



Abstract— A simulation model of crowd evacuation based on

the cellular automata is introduced. The implementation on GPU

is focused in details. This model takes advantage of GPU to

complete part of computing by certain allocation. Taking

Guangzhou Tianhe stadium as an example, the model shows that

the performance of computing has been significantly improved

by parallel computing technique of GPU, which obtained nearly

15 times speed-up.

I. INTRODUCTION

Nowadays, unexpected public incidents such as natural
disasters, accidents, disasters, public health and social
security incident are serious threats to human society. These
unexpected incidents are likely to cause casualties, property
damage, ecological destruction, and then further threats on
economic and social stability of whole country. Especially, in
densely populated areas such as a stadium, unexpected
incident can easily cause stampede events. In the event of a
disaster unruffled, the correct and orderly evacuation of the
disaster site can save people's lives and property. So it is
necessary and important to develop and evaluate the
emergency response plans. How to evaluate the rationality,
feasibility, optimality of the emergency response plans, is the
primary concern of government and research institutes.
Evaluating by practical exercise is often expensive and
difficult to operate. Computer simulation becomes an optional
evaluation method to improve the efficiency of evacuation
plans.

Scholars from various countries have done a lot of
research work in the field of evacuation simulation. In [1],
Helbing put forward an evacuation model using force
principle. Wang and Mao introduce a people evacuation
virtual reality system in [2]. Qin and Su [3] studied the human
behavior in the evacuation process . Xiao [4] and Yue [5]
describe the simulation model using the Lattice Boltzmann
method and cellular automata method. But in the actual
simulation, the traditional serial execution on CPU usually
results in low efficiency especially when dealing with large
scale crowd. Parallel computing is one of the most effective
ways to improve the simulation speed. However, the high
performance clusters are usually expensive and difficult to

*Resrach supported by National Natural Science Fund of China

(61004090, 60902098, 11102222).

Q. Miao is with the Graduate University of Chinese Academy of Sciences,

Beijing, China. (Phone: +86-10-88256650; fax: +86-10-88259429; e-mail:

miaoqh@gucas.ac.cn).

Y. Lv is with Institute of Automation, Chinese Academy of Sciences,

Beijing, China. (e-mail: yisheng.lv@ia.ac.cn).

F. Zhu is with Institute of Automation, Chinese Academy of Sciences,

Beijing, China. (e-mail: fenghua.zhu@ia.ac.cn).

popularize in the small libraries. PC cluster can be used as an
alternative, but the communication efficiency and
maintainability remains as bottle neck. With the development
of computer hardware, graphics processing unit (GPU) has
drawn a lot of attention. The large number of threads
concurrent execution of GPU provides the user with a
low-cost ultra-large-scale parallel computing platform. At the
same time, the software programming environment, such as
CUDA [6], has been developing fast during the last five years
and now becomes mature enough as stable software tool set.

This paper introduces the crowd evacuation model for the
GPU parallel computing. Section 2 describes the proposed
model based on cellular automata principle, including the staff
of modeling and rules set. Section 3 focuses on the
GPU-oriented parallel algorithm based on the CUDA
environment. Section 4 gives the performance evaluation
based on an example in Tianhe Sports Center of Guangzhou
province where the 16

th
 Asian Games hold. Different scales of

crowd evacuation are simulated to give the comparison of
computational efficiency.

II. EVACUATION MODEL BASED ON CELLULAR AUTOMATA

A. Brief Introduction on Cellular Automata

Cellular Automata (CA) is a discrete space-time local
dynamics model, a typical method for the study of complex
systems, especially suitable for complex spatial and temporal
dynamics simulation study. Different from the general kinetic
model, cellular automata is not determined by the strict
definition of the physical equations or functions, but rather of
a series of model construction rules. Any model to meet these
rules can be regarded as a cellular automaton model. In this
model, each cell spread in a Lattice Grid takes a limited
number of discrete states, follows the same rules of
synchronous updates based on identified local rules. A large
number of cellular with simple interactions constitute a
complex dynamic system. It is characterized by discrete time,
space, states. Each variable takes only a finite number of states
and its rules of state changing are local both in time and space.

B. Evacuation Model Utilizing Cellular Automata

Three aspects of the evacuation model are introduced as
follows:

(1) Modeling of the evacuation space

The modeling of the evacuation space is a process of space
discretization, or dividing flat space into grids. In this model,
based on the most simple two-dimensional cellular automata
model, the plane is divided into square grids. Any cell at any
time has one of the four states: obstruction, exit port, occupied

A Cellular Automata based Evacuation Model on GPU Platform *

Q. Miao, Y. Lv and F. Zhu

2012 15th International IEEE Conference on Intelligent Transportation Systems
Anchorage, Alaska, USA, September 16-19, 2012

978-1-4673-3063-3/12/$31.00 ©2012 IEEE 764

1 2 3

4 5 6

7 8 9

and empty. One person can only occupy one cell.
Therefore, the grid size depends mainly on the square size of a
human body occupied.

(2) Rules of individual person

Behavior simulation of the personnel in the evacuation
process such as how to avoid a collision, bypass the queue,
and go back are difficult problems of evacuation simulation
study. In this paper, four rules of individual person are
considered to model a person’s action in evacuation process:

 moving direction rule

To simplify the problem, we define that people can only
choose from the surrounding eight grid position as a next step.
The selection criterion is choosing the grid that gets the person
most close to the exit port. As an example shown in Figure 1,
assuming a person is in grid 5, and if the rest cells are empty,
then the possible next step can be one of the 8 cells. But the
evacuee chooses the one that closest to an exit.

Figure 1. Example of moving direction

 conflict and competition rule

A CPU based evacuation model simulates each person in a
sequential mode. That is, persons are processed one by one,
without any conflicts in a certain cell. But in a GPU based
evacuation model, each thread in the GPU is on behalf of an
evacuation person. When people move in parallel within one
time step, there are conflicts of avoidance or competition for a
certain cell.

 bypass rule

In the evacuation process, a person has to make choice of
next move of the cellular grid. Under normal circumstances,
the person walks towards the grid cell nearest to an exit.
However, when the nearest grid cell is not empty, a person can
choose another cell that is little farther to the exit. For this
model, a weight is assigned to each of the 8 possible adjacent
cells according to their distance to a certain exit area. Then the
weights are sorted in sequence. When moving, a person
chooses a cell with most small value. If this cell is occupied,
the cell with second smaller weight is chosen as an alternative.
If all 8 cells are occupied, the person has to stay in the current
cell waiting for chance.

 exhumation rule

In program design, a person may repeat the move, fall into
the infinite cycle of back and forth along a certain coordinate.
In order to avoid the exhumation phenomenon, we established

a circular linked list to record the historical location
coordinates for each person. The linked list stores the last five
cells that a person just visited. When the next choice of the
grid cell is the same as one of the previous five cells, a new
cell is selected as a substitute choice.

 building borders

Building such as walls, flowerbeds relate to the cells that
marked as obstruction. For the cells along with the border of
buildings, there are less 8 choices for the next step. If a person
walks into the building, he will be rebounded back to the
opposite direction.

 Exit port of space

To determine whether the personnel out of the evacuation
area, this model uses the coordinates of the boundary to do
judgment. You can determine that a person has been
evacuated to the end if the evacuation of personnel coordinate
and the exit of the horizontal axis or vertical axis are equal.

I. IMPLEMENTATION ON CUDA PLATFORM

GPUs have evolved to the point where many real-world
applications are easily implemented on them and run
significantly faster than on multi-core systems. Future
computing architectures will be hybrid systems with
parallel-core GPUs working in tandem with multi-core CPUs.
CUDA is a parallel computing software platform and
programming model invented by NVIDIA. It enables
dramatic increases in computing performance by harnessing
the power of the general purpose graphics processing unit
(GPGPU). Our work depends on the GPU with the support by
CUDA.

A. Data storage

Due to the specifications of modern GPU architecture,
memory on GPU must be allocated and managed carefully to
maximize the simulation performance. The data need to
distribute on GPU memory include information of the cell grid,
individual person, and positions of exit or destinations.

 definition of cell grid

The cell grid is a structure of two dimensional array
representing the evacuation environment. It has two features,
one is huge in size, and the other is dynamic during the
evacuation process. For the cell grid will be queried by all
persons in the environment, we put it in the global memory.
But the access to the cell grid cannot satisfy the coalesced
access principle of CUDA, which results in low performance.
What’s more, for NVidia G80/G200 series GPU card, there is
no cache for the global memory.

In order to promote the memory access efficiency, data
read and write of global memory must be aligned, with a width
of 256 Byte. Without alignment, the read and write process
will be scattered into multi operations, which greatly affect the
efficiency. On the other side, if the r/w operations of multi half
warp can be managed to satisfy the coalesced access principle,
operations will done in one time step, which greatly improves
the performance.

765

 information of individual person

Traditionally, in order to use the cache on CPU
effectively, we tend to use the AOS (array of structs) to
organize data of all evacuation people. On the contrary, in
order to meet the requirements of coalesced access principle
on GPU, we use a different data structure called the SOA
(struct of Array). The SOA mode is shown in the following
pseudo-code.

Figure 2. Struct for a person in SOA mode

Among code in Figure 2, the x, y are coordinates of a
person in the cell grid; goal refers to the each goal export;
isFree is a flag to mark if a person has fled the evacuation
area. This storage method ensures that the storage and loading
of stream processor provide the largest possible bandwidth.

 positions of evacuation exit

Constant memory in GPU is the hardware dedicated to
graphics computing, and mainly used to speed up access to the
constant. It is off-chip memory but has a cache, which makes it
about ten times faster than global memory. As the position of
exit and buildings remain unchangeable in the simulation
process, so we store them in the constant memory on GPU to
take advantage of the constant cache to improve performance.

The only thing we need to pay attention is that the size of
constant memory is much smaller than the global memory,
64K as the maximum. But the storage of export information,
the target export position and the offset vector in the case of
this paper are relatively small, therefore does not exist the
danger of memory leak.

B. Selecting positions of next step

The algorithm on GPU mainly focuses on the initial
location of each person, determines the priority of candidate
cells to move, and chooses one from the candidates in the next
step.

 Personnel and position initialization

The initialization function traverses each export of the
dangerous place. If there is empty cell among the 8 cells
around an export, a person is allowed to occupy this position,
until no one stayed in the dangerous place.

 Priority of candidate cells

The model compares distances from each cell of the 8
candidate positions to its target location, sorts them using
bubble sort algorithm directly. An array can be used as storage
of candidates. But after complied, they are allocated in the
local memory by the NVCC complier. The local memory is a

part of GPU memory space, with a low access speed. In our
case, there are at most 8 candidates, the total size will not
exceed the shared memory capacity, and therefore, we put
them in the shared memory to take advantage of the
bandwidth.

 Select and enter the next position

In case of traditional serial simulating on CPU, persons are
treated one by one without conflicts with each other. That is,
each person deals with a static evacuation environment when
taking decision and actions. But on parallel computing
platform, things get complex. When a person finds an empty
cell around him and gets ready to enter, others may have
entered that cell first. Persons were simulated on different
threads (or stream cores), which results in conflicts among
people. This paper uses atomic function atomicCAS to deal
with this problem. Atomic function is used to ensure that only
one thread at a time to change the function of a memory
location. The role of atomicCAS is to compare the current
state of one cell, if the cell is not currently being occupied,
then occupy the cell and returns the memory location. In
essence, the atomic function is a serial process, which can
cause performance degradation, but this is inevitable.

Figure 3. Map of Tianhe Sport Center

II. TEST RESULTS AND ANALYSIS

In this paper, we take the Tianhe Sports Center of
Guangzhou province, which is the main stadium of the 16

th

Asian Games hold in 2011. Tianhe Center has 8 gates around
the building, as illustrated in Figure 3.

The rectangular area shown in figure 3 is the evacuation
space, which is nearly 400m in width and 500m in length. We
choose 0.5m as a grid cell size, and then the whole area can be
modeled with an 800*1000 array. Each element in the array
maps to a grid cell, which can be occupied by only one person.
When taking simulation, this model was simplified. The inner
evacuation process in the stadium is neglected and the

typedef struct Persons{

 int numPersons;

 int *x;

 int *y;

 int *goal;

 int *isFree;

……

}Persons;

766

passageways are reduced to 8 gates and road in four
directions.

We designed a set of simulations with different number of
audiences. From the model, we can observe the evacuation
process under different conditions, or how many people have
evacuated at a given time. An individual person can be tracked
and its trace can be drawn. After certification and
modification based on these test sets, we took simulations on
both serial computing and the new parallel GPU computing
platform to see the performance.

A. model certification with different people

We took simulations with a number of people at 500, 2000,
5000, 10000, 20000, 30000, 40000, 50000, 60000, 70000,
80000, 90000, and 100000 respectively.

Figure 4. Distribution of 50000 people after 500 seconds

Some of the simulation results are shown in figures from
number 4 to number 7. The octagon in the center of figure is
Tianhe center, and its 8 vertices represent the 8 exit ports. The
red color area represents the evacuation space, and the green
color area is regarded as obstacles such as buildings. The
curve shows the trace of one person and the cloud of dots
show the distribution of all people at a given time. Figure 4
and figure 5 show the whole distribution of all 50,000 people
after 500 seconds and after 1000 seconds separately.

Figure 5. Distribution of 50000 people after 1000 seconds

From the two figures we can see that the proposed model
generates an evacuation process similar to the process of
audience exit, in the macro view.

Curves in figure 6 and figure 7 illustrate the traces of
people with id 9998 and 49999. We can see that the person
choose an exit port first, and then walk outward with the
crowd. He can change his route if too many people in front
him, which can be observed in both figures.

Figure 6. Trace of the No.49999 person

Figure 7. Trace of the No. 9998 person

B. Performance Comparison on Two Platform

We tested the model on three different platforms, two of
them are CPU platform: Intel (R) Xeon 5482 (3.2 GHz) and
T7250 (2.0 GHz) separately. And the other is the NVidia
GTX 295 GPU, with 480 stream processors. We selected a
total of 12 sets of data to run on the three above platform
respectively. The test cases and the performance measured by
the simulation time for the same set of cases. The speedup is
defined as the ratio of simulation time of serial CPU platform

767

to time of GPU platform for the same case. The speedups for
all the 12 cases are shown in figure 8.

From the curve of GT295/T7250, we can see that the
speedup reaches max value 14.85 for the case with 30000
people. For the cases have less than 30000 people, the curve
increase rapidly. For the cases with more than 30000 people,
the speedup remains table just with a slightly decrease. From
the curve of GT295/X5482, we can see that the speedup
reaches max value 9.15 for the case with 50000 people. The
difference of CPU frequency results in the different
performance, for Xeon 5482 has a much higher frequency.

The two curves both have summits when dealing with
30000-50000 people. The reason is that when simulating with
less people, less stream processors are used, which cannot
exploit the whole capacity of GPU. As the number of people
increasing, more and more stream processors take part in the
computing. If the ratio of people number to stream processor
number is integer power of 2 (such as 1,2,4), the whole
parallel capacity of GPU is exploited, which results in summit
speedup.

The slightly decrease of speedup when people number
larger than 50000 is due to the specific architecture of GPU
and its Single Instruction Multi Data (SIMD) mode, a warp of
16 threads run under a same instruction. For our model, each
person is assigned a thread. But when a person has already
evacuated, its thread still runs. Thus all 16 threads within a
warp need to run unnecessary.

Figure 8. Speedup on GPU based on the 12 cases.

III. CONCLUSION

From the experiments we can draw two conclusions when

using GPU to improve the performance.

 The performance improvement of the proposed
evacuation model depends on the full use of all stream
processors in GPU.

 The evacuation performance improvement is
proportional to the number of built-in stream
processors in GPU.

The work introduced in this paper is a preliminary try is to

use the GPU parallel computing for evacuation simulation. A

significant improvement in performance was achieved, but the

proposed model still needs to improve. Though GPU has

much stronger parallel capacity than CPU, its ability of logic

control is relatively poor. So the model of person is designed

relatively simple. However, due to the hardware architecture

of the GPU is in continuous improvement, and the

corresponding CUDA software is becoming mature, GPU is

one of the most promising platforms in the near future.

ACKNOWLEDGMENT

This work was supported by projects of National Natural

Science Fund of China (61004090, 60902098).

REFERENCES

[1] Helbing D, Farkas I, Vicse T. Simulating dynamical features of escape

panic [J]. Nature, 2000, 407(28):487-490.

[2] Z. Wang, T. Mao, J. Jiang and S. Xia. Guarder: Virtual Drilling System

for Crowd Evacuation Under Emergency Scheme, Journal of Computer

Research and Development, 47(6):969-978, 2010.

[3] W. Qin, G. Su, X. Li. Technology for simulating crowd evacuation

behaviors. International Journal of Automation and Computing, 2009,

6(4):351-355.

[4] Y. Xiao, W. Feng, and Y. Chao. Large-Scale Flow Evacuation

Research Based on Lattice Boltzmann Method, Computer technology

and development, Vol.21, No. 7, July, 2011.

[5] H. Yue, C. Shao, and Z. Yao. Pedestrian evacuation flow simulation

based on cellular automata, ACTA PHYSICA SINICA, 2009, 58(7).

[6] NVidia, CUDA C Programming Guide, website:
http://www.nvidia.com/object/cuda_home_new.html

768

