviation, a myriad of methods are available from the 

literature of computational neuroscience [46]. 

Generally speaking, statistical deviation could be eliminated through two ways: ex-

ante limitation and ex-post elimination. For the former one, statistical deviation can 

be restrined at reasonable range with respect to the given data. While ex-post 

elimination works by first estimating the bias itself and then adjusting final result 

accordingly. Since the estimation of bias in the latter approach is derived based on 

some general priori knowledge (e.g. Panzeri-Treves bias estimate [46]), it just works 

like post hoc remedy. Therefore, we believe ex-ante limitation approach is more data 

efficient by depicting the subtle characteristics of samples more accurately. 

In this work we choose to use Simpson's rule [47] to estimate the integration 

presented in Eq. (9), and finally for that in calculating transfer entropy. The process of 

estimating transfer entropy can be formulated as: 
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where    ( ) is the derivation of function   ( ). 
In numerical analysis, Simpson's rule corresponds to the 3-point Newton-Cotes 

quadrature rule [47], and is derived by approximating the integrand by a quadratic 

interpolant function. Since Simpson's method approximates the function by a 

"piecewise" quadratic, thus, if a function is already quadratic, then the result is exact. 

This is particularly suitable for our situation, where Eq. (5) can be considered as a 

special quadratic function with second order coefficient equals to zero. 

4   Experiments and Results 

One of the primary goals in this paper is to infer transfer entropy in user peers by 

analyzing their patterns of activities. Though many activity patterns can be used to 

calculate transfer entropy [28], in the following experiments, we focus on the 

recommendation adoption behaviors of users. The propensity of an individual to 

adopt or reject the items recommended to him is influenced by the behaviors of his 

neighbors in some way, and his future actions will, in turn, port influence to his 

neighbors through the process of social contacts, either directly or indirectly. Though 

such complications are hard to model, we can detect whether there are causal 
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relationships among these behaviors through transfer entropy, and ascribe the 

outcomes to the effects of influence accordingly. 

4.1 Dataset 

Tencent Weibo 1  is a Twitter-like microblogging system in China provided by 

Tencent, one of the largest Chinese Internet content providers. The dataset used in the 

following experiments (hereafter referred to as Tencent dataset) is from KDD 

Cup20122, a sampled snapshot of Tencent Weibo users‘ preferences for various items 

–– items recommended to users and the history of their ‗following‘ history. Millions 

of users in volume together with rich information in multiple domains (such as user 

behaviors, social graph, item categories), makes it an ideal resource to study social 

influence. 

4.2 Experimental Design 

As mentioned before, estimation of transfer entropy is confounded by several sources 

of factors. To obtain an unbiased estimation, we design randomized trial to minimize 

the potential effects caused by such factors, as described below. 

Our method for randomization is effective yet easy to implement. We randomly 

select adoption behaviors with corresponding timestamps from the whole dataset. 

This procedure is imperative, and brings benefit in three ways. First, without any prior 

knowledge of how the data are collected, this manipulation can alleviate the affection 

caused by selection bias. Secondly, we guarantee that the sampled data used are 

representative enough for the whole volume. As users may be clustered in local 

network that differ in important ways from users in other counterpart of the whole 

network, randomization can guarantee that characteristics of those users under 

experiment present no statistical differences from others. Thirdly, the Tencent dataset 

suffers from information incompleteness, and this phenomenon does not occur 

rigorously at random. Randomized trial could mitigate the affections induced by this 

factor statistically. Consequently, we obtain a representative sample of 920,110 

Tencent users, which constitutes 10% of the total population. 

In the following, we first evaluate the performance of transfer entropy in 

recovering the underlying network structure. We then use transfer entropy in two case 

studies, namely how do online users wield influence through two different 

information venues: keywords and topics. 

                                                           
1http://t.qq.com/ 
2Official website: http://www.kddcup2012.org/ 



4.3 Performance of Transfer Entropy 

Network structure recovering is a challenging task in the literature of social dynamics. 

The key in this task consists in the choice of criteria for establishing an edge within 

user peers. In our implementation, we consider there is an edge from user   to user 

  if   (   )    , where    is a predefined threshold. By taking true positive 

rate (TPR) and false positive rate (FPR) as a function of   , we can draw the ROC 

curve, as showing in Fig. 1. 

 

 

Fig. 1. ROC curve for transfer entropy. 

To balance both the fitting ability and computational cost, we set the maximum 

estimator error in transfer entropy to be 0.01. Experiment result shown in Fig. 1 

reveals that transfer entropy can reconstruct the network structure well. In addition, 

the FPR is restricted within as narrow interval [0, 0.00015] where TPR varies from 0 

to 1.0. This characteristic allows us to adjust TPR without prohibitively drop in FPR, 

and is vital for situations wherein rigorous fitting over the underlying graph structure 

is not always optimal. 
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4.4 Case studies 

Users in online social networks compete for attention and spread influence mainly 

through messaging. Here, we are highly intriguing in the patterns of how users wield 

influence through two kinds of information venues: keywords and topics. 

4.4.1 Influence concentration on keywords 

Messages are the medium for users to wield their influence, and we believe influence 

is mainly conveyed by the keywords used in the content. We are interested in the 

pattern of user‘s influence assigned over these keywords: do they have any preference 

in choosing keywords when wielding influence, and to which degree? 

To answer these questions, we first calculate each user‘s influence by cumulating 

all the influence wielded on his neighbors. Without any further information, we make 

a rough yet reasonable assumption that the influence of an individual distributes 

evenly among all the keywords he used. By summarizing all the sub-portions of 

influence exerted by all users through the keyword, we can draw the influence 

distribution among all the keywords, as shown in Fig. 2. 

 

Fig. 2. Distribution of users‘ influence (measured by transfer entropy) over keywords. Left side 

of the black dash line corresponds to 80% of the total influence. ‗Elite TE‘ and ‗Ordi TE‘ 

represents influence of elite and ordinary users respectively. 

Fig. 2 reveals that users tilted specific keywords to spread influence. Specifically, 

they wield 80 percent of their influence merely through 20 percent of the total 

keywords. In addition, we also differentiate elite users from ordinary ones. By elite, 

we means online users whose neighbors number ranks top 1% of the target volume 

considered [48]. Therefore, though elite users are optimal vehicles for disseminating 
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information [49], the most cost-effective performance can also be can be realized 

using ―ordinary influencers‖ [18]. This provides beneficial advice for online 

campaigns competing aiming at catalyzing the diffusion of opinions, behaviors, 

innovations, and products in society [50, 51]. 

As we find that users generally exert influence through a small amount of 

keywords. Specifically, for influential users, we tend to further check the degree to 

which they concentrate influence on keywords. To this end, we first need to define a 

criterion to select influential users. So, we predefine a threshold ‗InfluRatio‘, if a 

user‘s influence ranks among top InfluRatio of the whole population, we deem him as 

influential. We then define the degree of concentration as the partition of keywords 

used by these influential users to those used by all users. Finally, the concentration 

degree defined in this way can be formulated as a function of the parameter InfluRatio, 

and its covariance with InfluRatio are shown in Figure 3. 

 

Fig. 3. Concentration of influential user‘s influence on keywords (the blue curve). Red line 

corresponds to function y=x, while green line corresponds to y=4.735x (x and y represent 

InfluRatio and Keyword Concentration respectively). ‗Elite TE‘ and ‗Ordi TE‘ represents 

influence of elite and ordinary users respectively. 

If influential users wield influence evenly over keywords without any 

concentration, the concentration degree should increase linearly as InfluRatio 

becomes larger (red line in Fig. 3). If this is the case, considering the average 

keywords used by each user (about 4.735), the proportion of total keywords used by 

all influential users will be reformulated as the green line in Fig. 3. Actually, the 

actual concentration curve lies below the green line and close to the red line in Fig. 3. 
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This indicates a significant degree of influence concentration on keywords. As the 

variate InfluRatio becomes larger, keywords concentration begins to decentralize, yet 

still hold concentration to some extent. 

4.4.2 Influence concentration on topics 

Usually, keywords are not used solely. More often, they are used together to express 

specific topics. In this situation, the influence conveyed by each keyword is mixed up 

as a united output of each topic. Though related topics for each user are not available 

directly in Tencent Weibo, user tags can partly reflect topics one concerns. 

Under this backdrop, we compute the influence distribution among various topics, 

and the result is shown in Fig. 4. 

 

Fig. 4. Distribution of users‘ influence among topics. Left side of the black dash line 

corresponds to 70% of the total influence. 

From Fig. 4, we find that users tend to wield influence through a small amount of 

topics, and our statistics suggests that 30% users wield over 70% of the total influence. 

In more detail, the most intensive concentration is achieved when the ratio of 

influential users is 0.01. Intriguingly, this coincides with the exact ratio of Twitter 

users who produce 50% of its content [48]. Further, we want to get a close scrutiny of 

the concentration degree of influential users on topics, and the result is presented in 

Fig. 5. 
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Fig. 5. Concentration of user‘s influence over tags (the blue curve). Red line corresponds to 

function y=x, while green line corresponds to y=6.2x (x and y represent InfluRatio and Tag 

Concentration respectively). 

Influential users also wield influence intensively over topics as shown in Fig. 5. 

Comparing Fig. 5 with Fig. 3, the concentration degree on topics is less than that on 

the keywords. This may be explained by the fact that users averagely concern topics 

more (6.2 topics per user) while message less with other users. 

5   Conclusions and future work 

In this paper, we introduce a model free approach to identify influence in online social 

networks. With our refinement in entropy estimation, this approach can successfully 

uncover the underlying network structure. During the adjustment for fitting accuracy, 

we can improve true positive rate without prohibitively drop in false positive rate. 

When applying his approach to two case studies, we find that users have preference to 

concentrate their influence in specific information venues, and the concentration 

degree is higher in keywords than that in topics. Our findings can be utilized to 

leverage analytics in security informatics, viral marketing, public opinion, among 

others. 

Our future work lies in four aspects. First, to justify our approach‘s effectiveness in 

other disciplines, we intend to make a lateral comparison of its performance with 

more datasets. Secondly, considering the high computation cost, we desire to prose 
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more efficient algorithms for entropy estimation. Thirdly, we wonder how other types 

of user behavior could influence the final result, which is temporally uncovered in this 

paper. Finally, we want to further check whether involving contextual information 

could leverage influence identification. 
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