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Abstract 
 

Feature lines are perceptually important features on 
3D models, and have extensive applications such as mesh 
simplification, re-gridding, shape analysis, non-
photorealistic rendering and surface smoothing, etc.. This 
paper gives a comprehensive survey on this field, which 
has not been summarized before. According to whether 
feature lines are associated with the line of sight, feature 
lines can be classified into two categories: view-
dependent curves and view-independent curves. Besides, 
view-independent curves can be further classified 
according to the type of 3D models, and view-dependent 
curves can be classified according to the property of 
feature lines. A complete classified method of feature 
lines on 3D models is proposed in this paper, and the 
challenges for feature extraction are also discussed 
briefly. 

 Keywords: feature lines, 3D models, view-dependent 
curves, view-independent curves 
 
 
1. Introduction 
 

Feature lines on 3D models are powerful shape 
descriptors, which can express the main geometry 
characteristics effectively. Usually an artist can capture 
essential features of objects and depict them into a stick 
figure using several strokes, while for most of other 
people this is a challenging task. Therefore, it is valuable 
to let the computer automatically extract these curves for 
us, and the curves also has other kinds of applications, 
such as surface segmentation[1], non-photorealistic 
rendering (NPR)[2;3;4], mesh remeshing[5], mesh 
simplification[6;7], surface reconstruction[8], and mesh 
denoising[9], etc.. 

In recent years, a series of viewpoints and methods for 
the extraction of feature lines are proposed by researchers. 
According to whether feature lines are associated with the 
line of sight, we can classify feature liens into two 
categories: view-independent curves and view-dependent 
curves.  

View-independent curves are not related to the 
viewpoint, and can be calculated by analyzing geometric 
properties of surface itself. This category can be further 
divided into direct curvature estimation, tensor voting 
theory, Morse theory, surface approximation, graph 
theory, and other methods based on the type of 3D models 
and computing methods. 

View-dependent curves are related to viewpoint, and 
the viewpoint must be located firstly before calculating 
them [10;11]. The subtypes of this category includes 
silhouettes [12], formulated silhouettes [13], suggestive 
contours[2], apparent ridges[3], Photic Extremum Lines 
(PELs) [14], principal and suggestive highlights[4], and 
Laplacian lines[15]. 

 The final classified method of feature lines on 3D 
models proposed by us is shown in Figure 1. We will give 
more details on the following sections. 

 
Figure 1. Our classification of feature lines on 3D models. 

 
2. View-independent curves 
 

Usually the computation of view-independent lines is 
relation to the topology of 3D models. 3D models can be 
continuous such as parametric surfaces, or discrete such 
as meshes and point clouds. For the continuous case, 
view-independent lines can be computed by simply 
calculating the derivation of the parametric equations. For 
the discrete case, it is more difficult and many researches 
are mainly focus on this case for the view-independent 
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curves. Additionally, meshes and point clouds are the 
main 3D discrete models with great difference for the 
calculation as connection relationships can be used in 
mesh but not in point clouds, so we divide view-
independent curves according to the 3D model types first.  
 
2.1. Curves on 3D meshes 
 

For the last decades, a wide variety of methods have 
been proposed in the field of the feature lines extraction 
on 3D meshes, especially on dense triangle meshes. At 
present, the common feature extraction techniques on 3D 
meshes can be classified into four categories: direct 
curvature estimation, tensor voting theory, Morse theory, 
and other methods. 
 
2.1.1. Direct curvature estimation. Direct curvature 
estimation methods are used to calculate the feature lines 
that are defined relative to the curvature, such as crest 
lines, which are defined via extrema of the principal 
curvatures along their corresponding curvature lines. 
However, practical detection of curvature extrema is 
widely considered as a difficult computational task 
because this procedure involves estimating of third-order 
and fourth-order surface derivatives [16;17], and there are 
some researchers specially study related works 
[18;19;20;21;22]. 

In order to conquer the problem, polynomial fitting 
strategies are developed to achieve an accurate estimation 
of the principal curvatures and their derivatives on each 
mesh vertex. Cazals et al.[19] propose polynomial fitting 
to estimate differential properties without the assumption 
that the mesh normal is already given. Under the premise 
that the vertex normal is preliminary estimated, 
Goldfeather et al.[20] propose a third-order method for 
estimating the principal directions, which makes full use 
of the normal vectors, and obtains a better result than the 
method proposed in [19]. Yoshizawa et al.[7] improve the 
adjacent-normal cubic-order approximation algorithm in 
[20], and their method leads to a faster crest lines 
detection.  

Ohtake et al.[16] propose an implicit surface fitting 
algorithm for detecting ridges and valleys on triangle 
meshes. In their work, the multi-level implicit surface 
fitting is combined with finite difference approximation 
for high-quality estimation of curvature tensor and their 
derivatives. Implicit surface fitting is a promising method 
for ridge-valley lines detection, but the computation time 
cost is high. Kim et al.[23] employ enhanced moving-
least-squares approximation to estimate curvatures and 
corresponding derivatives on each vertex. They reduce the 
time-complexity compared to Ohtake et al.[16] in 
approximation, which can be seen from their table of 
curvatures and their derivatives estimation statistics 
(Table 1). 

Table 1. The comparison of running time of Kim’s method 
and Ohtake’s method. (From [23] ). 

Model Num. of 
triganles 

Estimating 
modified 
MLS 
approximation 

Estimating 
curvatures 
and their 
derivatives 

Estimating 
RBF 
approximation 
[16] 

Estimating 
curvatures 
and their 
derivatives 
[16] 

Feline 
Dinosaur 
Teeth 
Dragon 
Saddle 
Fandisk 
Mechanical 
part 

99,732 
112,623 
233,204 
15,000 
8192 
51,874 
340,480 

1.2 
1.5 
3.1 
1.8 
0.1 
.06 
15.4 

9.7 
10.9 
21.9 
14.5 
0.4 
7.3 
85.1 

22 
23 
52 
38 
1 
11 
27 

101 
129 
274 
202 
2 
34 
306 

However, polynomial fitting strategies or implicit 
surface schemes are all still time-consuming. Hildebrandt 
et al.[24] use discrete differential operators on 3D meshes, 
which can avoid those preprocessing steps and is more 
efficient. The crucial step is the discretization of 
differential geometric equations. 

2.1.2. Tensor voting theory. A symmetric semi-definite 
matrix at each vertex can be obtained via normal tensor 
voting method, and then the vertices can be classified via 
eigen-analysis of this matrix to detect the creases. 
Methods based on tensor voting theory can detect sharp 
features with robustness to noisy meshes, which are 
usually adopted by researchers to analyze a surface shape 
[25]. 

Page et al.[26] use normal-vector voting to estimate 
curvature and extract creases on a triangle mesh. Kim et 
al.[27] use tensor voting theory to detect features of 
triangular meshes and handle multiple attributes. Their 
method utilizes a tensor voting technique [25] for 
classifying features and mainly includes three steps: 
eigen-analysis of a normal voting tensor, clustering of 
vertices, along with region growing and cleaning.  

2.1.3. Morse theory. Morse theory is a very powerful 
tool for studying the geometric and topological proprieties 
of differential manifolds, which mainly studies the critical 
points of smooth functions on manifolds. Therefore, the 
Morse theory can be used to calculate the critical points of 
the curvature function to detect feature lines.  

Várady et al.[28] present segmentation techniques 
deriving from the Morse theory to construct feature 
skeletons. Sahner et al.[29] propose a method based on 
discrete Morse Theory needing no derivative estimation, 
and curvedness measure [30] is used as the scalar 
indicators on the vertices of the mesh instead of the 
principal curvatures. Weinkauf et al.[31] propose a novel 
method based on a topological analysis of the principal 
curvature functions without curvature derivatives, and the 
topology of a discretized function is calculated based on 
discrete Morse theory [32].  

2.1.4. Other methods. Integral invariants are first come 
up and used for planar curve matching in [33]. Clarenz et 
al.[34] propose a classification tool based on moment 
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analysis in the local neighborhood, and detect features by 
integral invariants. Lai et al.[35] accomplish the multi-
scale recognition of features through integral invariants of 
local geodesic neighborhoods and can be used to classify 
and edit features. 

In [36], snakes, i.e., active contour models, are 
proposed first and used to edge or line detection. Inspired 
by this, Lee et al.[37] give a geometric snake as an 
extension of snakes for detecting the salient features on 
3D meshes. A geometric snake can automatically move 
via minimizing an energy function, which is defined by 
normal variations of the neighbor faces at a mesh vertex. 
Particularly, a user can interactively edit the snake to 
obtain the better result.  
 
2.2. Curves on Point clouds 
 

For many feature extraction work on point clouds, the 
strategies can be divided into three kinds: graph theory 
methods, surface approximation methods, and other 
methods. Methods based on graph theory can construct 
local topological connection, while surface approximation 
methods such as Robust Moving Least Square 
(RMLS)[38], local MLS polynomial [39] are mainly used 
to estimate curvature information. Other methods include 
multi-scale operator [40], statistical method [41], and so 
on. 

2.2.1. Graph theory methods. Gumhold et al.[42] use a 
neighbor graph to connect nearby points, and extract 
features from point clouds on the local neighbor graph 
only without surface reconstruction. Pauly et al.[43] 
extends the method in [42] by utilizing a multi-scale 
classification that enhance the robustness of extraction 
algorithm. In contrast to [42], there is an apparent 
different point in [43]: a multi-scale classification 
operator is used to analyze feature to improve the 
reliability and robustness in the noisy meshes as shown in 
Figure 2. 

                 
(a) original point clouds (b) single-scale       (c) multi-scale 

Figure 2. Multi-scale feature detection (c) has the higher 
robustness than single-scale feature detection on a noisy 

point cloud data. (From [43] ). 
Unlike Gumhold et al.[42] and Pauly et al.[43], 

Demarsin et al.[44] combine normal estimation with 
graph theory to detect closed sharp lines in point clouds. 
In this method, a minimum spanning tree is constructed at 
the level of clusters, which is different from [42; 43] at 
the level of individual points. Due to clustering reduces 

the size of point clouds, the algorithm is practical for 
large point clouds. 

2.2.2. Surface approximation methods. Daniels et al.[45] 
use RMLS [38] to locally fit multiple surfaces to the 
neighbors of potential feature points. However, this 
algorithm is limited since the RMLS is time-consuming. 
Therefore, Pang et al.[46] use a local MLS polynomial 
[39] to approximate the neighbors of each point, and the 
principal curvatures and their directions are computed 
based on the local surface approximation method.  

2.2.3. Other methods. Liu et al.[47] use a multi-scale 
operator, namely,  the Difference of Normal(DoN)[40], to 
detect feature lines from unorganized noisy point clouds, 
and the points whose DoN values are larger than a 
specific threshold are regarded as candidate feature 
points. After removing the outliers far away from the 
potential feature lines, the feature lines are obtained by 
directly connecting the vertices in order. 

Weber et al.[41] introduce a statistical method to 
extract sharp feature lines based on Gauss map clustering. 
In this method, the points which are impossible to belong 
to sharp features are abandoned, and then the remaining 
potential feature points go through Gauss map clustering 
which is an iterative selection process with an adaptive 
local sensitivity parameter. 
 
3. View-dependent curves 
 

While view-independent curves just reflect geometric 
properties of 3D objects, the view-dependent curves 
describe properties of the surface geometry, lighting, 
material, and viewing locations [48]. There are many 
view-dependent curves such as Silhouettes, Suggestive 
contours, PELs, Apparent ridges, Highlight lines, 
Laplacian lines as partly shown in Figure 3. Because these 
lines are often used in form of combination for describing 
shape [49;50;51], they are difficult to be classified from 
the perspective of extraction techniques. In this paper, 
they are classified in the view of definition with some 
typical extraction algorithms. 

      
       (a) Silhouettes               (b) Suggestive contours 

       
     (c) Apparent ridges            (d) Laplacian lines 

Figure 3. Some view-dependent curves.  (From [15]). 
 
3.1. Silhouettes (Contours) 
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For a smooth surface, the silhouette (contour) can be 
defined as the loci of points where the normal vector are 
orthogonal to the view vector. Saito et al.[52] use image 
processing techniques for drawing contours (silhouettes). 
Gooch et al.[53] use a Gauss map for locating all 
silhouettes under orthographic projection. Hertzmann et 
al.[54] detect silhouettes based on geometric duality, and 
can be applicable to both perspective and orthographic 
projection. Buchanan et al.[55] introduce a data structure, 
namely, the edge buffer, to render silhouette easily. Lee et 
al.[50] give a GPU-based technique to produce 
silhouettes, ridges, and a generalization of suggestive 
contours. 
 
3.2. Suggestive contours 
 

In many cases, however, contours alone cannot convey 
salient and important aspects of a 3D object. DeCarlo et 
al.[2] introduce suggestive contour that exceeds contours 
and creases. Suggestive contours are curves along with 
the zero-crossings of the radial curvature and on where 
the surface bends away from the viewer. 

DeCarlo et al.[2] propose two methods to compute 
suggestive contours on 3D triangle meshes, including 
object-space algorithm and image-space algorithm. In 
[56], DeCarlo et al. further analyze the movement of 
suggestive contours according to viewpoint changes, and 
extend pervious work[2] on static suggestive contours to 
dynamic environments.  
 
3.3. Photic Extremum Lines (PELs) 
 

The feature lines such as ridge-valley lines and 
suggestive contours are only determined by local 
geometry attributes and the view location. Xie et al.[14] 
propose Photic Extremum Lines (PELs) that reflects 
significant variations of luminance. Compared with other 
existing lines, PELs are more flexible and provide users 
more freedom to obtain ideal visualization. 

In [14], the PEL is defined as a collection of points 
where the variation of luminance has a local maximum in 
the direction of its gradient. The extraction procedure 
consists of smoothing normal, calculating the gradient of 
illumination, computing the directional derivatives in the 
direction of gradient, detecting and tracing the zero-
crossing to obtain the PEL.  
 
3.4. Apparent ridges 
 

Due to none of the formerly feature lines alone can 
capture all visually-relevant shape information on 3D 
objects, Judd et al.[3] present apparent ridges that are 
defined as the loci of points that maximize a view-
dependent curvature. Standard techniques [21] are utilized 
to estimate view-dependent curvature, the view-dependent 
curvature derivatives based on the finite differences, and 

an approach similar to the method in [16] is used to find 
the zero-crossings of the view-dependent curvature 
derivatives. After trimming based on the setting threshold, 
apparent ridges are obtained finally. 
 
3.5. Highlight lines 
 

Existing lines are classically drawn in black on a white 
backgrounds, DeCarlo et al.[4] define two new types of 
highlight lines: suggestive highlights and principal 
highlights, which are drawn in white on dark background. 
The definitions of highlight lines are based on definitions 
of suggestive contours and ridge-valley lines, so the 
detection of suggestive highlights is similar to suggestive 
contours [2], and the detection of principal highlights is 
analogous to the method in [16]. 
 
3.6. Laplacian lines 
 

Traditional methods generating feature lines on 3D 
objects need computing high-order derivatives, which are 
time-consuming and sensitive to noise. Zhang et al.[15] 
define Laplacian Lines as the zero-crossings points of the 
Laplacian of the surface illumination. Because the 
Laplacian of surface normal is view-independent, it can 
be pre-computed and thus reduce the running time. 
 
4. Conclusion 
 

In this paper, we give an extensive review of the 
extraction of feature lines on 3D models. The feature 
extraction of 3D models is one of the most interesting 
issues in the field of computer graphics. We classify the 
feature lines into two categories: view-dependent curves 
and view-independent curves, according to whether they 
are associated with the light of sight.  

The extraction of view-independent curves usually 
involves estimating of third-order and fourth-order 
surface derivatives that are sensitive to noise. Despite 
various schemes such as smoothing or interactive 
schemes are used to improve the robustness of extraction 
techniques, this still is a challenge task that needs to be 
further studied. Furthermore, the normal tensor voting 
method that needs no higher-order derivatives but only 
first-order derivatives can extract sharp feature lines and 
show robustness to noise models, and thus have potential 
research value. 

For point clouds, although there are some methods 
such as graph theory methods, surface approximation 
methods, and statistical methods can extract some feature 
lines, how to effectively obtain more detailed feature lines 
on unorganized noisy point clouds still needs more 
attention. 

View-dependent feature lines take different properties 
of mesh into account, and are often used in form of 

223



 

combination. In practice, the approximate selection of 
type of curves and corresponding algorithms remain a 
challenge. Future promising methods should introduce 
interactive tools that can select type of curves and support 
artificial modification. 

Above all, we describe the classify methods of feature 
lines first, and then the challenges for feature extraction 
are discussed briefly. We believe that this survey can give 
valuable insights into this important research topic and 
may be useful for researchers to resolve relevant research 
problems. 
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