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In this paper, we propose an adaptive spatial pooling method for enhancing the discriminability of
feature representation for image classification. The core idea is to adopt a spatial distribution matrix to
define how the image patches are pooled together. By formulating the pooling distribution learning and
classifier training jointly, our method can extract multiple spatial layouts of arbitrary shapes rather than
regular rectangular regions. By proper mathematical transformation, the distributions can be learned via
a boosting-like algorithm, which improves the efficiency of learning especially for large distribution
matrices. Further, our method allows category-specific pooling operations to take advantage of the dif-
ferent spatial layouts of different categories. Experimental results on three benchmark datasets UIUC-
Sports, 21-Land-Use and Scene 15 demonstrate the effectiveness of our method.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Pooling is a crucial step in popular image classification methods,
such as Bag-of-Visual-Words (BoVW [1,2]) and Convolution Neural
Network (CNN [3,4]). It is used to aggregate a set of unordered local
features into a vector representation. Based on this representation,
discriminative classifiers (such as SVM [5,6], neural networks [7] and
boosting [8,9]) can be trained for various classification tasks. Here we
use v¼ f ðx1; x2;…; xmÞ to define a pooling operation, where xiARd

ði¼ 1;2;…;mÞ refer to local features within a spatial region Re and
v denotes the pooled vector. Here, d and m are the dimensionality
and the number of local descriptors, respectively. There are two
important factors for a pooling operation: One is the operator func-
tion f which defines the way to merge the local features, such as
average pooling [10], max pooling [11,12] and lp-norm pooling [13].
The other is the action region Re and it decides which local features
will be selected for pooling. As we know, if Re covers the whole
image as in BoVWmethods, the pooled vector v is invariant with the
spatial shifts of xi because the spatial relationship is totally ignored
within the action scope. This is helpful to tolerate spatial shifts, but it
drops discriminative information about the spatial layout, which
usually plays a very important role for image classification.

Several methods have been proposed to take advantage of the
spatial layout of regions. One representative is the spatial pyramid
matching representation (SPM [2]). Essentially, the SPM method
: þ86 10 8254 4594.
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partitions images into uniform sub-regions at different levels of
resolution, and then applies a pooling operator on these sub-regions
separately. The final representation is obtained by concatenating the
pooled features of different sub-regions. With the help of spatial
information, SPM achieves significantly better performance com-
pared with the BoVW model. However, the spatial partition patterns
of SPM need to be predefined, and the number and the style of the
spatial partition patterns are very limited, such as the 1�1, 2�2 and
4�4 uniform grids. Some methods [14,15] improve the SPM by
adopting abundant random action regions in the image, but these
methods often suffer from exhaustive search from a large region pool
and the action regions are still constrained to regular shapes. Other
methods [16,17] are proposed to pool the features corresponding to
foreground and background separately with the help of object
detection. More details are discussed in Section 2.

In recent years, weighted pooling has been widely used in order
to capture spatial layouts in images more flexibly. By giving each
local feature a weight and then representing an image as the
weighted sum of local features, the method can extract information
from regions of arbitrary shapes (rather than rectangular regions),
and define very flexible pooling operators (other than average
pooling and max pooling). It is easy to see that both BoVWand SPM
are special cases of weighted pooling, with globally uniform
weights and rectangular region uniform weights, respectively. The
design of weights for pooling is influential to the image classifica-
tion performance. Harada et al. [18] select weights by maximizing
the Partial Least Squares and Fisher criteria, while Huang et al. use
multiple Gaussian distributions to depict the spatial structures [19].
Similar to our proposed method, the method of [20] (abbreviated as
LSPR) optimizes weights along with the training of classifiers.
age classification, Pattern Recognition (2016), http://dx.doi.org/
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However, the LSPR models the relationships between the weights
and the classifiers using a multi-layer perceptron (MLP), which is
computationally expensive because the weights corresponding to
different structures need to be optimized simultaneously. The pre-
vious methods also have the limitation that the weights for pooling
are shared by all categories. This leads to the under-utilization of
discriminative spatial information because different categories
usually have different spatial layouts.

In this paper, we propose an adaptive spatial pooling (ASP)
method for image classification with the objective of overcoming
the under-utilization of spatial information in previous methods.
Our core idea is to adopt a spatial distribution matrix to define how
the image patches are pooled together. It avoids the prior definition
of how to partition images or how to design action regions, and
learns a flexible pooling scheme on the whole image directly from
the training data. We formulate the pooling distribution learning
and classifier training into a unified framework and optimize the
joint learning problem via a boosting-like algorithm. Compared
with existing methods, our method has three advantages: (1) Since
the pooling operator is parameterized as a matrix (each column
denotes a distribution of patches), our method can extract various
spatial layouts of flexible shapes embedded in images; (2) By proper
mathematical transformation, our problem is efficiently solved via a
boosting-like algorithm, especially for a distribution matrix of large
size; (3) Category-specific pooling operator can be learned by dis-
criminative training. This endows more discriminative power to our
model. Fig. 1 shows some examples of the distributions learned by
our method. It is obvious that the learned distributions reflect the
spatial layout of images.

The rest of this paper is organized as follows: Section 2 reviews the
related work about pooling; Section 3 introduces the proposed ASP
method in detail; Section 4 presents our experimental results on sev-
eral benchmark datasets. Finally, Section 5 gives concluding remarks.
2. Related work

Bag-of-Visual-Words (BoVW) and Convolutional Neural Net-
work (CNN) are two popular image representation methods for
image classification and object recognition. CNN learns image
representations by performing convolution and pooling operation
alternately on the whole image. It has achieved the state-of-the-
art performance on many datasets, such as MNIST [21], NORB [22]
and ImageNet [23]. However, it is computationally expensive and
needs large training datasets to avoid over-fitting. On the contrary,
The BoVW framework, based on hand-craft features, is much
cheaper in computation and also achieves good performance on
many real-world problems [24,25]. The proposed method is under
the BoVW framework and can be combined with CNNs in the
future, because the convolution outputs of CNNs can be taken as
Fig. 1. Visualization of some learned distribution matrices. Each row stands for one
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local features for adaptive pooling. The BoVW framework involves
several steps, each with many techniques proposed:

� Local feature extraction: In this stage, the patches of interest are
located by either sparse sampling or dense sampling, and fea-
tures are extracted from the sampled regions. In sparse sam-
pling, patches are selected by interest point/region detectors,
such as Harris detector [26,27], DoG [28] and MSER [29]. These
methods are usually time-consuming and may miss some
important regions, however. A simple and popular technique,
called dense sampling, is to sample patches with a fixed step
and patch size on the whole image. To extract features, we
apply hand-craft feature descriptors, such as HoG [30], SIFT [28],
SURF [31] and LBP [32], to each patch.

� Codebook learning: The codebook in computer vision is analogous
to the vocabulary in natural language processing (NLP). It consists
of some representative codewords from local features, which can
be learned in either unsupervised or supervised manner. While k-
means clustering [33] is most widely used for codebook learning,
many advanced methods have been proposed for improving the
discriminative ability of the codebook [34–37].

� Encoding: This step is to map the local features from the original
feature space to a new space describing the weights of code-
words. Accordingly, the dimensionality after encoding for each
local patch equals the number of codewords. A simple coding
scheme is the hard coding (HC [1]), which encodes each local
feature with the most similar codeword. Unlike the HC, many
advanced coding methods make full use of the codebook, such
as the soft coding [38,39], sparse coding [12], local linear coding
[40] and salient coding [41].

� Pooling: This is an operation to aggregate the codes of local
patches into a vector representation of the image. Since our
work improves the classification performance by proposing a
new pooling method, we discuss the existing pooling methods
in more details below.

The idea of feature pooling dates back to the research in 1960s
[42]. Huber et al. discovered in the cat's visual cortex that the
responses of high complex cells which receive signals from simple
cells are insensitive to small spatial shift. This inspired the pooling
operation widely used in vision recognition systems [43,44]. Many
previous works aimed at finding a good pooling operator. The
most popular operators are the average pooling and the max
pooling. The average pooling [10] takes the average value of all
local features x within a region as the pooled feature v, usually
used along with hard coding. In max pooling [11], each dimension
of v is the maximum value of the corresponding dimension of set
of x in the region. Many advanced coding schemes, such as sparse
coding [12] and localized soft coding [39], are combined with max
pooling and have achieved considerable performance gain.
specific category: two original images and four learned pooling distributions.
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Some other works aimed at designing action regions for pool-
ing. Sánchez et al. [17] and Russakovsky et al. [16] made use of
object detection methods to pool foreground and background
features separately to form the image-level representation. Zhu
et al. [45] proposed to learn explicit and meaningful tangram
templates for scene configurations through tree parsing. Based on
the tangram model, Zhu et al. [46] constructed a hierarchical ROI
dictionary (HRD) for spatial pooling. It utilized the composition-
ality among ROIs and employed partial least squares analysis to
learn a compact and discriminative image representation. In [14],
Jiang et al. proposed a method to select a set of partition patterns
from a large number of randomized spatial partition patterns for
each category. Similarly, Jia et al. [15] proposed a receptive field
learning method for pooling image features. It first generates a
high-dimensional representation on a over-complete set of
receptive fields, and then uses a classifier with structural sparsity
constraint to perform dimensionality reduction and classification.

The weighted pooling, with better flexibility, is getting
increasing attention in recent years. Especially, by adopting
weighted pooling on the whole image, the weights can effect
on both the pooling operator and the action regions. Inspired
by SPM which concatenates all the pooled features of image
regions of different levels, Harada et al. [18] proposed a dis-
criminative spatial pyramid representation (DSP) approach,
which forms the image representation as the weighted sum of
semi-local features over all the pyramid levels, and the weights
are selected according to two discriminative criterions – the
Partial Least Squares and the Fisher criterion (abbreviated as
PlsSPR and FishSPR, respectively). In [13], Feng et al. proposed
a weighted lp-norm pooling method. Although this method
utilizes weighted pooling operation as our method does, its
weights are visual-word-specific while ours are category-
specific. In [19], Huang et al. employed multiple Gaussian dis-
tributions to depict the global spatial layout of images, but the
locations of Gaussian centers are uniformly sampled within the
whole image. In [20], Malinowski and Fritz adopted a multi-
layer perceptron, whose first hidden-layer parameters can be
considered as the weights of smooth regions for pooling local
features. Similar to our proposed method, the pooling opera-
tion of [20] is optimized along with the training of classifiers,
but its sharing of weights among different categories may
cause a loss of category-specific discriminative spatial infor-
mation. Furthermore, it suffers from high computational
complexity because the weights for different spatial layouts
need to be optimized simultaneously, while our proposed
method can learn weight distributions one after another via
the boosting framework.
1 p is not a strict distribution because the sum of p is not constrained to be 1.
3. Adaptive spatial pooling method

Given an image I, we first extract local features by describing
local patches with some descriptor (such as SIFT descriptor), and
denote them as f iði¼ 1;…;mÞ, where m is the number of patches
of image I. Then a number of local features are selected at random
from the training set to generate the codebook B by k-means
clustering. Assuming that the codebook size is d, each image can
be represented with a coding matrix XARd�m, in which the i-th
column xiARd is the coding feature of the i-th patch.

3.1. Model

To explore the discriminative spatial layout of images, we
define the pooling operator by:

v¼Xp; ð1Þ
Please cite this article as: Y. Liu, et al., Adaptive spatial pooling for im
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where v is the pooled vector, X is the coding matrix described
above and p¼ ½p1 p2 … pm�0 refers to the distribution vector which
is used to weight the local coding features.1 Based on this repre-
sentation, a bilinear classification function is defined as: f ðXÞ ¼
w0Xpþb, where wARd and bAR are the parameters of the clas-
sifier. As it is well known, applying traditional pooling operators
(e.g. max pooling and average pooling) over the whole image
involves the loss of spatial information. On the contrary, by using
the operator defined in Eq. (1), discriminative spatial information
is well preserved in the distribution vector p.

Since there may be multiple spatial layouts for each category,
one single distribution is not enough. Even with unitary spatial
layout, images are usually composed of several distinct objects or
regions, which should be pooled separately. Therefore, we define a
distribution matrix P¼ ½p1;p2;…;pT �ARm�T to account for various
spatial layouts, where m is the number of patches, T is the number
of distributions and each column in P refers to a distribution of
patches. The pooled feature is calculated by XP¼ ½Xp1;Xp2;…;XpT �
and the classification function is defined by:

FT ðXÞ ¼ trðW0XPÞþb¼
XT

t ¼ 1

ðw0
tXptþbtÞ; ð2Þ

where W¼ ½w1;w2;…;wT �ARd�T and b¼P
tbtAR are the para-

meters of the classifier.
To get uniform representations for images of different sizes, we

perform a two-step preprocessing. First, each image is partitioned into
the same number of blocks (e.g. 8� 8;16� 16). Second, each block is
represented by pooling the coding features of local patches within this
block throughmax pooling. This operation not only unifies the number
of patches among images of different sizes but also simplifies com-
putationwith a smallerm compared to the original number of patches.

3.2. Objective function

Here we just consider the binary classification problem for
simplicity. For the multi-category case, we transform it into mul-
tiple binary classification problems by the one-versus-all strategy
and solve them separately.

To learn the classifier parameters fW; bg and the spatial dis-
tribution matrix P, we minimize the following objective function:

JðP;W;bÞ ¼
X

i

expð�yðiÞðtrðW0XðiÞPÞþbÞÞþC1‖W‖2F þC2‖P‖2F

þC3trðP0LPÞ; ð3Þ
where yðiÞAfþ1; �1g is the label of image i and J � JF refers to
Frobenius norm. The first term in Eq. (3) measures the training
error in exponential loss, while the last three terms are commonly
used regularization constraints. Here, C1, C2, and C3 are positive
constants balancing the loss term against the regularization terms.
In the last term, LARm�m is the Laplacian matrix of the adjacency
graph of image patches. The graph, denoted by AARm�m, is con-
structed by Aij ¼ 1 if the patch j is a neighbor of the patch i in space
and Aij ¼ 0 otherwise. Thus, the purpose of the last term is to
smooth the distribution weights on nearby patches. To see that,
we just recall:

trðP0LPÞ ¼
XT

t ¼ 1

p0
tLpt ¼

1
2

XT

t ¼ 1

Xm

i;j ¼ 1

AijðptðiÞ�ptðjÞÞ2: ð4Þ

3.3. Optimization via boosting-like algorithm

Due to the large number of parameters, directly optimizing
W and P is time-consuming. A more efficient way is to treat
age classification, Pattern Recognition (2016), http://dx.doi.org/
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FT ðXÞ as the sum of T weak classifiers f tðXÞ ¼ w0
tXptþbtðt ¼

1;…; TÞ, and train them one after another via the boosting
framework [9].

Thus, the objective function for the t-th iteration can be written
as,

Jtðpt ;wt ; btÞ ¼
X

i

expð�yðiÞðFt�1ðXðiÞÞþ f tðXðiÞÞÞÞþC1‖wt‖22

þC2‖pt‖22þC3p0
tLptþM

¼
X

i

αðiÞ
t expð�yðiÞf tðXðiÞÞÞþC1‖wt‖22

þC2‖pt‖22þC3p0
tLptþM; ð5Þ

where αðiÞ
t ¼ expð�yðiÞFt�1ðXðiÞÞÞ is the weight of image i for the t-

th iteration, and M is a constant. It is straightforward to show that
αðiÞ
t expð�yðiÞw0

tXptþbtÞ, ‖pt‖22 and p0
tLpt are convex functions with

respect to pt . Because the sum of convex functions is still convex,
the objective function Jt is convex with respect to pt . Similar
analysis can be applied to show that Jt is also convex with respect
to wt and bt. In consequence, we can use gradient descent to
optimize fwt ; btg and pt alternately, and the gradients with respect
to w; b and p are written as follows:

∂Jt
∂wt

¼ �
X

i

yðiÞαðiÞ
t expð�yðiÞðw0

tX
ðiÞptþbtÞÞXðiÞptþ2C1wt ; ð6Þ

∂Jt
∂bt

¼ �
X

i

yðiÞαðiÞ
t expð�yðiÞðw0

tX
ðiÞptþbtÞÞ; ð7Þ

∂Jt
∂pt

¼ �
X

i

yðiÞαðiÞ
t expð�yðiÞðw0

tX
ðiÞptþbtÞÞXðiÞ0wtþ2C2ptþ2C3Lpt :

ð8Þ
We summarize the ASP algorithm in Algorithm 1, and the

learning procedure for each distribution and weak classifier is
shown in Algorithm 2. Although the pooling operation is
defined on the whole image, the patches whose corresponding
distribution weights are zeros or very small can be viewed as
being eliminated from the final decision function. Therefore, a
sparse distribution learned from the data can be considered as
an automatic region selection operator. However, in order to
speed up the algorithm, we just adopt a simple operation to
achieve sparsity, which is described in step 3 of Algorithm 2.

Algorithm 1. Adaptive spatial pooling via boosting-like algorithm.
Giv
I
d

u

Giv

I
d

Ple
10.
en: fXðiÞ; yðiÞg, the penalty parameters C1;C2;C3 and T
nitialize: αðiÞ ¼ 1

N; i¼ 1;2;…;N; t ¼ 1
o:
1. Optimize wt ; bt ;pt using Algorithm 2.
2. Set f tðXÞ ¼wT

t Xptþbt
3. Set αðiÞ’αðiÞexpð�yðiÞf tðXðiÞ

t ÞÞ and normalize to
PN

i ¼ 1 α
ðiÞ ¼ 1

4. t ¼ tþ1
ntil t¼T
Output: The classifier and distribution fwt ; bt ;pt ; t ¼ 1;2;…; Tg

Algorithm 2. Alternate optimization of w and p.
en: fXðiÞ; yðiÞg, the penalty parameters C1;C2;C3, the
weights αðiÞ; i¼ 1;2;…;N, maxIter and ϵ
nitialize: w and p with random matrix, iter¼0
o:
1. Fix p, and optimize w and b by:

w’w� ∂J
∂w using Eq. (6)

b’b� ∂J
∂b using Eq. (7)
ase cite this article as: Y. Liu, et al., Adaptive spatial pooling for image
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2. Fix w and b, and optimize p by
p’p� ∂J

∂p using Eq. (8)

3. Set pj ¼ 0 if pjo0 or jpj jomeanðjpj Þ
4. iter¼ iterþ1
ntil jδJ jrϵ or iter¼maxIter
tput: The classifier and distribution w; b;p
Ou

3.3.1. Computational complexity
The main computational cost of Algorithm 2 comes from com-

puting the gradients of Jt with respect to wt and pt . It is easy to see
that computing ∂Jt=∂wt needs O(dmN) operations, while computing
∂Jt=∂pt needs OðdmNþm2Þ operations, where N is the number of
training images. Therefore, the overall computational complexity of
Algorithm 2 is OððdmNþm2ÞT 0Þ, where T 0 is the number of itera-
tions. The computational complexity of Algorithm 1 is T times that
of Algorithm 2, where T is the number of distributions.

3.3.2. Convergence analysis
In order to analyze the convergence of Algorithm 2, we denote

the value of the objective function in the t-th iteration as
Jðpt ;wt ;btÞ(ref. Eq. (5)) while omitting the index of distributions.
Jðp;w; bÞ is convex with respect to classifier parameters w and b.
After updating it via Eqs. (6) and (7), we have

Jðpt ;wtþ1; btþ1Þr Jðpt ;wt ; btÞ: ð9Þ
Next, w and b are fixed, and p is updated according to Eq. (8). Due
to the convexity, we get

Jðptþ1;wt ; btÞr Jðpt ;wt ; btÞ: ð10Þ
As mentioned above, the value of the objective function will
decrease in each step of optimizing w or p by gradient descent.
Considering that the value of the objective function is lower
bounded by zero, we conclude that the alternate optimization in
Algorithm 2 is convergent.

3.4. Classification

We introduce two approaches based on the proposed frame-
work for image classification as follows.

3.4.1. ASP-original
By this approach, we directly use the learned fWc; bcg and Pc

ðc¼ 1;2;…;CÞ (ref. Eq. (3)) as the classifier and the distribution
matrix of the category c, respectively. To classify a sample X, we
first calculate the score that X belongs to each category by Eq. (11),
and then classify it into the category with the highest score
according to Eq. (12):

ScorecðXÞ ¼ trðWcXPcþbcÞ; ð11Þ

LabelðXÞ ¼ argmax
c

ScorecðXÞ: ð12Þ

3.4.2. ASP-enhanced
By this approach, the learned classifiers fWc;bcg ðc¼ 1;2;…;CÞ

are ignored. New classifiers are trained under the enhanced image
representations, which are generated by pooling local coding
features with the learned distribution matrices Pc ðc¼ 1;2;…;CÞ.
This approach is dichotomized into two methods:

� ASP-enhanced-Bi: For each category, after generating the image
representations with the corresponding category-specific dis-
tribution matrix, a binary classifier is trained by the one-versus-
all strategy. The output of the learned classifier is taken as
Scorec for classification (ref. Eq. (12)).
classification, Pattern Recognition (2016), http://dx.doi.org/
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� ASP-enhanced-Mul: The ensemble strategy is adopted in this
method. For each category, C binary classifiers are trained. Each
classifier is learned with the image representations under one
category-specific distribution matrix. Then the sum of the
outputs of the C classifiers is taken as the final score for this
category.

Because image representations and classifiers are learned
separately, some advanced classifiers can be adopted in the ASP-
enhanced method rather than linear classifiers. Our experimental
results show that the performance with nonlinear classifiers is
consistently better than that with linear classifiers.
4. Experiments

We compare our method with several baselines and related
methods on three public datasets UIUC-Sports [47], 21-Land-Use
[48] and Scene 15 [49].
4.1. Experimental setting

The setting for the three baselines and our method are as
follows:

� RDM: Random Distribution Matrix. We use a random matrix as
P, in which each Pij is i.i.d. sampled from a uniform distribution
on [0,1]. The number of distributions for RDM is set to 21 which
is the same as that of the 3-level SPM representation.

� BoVW: Bags of Visual Words. This method takes the histogram
as the image representation, which is equivalent to utilizing an
all-one vector as P.

� SPM: Spatial Pyramid Matching Representation. We adopt the most
widely used 3-level (1�1, 2�2, 4�4) SPM model and obtain
features both with the average pooling and the max pooling.

� Proposed method: Adaptive Spatial Pooling. For simplicity, we set the
parameters C1;C2 and C3 (cf. Eq. (3)) to the same value and select
them from the set ½0:01;0:05;0:1;0:5;1;5� by cross validation. The
number of distributions for our method is set to nomore than 10. In
Algorithm 2, we set the convergence parameter to ϵ¼ 10�4 and
the maximum number of iterations to maxIter¼200.

For all the above methods, we adopt the hard coding to encode
local features and experiment on both the linear and the nonlinear
versions. For the nonlinear SVM classification, we follow the
strategy proposed in [50] as an approximation. First, an additive
kernel is applied to map the features into a high-dimensionality
space, and then a linear classifier is trained in the mapping space.
In our experiments, the intersection kernel [51] is adopted and the
resulting features are 7 times the length of the original ones.
Table 1
Classification accuracy on the UIUC-Sports dataset.

Algorithm Acc. (linear) Acc. (nonlinear)

RDM 81.5 83.3
BoVW 76.1 82.7
SPM (average-pooling) 80.0 84.3
SPM (max-pooling) 79.5 85.5

ASP-original 86:570:13 –

ASP-enhanced-Bi 85:970:06 87:670:05
ASP-enhanced-Mul 85:870:09 88:570:10
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4.2. Experimental results

We implement our proposed method and the baselines by our-
selves, and also compare with the results of related work from the
corresponding publications. In each experiment, we repeat the train-
ing procedure for 10 times with different random initialization for the
parameter w and p, and report the average precision and variance.

4.2.1. UIUC-Sports dataset
The UIUC-Sports dataset [47] contains 8 sports event categories:

rowing (250 images), badminton (200 images), polo (182 images),
bocce (137 images), snowboarding (190 images), croquet (236 images),
sailing (190 images), and rock climbing (194 images). These high-
resolution images are divided into easy and medium classes accord-
ing to the human subjective judgement. In our experiments, each
image is resized to less than 300�300 by down-sampling. The SIFT
descriptors with 12�12 patch-size and 4 pixels step-size are first
extracted, and then a subset of SIFT features from the training images
are randomly selected to generate a codebook with 1000 words by k-
means clustering. As in [47,14], we randomly select 70 images from
each category for training and use the rest for testing. Except the results
in Fig. 4 which show the influence of image partition patterns on the
performance, the other results are obtained under the image partition
pattern of 8�8 blocks without overlapping with the parameters C1;C2

and C3 set to 1.
We first compare the proposed method with three baselines with

both linear and nonlinear classifiers. As Table 1 shows, our method
(ASP) significantly outperforms the baselines. It is worth mentioning
that our method, even with the linear kernel, exceeds the baselines
with the nonlinear kernel. We also compare our method with several
competing methods. As shown in Table 2, our method (ASP-
enhanced-Mul) improves the accuracy of RSP and LSPR by about 9%.
To the best of our knowledge, our performance of 88.5% outperforms
all previously published results for a single type of SIFT descriptor.

Fig. 2(a) shows the dependency of the accuracy on the number
of distributions T. We can see that, for all the five variations of the
proposed method, the accuracy with T¼2 is significantly better
than that with T¼1, gaining improvements of 5.5%, 3.4%, 2.0%, 3.0%
and 2.5%, respectively. For the ASP-original method, accuracy
increases rapidly when T is small and saturates when T is larger
than six. However, for the ASP-enhanced-Mul method, accuracy
with T¼2 is very close to the best performance. This is because the
classifier training for each category takes account of not only the
self-distributions but also the distributions of other categories.

The codebook size determines the dimensionality of the coding
feature, which affects both the accuracy and the computational
complexity. Fig. 3 shows the influence of the codebook size on
accuracy for the ASP-original method on the UIUC-Sports dataset.
As it is shown, higher performance is achieved with larger code-
books when the codebook size is less than 1000. However, when
the codebook is enlarged to 1200 codewords, the accuracy
decreases due to overfitting. We also investigate the dependency of
accuracy on image partition patterns, which are used to unify the
number of patches among images of different sizes. As Fig. 4 shows,
Table 2
Comparison with other related work on the UIUC-Sports dataset.

Algorithm Acc.

Object-back [47] 76.3
RSPþoptimal selection [14] 77.9
RSPþBoosting [14] 79.6
LSPR [20] 79.4

The proposed 88.5
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Fig. 2. Influence of T on accuracy.
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Fig. 3. Influence of the codebook size on accuracy for the ASP-original method on
the UIUC-Sports dataset.

Fig. 4. Dependency of accuracy on image partition on the UIUC-Sport dataset. Four
types of image partition patterns are considered and denoted by different colors.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Y. Liu et al. / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
performance with image partition patterns 8� 8;12� 12 and
16�16 are similar, but are much better than the accuracy with the
partition pattern 4�4. This is implied by the partition pattern 4�4
which is too coarse to describe the spatial layout distinctly. How-
ever, with the same image partition pattern (4�4 ), our approach
achieves 87.4% accuracy improving the 3-Level SPM method by 2%.

In order to intuitively describe the learned spatial distribution
matrix P, the first five learned distributions for each category are
visualized by gray-scale maps shown in Fig. 5. We analyze the
results from the following two aspects:

(1) Number of distribution types. For the categories whose spatial
layouts are relatively simple, few distribution types will be learned.
For example, most images of the category “snowboarding” are
composed of two scenes: snow at the bottom and sky at the top.
Thus, only two types of distributions are needed for pooling. In the
last row of Fig. 5, the third and the fourth learned distributions are
similar to the first two, which is consistent with our observation. In
contrast, if the spatial layout is complex, more types of distributions
will be learned, such as the first row for the category “badminton”.
Please cite this article as: Y. Liu, et al., Adaptive spatial pooling for im
10.1016/j.patcog.2016.01.030i
(2) Discriminative ability. For categories containing striking or
salient objects, such as “rowing” and “sailing”, P tends to extract
foregrounds in the image, while for categories with complex
spatial layouts or small objects, such as “badminton” and “golf”, P
tends to extract backgrounds or environments.

4.2.2. 21-Land-Use dataset
The challenging 21-Land-Use dataset [48] is composed of 21

classes of aerial orthoimagery. There are 100 images for each of the
following classes: agricultural, airplane, baseballdiamond, beach,
buildings, chaparral, denseresidential, forest, freeway, golfcourse,
harbor, intersection, mediumresidential, mobilehomepark, overpass,
parkinglot, river, runway, sparseresidential, storagetanks, tenniscourt.
Each image (256�256 pixels) is manually extracted from large
images from the USGS National Map Urban Area Imagery collection
for various urban areas around America. As in [14], we extract SIFT
features with 16�16 patch-size and 8 pixels step-size. The codebook
size is set to 100. For each category, we randomly sample 80 images
for training and use the rest for testing. In the prepossessing step, we
merge patches into 16�16 blocks and set C1;C2 and C3 to 0.5.

Table 3 gives the results for our proposed methods along with
the baselines. As it is shown, the proposed methods perform
consistently better than the baselines. In addition, different from
age classification, Pattern Recognition (2016), http://dx.doi.org/
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Fig. 5. Visualization of distribution matrices P on the UIUC-Sports dataset. Each row stands for one specific category: five learned pooling distributions and three original
images.

Table 3
Classification accuracy on the 21-Land-Use dataset.

Algorithm Acc. (linear) Acc. (nonlinear)

RDM 63.1 71.3
BoVW 58.6 68.3
SPM (average-pooling) 67.6 74.7
SPM (max-pooling) 62.9 68.8

ASP-original 69:270:27 –

ASP-enhanced-Bi 68:070:28 76:870:91
ASP-enhanced-Mul 73:370:16 80:770:15

Table 4
Comparison with state-of-the-art methods on the 21-Land-Use dataset.

Algorithm Acc.

SPCK [48] 73.1
SPCKþ [48] 76.1
SPCKþþ [48] 77.3
RSPþoptimal selection [14] 75.5
RSPþBoosting [14] 77.8

The proposed 80.7
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the UIUC-Sports dataset, the ASP-enhanced-Mul method is sig-
nificantly superior to the ASP-enhanced-Bi method. This is because
the spatial layouts among categories are quite different in this
dataset as shown in Fig. 5 and hence making use of distributions
from other categories will bring an informative complement.

Table 4 lists the comparative results with several state-of-the-art
methods. SPCK [48] is an algorithm proposed for overhead imagery,
which captures both the absolute and the relative arrangement of
words by making use of the co-occurrence relationship to represent
images. SPCKþ and SPCKþþ are both extended methods of SPCK.
The proposed method (ASP-enhanced-Mul) achieves 80.7% accuracy,
Please cite this article as: Y. Liu, et al., Adaptive spatial pooling for im
10.1016/j.patcog.2016.01.030i
which improves the accuracy of SPCKþþ and RSP�Boosting by 3.4%
and 2.9%, respectively.

Fig. 2 (b) shows the dependency of performance on the number
of distributions T. We can see that the performance saturates
when TZ5 for ASP-enhanced-Bi and TZ3 for ASP-enhanced-Mul.
We randomly select 7 categories in this dataset and visualize the
learned distribution matrix P with grey-scale maps in Fig. 6. It is
interesting to observe that the learned distributions generally
possess symmetric property on this dataset.
age classification, Pattern Recognition (2016), http://dx.doi.org/
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Fig. 6. Visualization of distribution matrices P on the 21-Land-Use dataset. Each row stands for one specific category: five learned pooling distributions and three original
images.

Table 5
Classification accuracy on the Scene15 dataset.

Algorithm Acc. (linear) Acc. (nonlinear)

RDM 76.6 80.8
BoVW 74.7 78.9
SPM (average-pooling) 80.5 82.5
SPM (max-pooling) 75.5 77.1

ASP-original 83.17 0.11 –

ASP-enhanced-Bi 80.97 0.06 83.27 0.01
ASP-enhanced-Mul 82.97 0.03 84.77 0.02

Table 6
Comparison with other related methods on the Scene15 dataset.

Algorithm Acc.

KSPM [2] 81.4
GLP [13] 83.2
MSP (hard coding ) [19] 78.7
MSP (super-vector coding ) [19] 84.3
RSPþoptimal selection [14] 83.9
RSPþBoosting [14] 88.1
PlsSPR [18] 81.8
Tangram model [45] 81.6
HRD [46] 82.4

The proposed 84.7
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4.2.3. Scene 15 dataset
The Scene 15 dataset [49] is composed of 15 natural scene cate-

gories: bedroom, suburb, industrial, kitchen, livingroom, coast, forest,
highway, insidecity, mountain, opencountry, street, tallbuilding, office
and store. There are 4485 images in total, with the number of each
category ranging from 216 to 400 images. We extract SIFT features for
three patch sizes (12�12,18�18 and 24�24) with a fixed step-size
of 4 pixels, and the codebook size is set to 1024. For each category, we
randomly select 100 images for training and use the rest for testing.
Wemerge patches into 16�16 blocks in the preprocessing phase with
parameters C1;C2 and C3 set to 0.5.

The comparative results of our method with the baselines and
other related work are presented in Tables 5 and 6, respectively.
The ASP-enhanced-Mul method achieves the accuracy of 84.7%,
which is higher than KSPM [2], GLP [13], MSP [19], PlsSPR [18],
Tangram Model [45] and HRD [46] but lower than RSPþBoosting
[14]. However, RSPþBoosting adopts a large number of random
patterns (100 partition patterns for each category) via boosting,
while only three distributions are used in our method. Therefore,
the dimensionality of RSPþBoosting is tens of times that of ours.
Because of space limitation, we do not show the visualization of
distribution matrix P. Note that the most discriminative distribu-
tions learned by our method look like rectangles with long side in
horizontal direction, which is consistent with the discovery in
previous works that the 3�1 spatial layout [52] is superior to the
4�4 image partition adopted by SPM [2].
age classification, Pattern Recognition (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.patcog.2016.01.030
http://dx.doi.org/10.1016/j.patcog.2016.01.030
http://dx.doi.org/10.1016/j.patcog.2016.01.030
http://dx.doi.org/10.1016/j.patcog.2016.01.030


Table 7
Average time for optimizing one distribution p and classifier fw; bg in Algorithm 2.

Dataset UIUC-Sports 21-Land-Use Scene15

Time (s) 3 8 23

Table 8
Running time for the proposed method.

Dataset UIUC-Sports 21-Land-Use Scene15

(a) Training time (s)
ASP-original T¼1 12 19 379

T¼5 35 121 2498
T¼10 60 294 5375

ASP-enhanced-Bi T¼1 13 22 386
T¼5 37 124 2519
T¼10 63 298 5408

ASP-enhanced-Mul T¼1 13 22 398
T¼5 38 126 2559
T¼10 63 302 5479

(b) Testing time (ms)
ASP-original T¼1 3 2 3

T¼5 3 2 6
T¼10 4 2 7

ASP-enhanced-Bi T¼1 4 2 3
T¼5 4 2 8
T¼10 4 2 13

ASP-enhanced-Mul T¼1 3 2 4
T¼5 4 2 10
T¼10 4 2 14
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4.3. Running time

All experiments are implemented in Matlab and performed on a
CPU server with 2 Xeon E5-2690 2.9 GHz CPUs with 16 cores in total.
First, the average time for optimizing one distribution p and classifier
parameters fw; bg (ref. Algorithm 2) is shown in Table 7. We also
report the training and testing time for the proposed method in
Table 8, where the time for both ASP-enhanced-Bi and ASP-enhanced-
Mul are counted under the linear vision. The value in Table 8(b) shows
the average testing time per image, which is calculated by dividing the
total testing time by the number of testing images. Note that the
training time of the Scene15 dataset is much longer than that of the
other two datasets. This is because parallel computing with 12 cores is
adopted for the UIUC-Sports dataset and the 21-Land-Use dataset,
while one single core is applied to the Scene15 dataset due to the
memory limitation for Matlab parallel setting.
5. Conclusion

In this paper, we proposed a novel pooling operationwith the aim
of extracting discriminative spatial information from images. After
characterizing this operation by a category-specific distribution
matrix, we learned it along with the classifier under a unified opti-
mization framework via boosting. With the help of the distribution
matrix, our method can describe much more complex spatial layouts
than the traditional image partitioning schemes, and thus extract
more discriminative information to improve the classification per-
formance. Experiments on three datasets demonstrated the super-
iority of our method. In future, we will extend the proposed method
for the classification of large number of categories, which may suffer
from severely imbalanced samples for the learning of category-
specific distributions.
Please cite this article as: Y. Liu, et al., Adaptive spatial pooling for im
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