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Abstract. Currently most of type-2 fuzzy adaptive control (FAC) approaches use the
iterative Karnik-Mendel (KM) algorithm in type-reduction (TR), but other TR methods
are rarely employed. This paper applies KM algorithm and Begian-Melek-Mendel (BMM)
into a class of uncertain nonlinear single-input single-output (SISO) systems. And we
definitely prove that the interval type-2 fuzzy logic systems (IT2 FLSs) using the KM,
BMM methods are universal approximators. Numerical simulation results demonstrate
that the BMM TR methods outperform the KM algorithm.
Keywords: Interval type-2 FLSs, Type-reduction, Universal approximator

1. Introduction. Type-1 fuzzy sets (T1 FSs) were first proposed by Zadeh in 1965 [1],
and then in 1975 [2] as an extension to T1 FSs Zadeh further proposed Type-2 fuzzy
sets (T2 FSs). Since the memberships in a T2 FS are T1 FSs, T2 FSs and IT2 fuzzy
logic systems (FLSs) can better handle different sources of uncertainties than their T1
counterparts. There have been many different approaches for type-reduction computation
which include the KM algorithm and alternative TR methods such as Begian-Melek-
Mendel (BMM) Method [3]. Zhou et al. [4] have used an indirect adaptive IT2 FLC
to achieve H∞ tracking performance for a class of uncertain nonlinear SISO systems
with external disturbances via YD type-reduction algorithm [5]. So we raise two key
questions as follows. Firstly, except YD TR algorithm, can other TR methods be applied
into estimators in adaptive fuzzy control (AFC)? Secondly, are these FLSs using the
TR methods universal approximator? So far, except YD type-reduction method, most
TR methods are not definitely proved whether they are of the property of universal
approximator yet. In this paper, we not only formulate that the KM and BMM methods
can be applied into the estimators in IT2 AFC, but also we first prove that the KM and
BMM type-reducers are capable of uniformly approximating any nonlinear function over
a compact set to any desired accuracy.

The paper is organized as follows. IT2 FLSs are briefly introduced in Section 2. We
prove that the IT2 FLSs using the the KM and BMM TR methods are universal approx-
imators in Section 3. A simulation example is given to compare the performance of the
different TR methods in Section 4. Finally, Section 5 makes conclusions.

2. Interval Type-2 Fuzzy Logic Systems. Assume the type-2 fuzzy rule base is com-
posed of M IF-THEN fuzzy rules, and the rule R(j1...jn) is denoted as

R(j1...jn) : IF x1 is Ãj1
1 and x2 is Ãj2

2 and . . . and xn is Ãjn
n THEN y is B̃(j1...jn) (1)
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where xxx = (x1, x2, . . ., xn) is the input variable to the fuzzy system, i = 1, 2, . . ., n, and

y is the output variable of the fuzzy system. Ãji
i s are type-2 fuzzy sets, ji = 1, 2, . . .,mi,

there are M =
∏n

i=1mi fuzzy rules in the base. The lower and upper membership

functions of the IT2 FSs Ãji
i are expressed as µ

Ã
ji
i

(xi) = ajii exp

(
−
(

xi−m
ji
i

σ
ji
i

)2
)

and

µ
Ã

ji
i
(xi) = ajii exp

(
−
(

xi−m
ji
i

σ
ji
i

)2
)
, respectively. Here ajii , a

ji
i , m

ji
i , σ

ji
i and σji

i are real-

valued parameters with 0 < ajii ≤ ajii < 1 and σji
i < σji

i . Assume the adjustable
consequent parameters yj and yj are the points at which their membership functions
achieve their maximum values, where j corresponds to an ordered grid-oriented multi-
index (j1, j2, . . ., jn). And we choose the membership functions of the output variable as
µ
B̃j(y

j) = b, µB̃j(yj) = 1, 0 < b ≤ 1.
To compare the IT2 FLSs with T1 FLSs, we consider the T1 fuzzy rule which is identical

to the above IT2 fuzzy rule R(j1...jn) except that the fuzzy membership functions µ
A

ji
i
(xi)

and µB(j1...jn)(z) of the input variable and the output variable are the upper membership

functions of the IT2 FSs Ãji
i and B̃(j1...jn), respectively.

3. An IT2 FLS Using KM or BMM TR Methods. In this section, we will give the
FBFs and FBF expansions of the FLSs using the KM and BMM methods, and prove that
the FLSs using the two TR methods are universal approximators.

3.1. The Karnik-Mendel algorithm. In this subsection, we will give the theorem that
the FLSs using the KM algorithm are universal approximators.

Theorem 3.1. Consider IT2 FLSs (1). For any given real continuous function g(xxx) on

the compact set U ⊂ R and arbitrary ϵ > 0, there exists y(xxx) ∈ Ỹ such that supx∈U |g(xxx)−
y(xxx)| < ϵ where y : U ⊂ Rn → R, xxx ∈ U ; Ỹ is the set of all the fuzzy basis function
expansions (2).

y(xxx) =
(
ξξξTl Q

−1
l ξξξTrQ

−1
r

)( yyy
yyy

)
(2)

where both Ql and Qr are the matrices of row-switching transformations which make the
elements in vectors yyy and yyy arranged in ascending order, and Ql = Q−1

l , Qr = Q−1
r ,

ξξξl =
(
ξ1l . . . ξLl ξL+1

l . . . ξMl
)T

, ξξξr =
(
ξ1r . . . ξRr ξR+1

r . . . ξMr
)T

, Here

ξsl =
f s
l

2
(∑L

i=1 f
i
+
∑M

i=L+1 f
i
) (3)

ξtr =
f t
r

2
(∑R

i=1 f
i +
∑M

i=R+1 f
i
) (4)

in which L and R can be computed by the iterative Karnik-Mendel algorithm. If 1 ≤ s ≤ L,

then f s
l = f

i
; if L + 1 ≤ s ≤ M , then f s

l = f i. If 1 ≤ t ≤ R, then f t
r = f i; If

R + 1 ≤ t ≤M , then f t
r = f

i
. ξsl and ξtr (s, t = 1, . . .,M) are fuzzy basis functions.

Proof: Assume the elements in the vectors yyy and yyy are arranged in ascending order

as y1
a
≤ y2

a
≤ . . . ≤ yM

a
; y1a ≤ y2a ≤ . . . ≤ yMa , and let yyy

a
= [y1

a
, y2

a
, . . . , yM

a
]T and

yyya = [y1a, y
2
a, . . . , y

M
a ]T . Then, it follows that

Qlyyy = yyy
a

(5)

Qryyy = yyya (6)
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According to the KM TR algorithm [6], we can obtain that

y(xxx) =
(
ξξξTl ξξξTr

)( yyy
a
yyya

)
(7)

Substituting (5) and (6) into (7), we deduce (2).
Since both the upper and the lower membership functions are Gaussian membership

functions, without loss of generality, we can rewrite the membership functions used in
(3) as µl

Ã
jl
i

i

(xi) where j
l
i
∼= ji in (3). Similarly, the membership functions used in (4) are

rewritten as µr

Ã
jr
i

i

(xi) where j
r
i
∼= ji in (4). So Equation (7) is expressed as

y(x) =

∑m1

jl1=1
· · ·
∑mn

jln=1 y
j1···jnΠn

i=1µ
l

Ã
jl
i

i

(xi)

2
∑m1

jl1=1
· · ·
∑mn

jln=1 Π
n
i=1µ

l

Ã
jl
i

i

(xi)
+

∑m1

jr1=1 · · ·
∑mn

jrn=1 y
j1···jnΠn

i=1µ
r

Ã
jr
i

i

(xi)

2
∑m1

jr1=1 · · ·
∑mn

jrn=1Π
n
i=1µ

r

Ã
jr
i

i

(xi)
(8)

By reduction of fractions in (8) to a common denominator, we obtain (9).

y(x) =

∑m1

jl1=1
· · ·
∑mn

jln=1

∑m1

jr1=1 · · ·
∑mn

jrn=1

(
yj

l
1···j

l
n+yj

r
1 ···jrn

2

)
Πn

i=1µ
l

Ã
jl
i

i

(xi)µ
r

Ã
jr
i

i

(xi)∑m1

jl1=1
· · ·
∑mn

jln=1

∑m1

jr1=1 · · ·
∑mn

jrn=1Π
n
i=1µ

l

Ã
jl
i

i

(xi)µr

Ã
jr
i

i

(xi)
(9)

Since both µl

Ã
jl
i

i

(xi) and µ
r

Ã
jl
i

i

(xi) are Gaussian in form, their product µl

Ã
jl
i

i

(xi)µ
r

Ã
jr
i

i

(xi) is

also Gaussian in form. Hence, (9) is in the form of (4) in [7]. According to the theorem
in [7], we can deduce that the type-2 fuzzy systems are universal approximators.

3.2. The Begian-Melek-Mendel (BMM) method. Begian et al. [3] proposed a closed-
form type-reduction and defuzzification method for TSK interval type-2 fuzzy logic con-
trollers. The BMM method requires yn = yn = yn. Li et al. [8] extended it to the case
that yn ̸= yn, i.e.,

y(x) = α

∑M
i=1 f

i(x)yi∑M
i=1 f

i(x)
+ (1− α)

∑M
i=1 f

i
(x)yi∑M

i=1 f
i
(x)

(10)

Here, we apply the BMM method into the IT2 FLSs described by (1), and assume the

adjustable parameter vector is θθθt2 =
(
yyyT yyyT

)T
where y = [y1, y2, . . . , yM ]T , y =

[y1, y2, . . ., yM ]T . Then we propose the following theorem:

Theorem 3.2. Consider the IT2 FLSs (1). For any given real continuous function
g(x) on the compact set U ⊂ R and arbitrary ϵ > 0, there exists y(x) ∈ Y̌ such that
supx∈U |g(x)− y(x)| < ϵ where y : U ⊂ Rn → R, xxx ∈ U ; Y̌ is the set of all the fuzzy basis
function expansions (11).

y(x) =
(
αξ̌Tl (1− α)ξ̌Tr

)( y
y

)
(11)

where ξ̌l =
(
ξ̌1l . . . ξ̌Ml

)
, ξ̌r =

(
ξ̌1r . . . ξ̌Mr

)
, (12) are fuzzy basis functions.

ξ̌il =
f i∑M
i=1 f

i
, ξ̌ir =

f
i∑M

i=1 f
i (12)

Proof: Substituting (12) into (10), we can obtain (11). To differentiate ji in the
different terms, we rewrite the ji in the lower membership function as jli, and the ji in
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the upper membership function as jri . Equation (10) can be rewritten as

y(x) = α

∑m1

jl1=1 · · ·
∑mn

jln=1 y
jl1···j

l
nΠn

i=1µ
Ã
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i

(xi)∑m1
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n
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i

(xi)
+ (1− α)
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(13)

By reduction of fractions in (13) to a common denominator, we can deduce (14), and (14)
is in the form of (4) in [7]. According to the theorem in [7], we can deduce that the type-2
fuzzy systems are universal approximators.

y(x) =
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jl1=1 · · ·
∑mn

jln=1
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jr1=1 · · ·
∑mn

jrn=1
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1···j
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r
n

)
Πn
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(xi)µ
Ã
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(14)

4. Simulation. In this section, we consider the nonlinear system (15) in [9]. The control
objective is to force y to follow a given bounded reference signal ym = 0.2 sin(t), and the
indirect H∞ adaptive control scheme in [10] is used. The IT2 FLSs using different TR
methods are employed to approach the unknown functions. The simulation demonstrates
the performance and the computational cost of the TR methods. The platform is a
desktop computer with Intel Cerleron CPU E3300 @2.5GHz and 2 GB memory, running
Windows XP and Matlab 6.5.

ẋ1 = x2

ẋ2 =
1− e−x1

1 + e−x1
(x22 + 2x1) sin x2 +

(
1 + e−x1

)
u+ d (15)

y = x1

where d is external disturbance signal which includes d1 = 0.1 ∗ sign
(
sin(ω ∗ t + ϕ)

)
,

d2 = 0.1 ∗ rand(), d3 = gτ , where d1 is a square wave, and period is 2π
ω
. d2 is white noise

signal on interval [0 1], and gτ is a gate function.
We use the same IT2 fuzzy membership functions as those of simulation example in [4].

When the elements in the vectors θf (0) and θg(0) are chosen as a group of random values
on interval [0 1], and the initial system states are x1(0) =

π
20

and x2(0) = 0 with external
disturbance. The performance indices are listed in Table 1, in which e(t) = ym−y, ISE =∫∞
t=0
|e(t)|2dt, IAE =

∫∞
t=0
|e(t)|dt, and ITAE =

∫∞
t=0

t|e(t)|dt. The corresponding curves of
the output y1 and the error e1 are plotted in Figure 1. Under the initial conditions, the
responses of the system (15) indicate that the BMM method is the best among the six
methods, and according to the performance of the methods the descending order of the
overall performance is listed as follows: BMM, type-1 fuzzy system (T1), Nie-Tan method
(NT), YD, KM, Liang-Mendel method (LM). The computation time of the methods varies
from 0.375 to 4.218 seconds, and the BMM method is the fastest.
When the elements in the vectors θf (0) and θg(0) are chosen as a group of random

values on interval [0 1], and the initial system states are x1(0) =
π
20

and x2(0) = 0 with
external disturbance d2 + d3, the performance indices are listed in Table 2, Also the

Table 1. Comparison of the different TR or defuzzification methods with
x1(0) =

π
20

and x2(0) = 0 when disturbance is d1

Methods ISE IAE ITAE Time
T1 0.0991 5.3347 16.6938 0.6100
KM 0.0916 5.8743 30.9470 1.7180
BMM 0.0839 4.8807 15.5829 0.3750
LM 0.1872 13.6426 110.8375 3.3440
NT 0.0993 5.5347 19.1161 0.5160
YD 0.0985 5.6012 20.7340 4.2180
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Figure 1. The curves of the output y1 and the error e1 with x1(0) =
π
20

and x2(0) = 0 when disturbance is d1

Table 2. Comparison of the different TR or defuzzification methods with
x1(0) =

π
20

and x2(0) = 0 when disturbance is d2 + d3

Methods ISE IAE ITAE Time
T1 1.1799 17.2338 39.5512 4.7350
KM 0.9592 15.8688 58.8138 20.1090
BMM 1.0674 15.0078 21.0257 4.9840
LM 1.2357 22.3868 118.0996 8.2500
NT 1.1825 17.1542 38.2995 5.2030
YD 1.1733 17.1825 39.5865 52.5630
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Figure 2. The curves of the output y1 and the error e1 with x1(0) =
π
20

and x2(0) = 0 when disturbance is d2 + d3

corresponding curves of the output y1 and the error e1 are plotted in Figure 2. Under
this initial conditions, the responses of the system (15) show that the BMM method is
still the best among the six methods, and according to the performance of the methods
the descending order of the overall performances is listed as follows: BMM, NT, T1, YD,
KM, LM. Except NT, the order is identical to the one in the first case. The computation
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time of the methods varies from 4.735 to 52.563 seconds, and the BMM method is still
the fastest.
In order to avoid particularity, we choose 100 groups of random values on interval

[0 1] as the elements in the vectors θθθf (0) and θθθg(0), and the initial system states are
x1(0) =

π
20

and x2(0) = 0 with external disturbance d2 + d3, the statistical performance
indices which are the arithmetic mean of all the corresponding performance indices are
listed in Table 3. Under the initial conditions, from Table 3, the descending order of the
overall performances is the same as the second case in the example. Thus, we can make
a conclusion that in different initial conditions the performance of most cases follows the
above-mentioned order, and the average computational time is similar to that consumed
under the second case. For the example, the BMM algorithm is the best on the whole.

Table 3. Comparison of the different TR or defuzzification methods with
x1(0) = π

20
and x2(0) = 0 under different initial conditions of θθθf (0) and

θθθg(0) when disturbance is d2 + d3

Methods ISE IAE ITAE Time
T1 1.1409 16.5649 34.7975 4.5953
KM 1.0952 17.2513 51.6925 18.8382
BMM 1.1457 15.6271 21.9439 4.6531
LM 1.2494 22.5702 114.4127 31.0953
NT 1.1427 16.5606 34.6101 5.0752
YD 1.1365 16.6261 36.2116 55.1987

5. Conclusions. In this paper, we have proved that the IT2 FLSs using the KM and
BMMmethods are universal approximators, and have shown the FBFs of the different IT2
FLSs using the two type-reduction methods. The numerical simulations demonstrate that
although for each simulation the different IT2 FLSs have different performance depending
on the different plants or the system states initial values, generally speaking, the BMM
TR method outperforms the KM algorithm according to the statistical performance and
computational time. Except the KM and BMM TR methods, there exist other non-
iterative TR methods for IT2 FLS. Approach property of IT2 FLSs using other non-
iterative TR is our next research direction.
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