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Abstract: PICALM and CLU are two major risk genes of late-onset Alzheimer’s disease (LOAD), and
there is strong molecular evidence suggesting their interaction on amyloid-beta deposition, hence find-
ing functional dependency between their risk genotypes may lead to better understanding of their
roles in LOAD development and greater clinical utility. In this study, we mainly investigated interac-
tion effects of risk loci PICALM rs3581179 and CLU rs11136000 on hippocampal degeneration in both
young and elderly adults in order to understand their neural mechanism on aging process, which may
help identify robust biomarkers for early diagnosis and intervention. Besides volume we also assessed
hippocampal shape phenotypes derived from diffeomorphic metric mapping and nonlinear dimension-
ality reduction. In elderly individuals (75.6 6 6.7 years) significant interaction effects existed on hippo-
campal volume (P< 0.001), whereas in young healthy adults (19.4 6 1.1 years) such effects existed on a
shape phenotype (P 5 0.01) indicating significant variation at hippocampal head and tail that mirror
most AD vulnerable regions. Voxel-wise analysis also pointed to the same regions but lacked statistical
power. In both cohorts, PICALM protective genotype AA only exhibited protective effects on hippo-
campal degeneration and cognitive performance when combined with CLU protective T allele, but
adverse effects with CLU risk CC. This study revealed novel PICALM and CLU interaction effects on
hippocampal degeneration along aging, and validated effectiveness of diffeomorphometry in imaging
genetics study. Hum Brain Mapp 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Late-onset Alzheimer’s disease (LOAD) is a neurodege-
nerative disorder that has no effective treatment so far.
There have been increasing needs to develop early inter-
vention strategies that can slow down or stop the progres-
sion of the disease [Erk et al., 2011; Filippini et al., 2009;
Zhang et al., 2014, 2015]. Because LOAD is highly heritable
[Gatz et al., 2006], risk genetic variants can be used as
robust biomarkers to identify at-risk population who are
likely to develop LOAD and benefit from early interven-
tion. Emerging evidence has shown that major risk genes
will interplay to modulate the brain structure and cogni-
tive performance [Morgen et al., 2014; Zhang et al., 2014],
hence finding dependence of one gene on another will
contribute to more accurate identification of at-risk popu-
lation. In this study, we focus on two risk genes identified
through genome-wide association studies (GWAS), namely
clusterin/apolipoprotein J protein gene (CLU) and
phosphatidylinositol-binding clathrin assembly protein
gene (PICALM) [Corneveaux et al., 2010; Harold et al.,
2009; Lambert et al., 2013]. Clusterin and PICALM may
play reverse roles in amyloid-beta (Ab) deposition which
is a hallmark of AD pathology: clusterin drives Ab away
from brain [Cirrito et al., 2008] whereas PICALM promotes
Ab deposition [Ehrlich et al., 2004; McMahon and Boucrot
2011], a strong evidence suggesting existence of an interac-
tion between them. However, whether risk variants in the
two genes interact to modulate brain structure and disease
risk remains to be identified.

Many neuroimaging genetics studies towards under-
standing neural mechanism of CLU and PICALM were
focused on their individual effects on neuroimaging and
neuropsychological measurements [Biffi et al., 2010; Erk
et al., 2011; Furney et al., 2011; Melville et al., 2012], whereas
their interaction effects have been rarely studied. One study
reported CLU and PICALM interacted to modulate resting-
state functional MRI (rs-fMRI) connectivity of hippocampus
in Chinese Han young healthy adults [Zhang et al., 2014],
suggesting impact of the two genes on hippocampal struc-
ture, but no main or interaction effects of the two genes
were observed on hippocampal volume [Bralten et al., 2011;
Zhang et al., 2014]. Such ambiguity between different imag-
ing modalities may arise from the limitation of gross volume
measure which lacks ability to encode regional variability to
reflect dynamic genetic effects. The commonly used voxel-
wise analysis is able to localize anatomical variability, but it
is underpowered to detect small genetic effects due to heavy
multiple test burden.

To overcome limitation of traditional morphometric
analysis approaches, we employed diffeomorphic metric

mapping [Yang et al., 2015] and nonlinear dimensionality
reduction approach to derive compact hippocampal shape
descriptors as a strategy to investigate effects of risk loci
CLU rs11136000 and PICALM rs3851179 that were the
most reported loci in GWAS [Corneveaux et al., 2010; Har-
old et al., 2009; Lambert et al., 2013] and imaging genetics
studies [Biffi et al., 2010; Erk et al., 2011; Furney et al.,
2011; Melville et al., 2012; Zhang et al., 2014]. Diffeomor-
phic metric based shape analysis had the ability to capture
nonlinearity of the shape space [Miller et al., 2009; Yang
et al., 2012] and may yield shape descriptors proximal to
gene functions, hence increasing the detection power.
Besides neuroimaging traits, we also analysed effects of
the two risk loci on clinical diagnosis and memory per-
formance in order to find the correspondence between
imaging and function.

We performed analysis in both elderly and young
healthy adults with the aim to understand the evolutional
pattern of the genetic effects on the aging process. Ideally
a consistent pattern across early and later life can provide
strong basis for early intervention and disease progress
monitoring. Towards this goal, we first performed analysis
in elderly subjects (55–90 years) mixed with healthy con-
trols and AD patients in order to find CLU and PICALM
effects on hippocampal degeneration and disease risk,
then we verified whether such effects could be traced back
to young healthy adults. Elderly subjects were drawn from
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study, and young healthy subjects from Chinese Han pop-
ulation. Effects of CLU and PICALM in the two cohorts are
supposed to be comparable because their link to LOAD
has been replicated in different ethnic groups, including
Caucasian population and Chinese Han population [Carra-
squillo et al., 2010; Chen et al., 2012; Corneveaux et al.,
2010; Harold et al., 2009; Lee et al., 2011].

MATERIALS AND METHODS

Young Healthy Subjects

We recruited 360 young healthy Chinese university stu-
dents (186 males and 174 females; mean age 5 19.41 6 1.09
years, range 5 17–24 years; school education 5 12.33 6 0.80
years, range 5 10–16 years]. The study was approved by
the Ethics Committee of School of Life Science and Tech-
nology at University of Electronic Science and Technology
of China, and all participants gave written informed con-
sent. All of the participants were carefully screened to
exclude individuals with a history of neurological or psy-
chological diseases in the subjects or their third-degree rel-
atives, psychiatric treatment, drug or alcohol abuse,
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traumatic brain injury, or visible brain lesions on conven-
tional MRI. All subjects were examined using the Chinese
Revised Wechsler Adult Intelligence Scale (WAIS-RC). 321
subjects passing all stages of quality control procedures
were included in this study.

ADNI Study

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://www.adni.loni.usc.edu). The
ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and nonprofit
organizations, as a $60 million, 5-year public–private part-
nership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Cali-
fornia—San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic
institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Can-
ada. The initial goal of ADNI was to recruit 800 subjects
but ADNI has been followed by ADNI-GO and ADNI-2.
To date these three protocols have recruited over 1500
adults, ages 55–90, to participate in the research, consisting
of cognitively normal older individuals, people with early
or late MCI, and people with early AD. The follow up
duration of each group is specified in the protocols for
ADNI-1, ADNI-2, and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to be
followed in ADNI-2. For up-to-date information, see
http://www.adni-info.org.

Baseline data of ADNI1 were used in this study. 818
subjects were genotyped as part of the ADNI-1 study. But
to reduce population stratification effects, we only
included 699 subjects of European ancestry clustered with
CEU samples in HapMap phase3 data in this study, con-
taining 194 controls, 337 MCIs and 168 ADs.

Genotyping

Ethylene diamine tetraacetic acid (EDTA) anticoagulated
venous blood samples were collected from all Chinese
young healthy individuals. Genomic DNA was extracted
from whole blood using the EZgene Blood gDNA Mini-

prep Kit (Biomiga, San Diego, CA) according to the manu-
facturer’s recommendations. Genotype data for CLU
(rs11136000) and PICALM (rs3851179) and APOE (rs429358
and rs7412) were obtained using the standard Illumina
genotyping protocol (Illumina).

ADNI samples were genotyped with Human610-Quad
BeadChip, which was described in detail elsewhere [Say-
kin et al., 2010]. When analysing population structure
using genome-wide data, we adopted the following qual-
ity control criteria: genotype call rate >98%, significant
deviation from Hardy–Weinberg equilibrium (HWE)
P> 1026 and minor allele frequency >0.02. After QC pro-
cedure, 522 236 SNPs remained, and the maximum geno-
typing missing rate per subject was 0.102.

MRI Data Acquisition

MRI scans of Chinese young healthy subjects were per-
formed on a MR750 3.0 T magnetic resonance scanner (GE
Healthcare). Resting-state functional imaging data were
acquired using a gradient-echo echo-planar-imaging (GRE-
EPI) sequence with the following parameters: repetition
time (TR) 5 2,000 ms, echo time (TE) 5 30 ms, field of view
(FOV) 5 240 3 240 mm2, matrix 5 64 3 64, flip angle 5 908,
voxel size 5 3.75 3 3.75 3 4.0 mm3, 39 slices, and 255 vol-
umes. High-resolution 3D T1-weighted brain volume
(BRAVO) MRI sequence was subsequently performed with
the following parameters: TR 5 8.16 ms, TE 5 3.18 ms, flip
angle 5 78, FOV 5 256 3 256 mm2, voxel size 5 1 3 1 3

1 mm3, and 188 slices. Before the scanning, all subjects were
informed that they should move as little as possible, keep
their eyes closed, think of nothing in particular and avoid
falling asleep. Then, subjects were asked whether they fell
asleep during and after the scanning to confirm that the
included subjects did not fall asleep. ADNI MRI data acqui-
sition was described in details elsewhere (http://www.
adni.loni.usc.edu/about/centers-cores/mri-core/).

Memory Test

Individual working memory (WM) capacity in Chinese
young healthy subjects was evaluated using the n-back
task, which has been widely used in previous studies on
WM [Owen et al., 2005]. This task was performed on a
computer in a quiet room outside the MRI scanner before
performing magnetic resonance scanning for each subject,
and the data were evaluated using E-Prime, Version 2.0
(http://www.pstnet.com/eprime.cfm) as described in pre-
vious study [Liu et al., 2014]. Episodic memory perform-
ance in elderly was measured by MMSE (Mini-Mental
State Examination) score available in ADNI.

Hippocampal Segmentation

The hippocampal images of elderly individuals were
semiautomated segmentations provided by ADNI, using
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high-dimensional brain mapping tool SNT which was
commercially available from Medtronic Surgical Naviga-
tion Technologies (Louisville, CO). SNT hippocampal
volumetry has been previously validated on the normal
aging, MCI and AD subjects [Hsu et al., 2002]. It first used
22 control points manually placed on the individual brain
MRI as local landmarks. Fluid image transformation was
then used to match the individual brains to a template
brain [Christensen et al., 1997]. The segmentations were
manually edited by qualified reviewers if the boundaries
delineated by SNT were not accurate.

Hippocampal segmentation of young adult brains
adopted multiatlases segmentation using joint label fusion
[Wang et al., 2013] which achieved the state-of-the-art seg-
mentation accuracy. To be consistent with ADNI hippo-
campal segmentation, atlases were chosen from ADNI
brains closest to young adult brains. Specifically, five
ADNI brains closest to the center of young adult brains
were selected as templates. The main steps of this pipeline
are as follows: (1) Affine registration was first used to
align template to subject’s T1 image; (2) ROIs of the sub-
ject and aligned template were segmented and aligned
again by affine transformation; (3) Affine-aligned ROIs
were then registered by nonlinear image registration
implemented using ANTS software tools (http://stnava.
github.io/ANTs/); (4) Hippocampal mask of template was
then transformed to subject space by composing affine and
nonlinear transformations; (5) Multi-atlas segmentations
were fused by minimizing the total expectation of labeling
error, which not only considered intensity similarity
between atlases and target, but also between atlases
[Wang et al., 2013); (6) Manual checking was followed to
correct those segmentations with minor errors, e.g., spikes,
and remove those with obvious errors. Segmentation accu-
racy was measured by.

Hippocampal Shape Analysis

Hippocampal surfaces generated from the segmentations
were smoothed using a low pass filter [Taubin, 1995].
Landmarks on the hippocampal surface were identified
using ’blended intrinsic maps’ [Kim et al., 2011] which
provided low-distortion mapping for pairs of surfaces
with large deformations. One subject from each cohort
was chosen to create hippocampal templates. Since the
cloud of dense landmarks was used to represent hippo-
campal shapes, it was sufficient to characterize the shape
variations regardless of the landmark locations, so we just
chose the shapes whose mesh points were relatively
evenly spaced as the template. For ADNI subjects, there
were 1,103 mesh points on the left template, and 1,077
points on the right. For young subjects, there were 1,177
mesh points on the left template and 1,242 on the right.
These surface points were mapped to the remaining surfa-
ces by the method described above. Manual checking was
followed to remove hippocampi with nonsmooth map-

pings, e.g., mesh folding or joining of distant regions. 483
ADNI subjects and 336 young adults passing all stages of
hippocampal segmentation and landmark identification
were included in shape analysis in the next.

Landmarked shapes were rigidly aligned to the template
and a new template was generated by averaging the
aligned shapes. Diffeomorphic metric mappings based on
stationary velocity field parameterization [Yang et al.,
2015] were then performed between the new template and
rigidly aligned shapes. In this approach, shape metric was
defined as the length of the shortest Lie group exponential
path in Riemannian manifold of diffeomorphisms connect-
ing two shapes. To construct a pairwise shape distance
matrix, we computed distances between any two shapes
using their second order approximation which used only
their mapping information relative to the template [Yang
et al., 2015], thus avoiding very high computational loads
of pairwise diffeomorphic metric mappings. The second
order approximation has been shown to improve signifi-
cantly over the first order one, and achieve high accuracy
in hippocampal shape metric estimation [Yang et al.,
2015]. Sum of the left and right hippocampal shape metric
matrices was projected onto a low-dimensional Euclidean
space using multidimensional scaling (MDS) that pre-
served the relationship of any two shapes described in the
pair-wise metric matrix. MDS components were ordered
according to their variance, with the first one having the
largest variance. However, selecting intrinsic dimensions
of the shape space is a well-known open question. One of
the most commonly used method is to plot the eigenval-
ues of the kernel matrix stemmed from the distance or
covariance matrix in descending order (called scree plot)
and look for a “big gap” or “elbow” in such a graph [Jol-
liffe, 2002]. Though this approach is somewhat ad hoc, it
has been shown as an effective approach in practice [Zhu
and Ghodsi, 2006], so we adopted it to select shape com-
ponents in this study.

Statistical Analysis

Hardy-Weinberg equilibrium between expected and
observed genotype distributions were tested in PLINK
[Purcell et al., 2007] (version 1.9). Effects of gender and
handedness were tested by v2 test. Genetic association
with hippocampal phenotypes adopted general linear
regression model including minor allele dosages of CLU

and PICALM loci and their interaction term. For elderly
subjects, covariates included age, sex, education years,
handness, total intracranial volume, APOE e4 dosage, and
the first four MDS components of genetic data merged
with HapMap3 data. In young healthy adults, the covari-
ates included age, sex, education years, handness, brain
volume and APOE e4 dosage. Interaction effect was eval-
uated by P value of the regression coefficient for the inter-
action term, and main effects were evaluated without the
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interaction term. All the regression analysis and v2 test
were performed in Matlab software.

To observe the shape variation pattern each shape compo-
nent characterized, the subjects were divided into two
groups with coordinates above or below the mean value for
each component, namely mean (1) and mean (2) groups,
and two sample t tests were performed at each surface ver-
tex using as phenotype the shape displacement relative to
template which was projected onto the normal direction.
The P value of each vertex was corrected using Gaussian
random field theory [Taylor and Worsley, 2007; Worsley
et al., 1999]. The tests were performed using software pack-
age SurfStat (http://www.math.mcgill.ca/keith/surfstat/).

RESULTS

Hippocampal Segmentation and Landmark

Identification Results

For multiatlas hippocampal segmentation, dice measure-
ment for the leave-one out crossvalidation of the five ADNI
atlases was 0.879 6 0.037 (L/R). 24 out of 360 young subjects
were observed with obvious hippocampal segmentation
errors, e.g., spikes, and removed from further analysis.

The hippocampal landmark correspondence of two
elderly subjects identified through blended intrinsic maps
was shown in Figure 1 by fringe patterns and color-coded
landmarks. As was shown, the correspondence agreed
with manual verification well. Based on the surfaces con-
structed from landmarks, only two young subjects were
observed with obvious abnormal landmark identification
such as significant mesh folding, and none of the elderly
subjects were observed with obvious abnormality. To
quantify the identification error, the hippocampal surfaces
were deformed by diffeomorphic transformation, so the
ground truth of landmark correspondence between origi-
nal and deformed ones was known. Ten pairs of randomly
chosen surfaces were generated. The average distance of
the landmarks identified by blended intrinsic map to the
ground truth was 0.16 6 0.076 mm, much smaller than the
average distance of neighbour landmarks (�1 mm).

Hippocampal Shape Analysis Results

Diffeomorphic metric based analysis was performed in
483 elderly subjects and 336 young adults separately. Scree
plots for MDS components were shown in Figure 2. For
elderly subjects, there was “big gap” between the second
and third components (see Fig. 2a), which was not
observed between rest components, so the first two were
retained for further analysis. The first shape component
had high correlation with bilateral hippocampal volume (r
5 0.915, P< 1026), as well as significant correlation with
age factor (r 5 0.22, P< 1026), and the first two compo-
nents both had significant correlation with diagnosis
(P< 0.001 for all). For young subjects, there was “big gap”

between the third and fourth components (Fig. 2b), so the
first three were retained for further analysis, and they all
significantly associated with volume (r 5 0.7, 0.33, and
0.41, respectively, P< 1026 for all).

Genetic Association Results

After quality control, 421 elderly subjects and 321 young
adults were involved in imaging genetics study. Character-
istics of these subjects were shown in Table I. Genotype
distributions for the CLU and PICALM risk loci were in
Hardy–Weinberg equilibrium (P> 0.05) in both elderly
and young subjects, and there were no significant age, sex,
and education difference between genotypes (P> 0.05).

PICALM–CLU effects in elderly

In 421 mixed elderly subjects, CLU and PICALM showed
significant interaction effects on the bilateral hippocampal

Figure 1.

Hippocampal landmark correspondence identified by blended

intrinsic maps. (a) Fringe pattern at similar locations indicated

correspondence, (b) landmarks were color-coded.
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volume (P 5 9.7 3 1024) as well as the first hippocampal
shape component (P 5 0.002), but not on the second com-
ponent (P> 0.05). In CLU risk C allele homozygotes, PIC-
ALM protective AA genotype exhibited lower mean
hippocampal volume than risk allele G carriers, whereas
this effect was reversed in CLU protective T allele carriers
(see Fig. 3a). PICALM rs3851179 also had nominally signif-
icant main effect on hippocampal volume (P 5 0.05), but
CLU rs11136000 did not (P 5 0.47), consistent with previ-
ous finding (Biffi et al., 2010).

We further performed analysis in specific diagnostic
groups. In each of the three groups PICALM AA genotype
in CLU TT group exhibited obviously higher mean hippo-
campal volume than GG homozygotes, whereas in CLU
risk CC group, such effects were weaker or reversed (see
Fig. 4). Statistically, the interaction effects were significant
in healthy controls (P 5 0.047, n 5 116), but not in MCIs
(P 5 0.17, n 5 215) and AD patients (P 5 0.11, n 5 90).
Main effects of PICALM rs3851179 were marginally signifi-
cant in AD patients (P 5 0.056), but not in other two
groups. When three groups were merged and diagnosis
used as covariate, significant PICALM–CLU interaction still
remained on hippocampal volume (P 5 0.017), further

demonstrating the effects were not confounded by disease.
In healthy elderly (n 5 116) 1.01% of the hippocampal vol-
ume variance was explained by the interaction effects of
the two variants after adjusting for other covariates, as
opposed to 0.03% by just their main effects.

With regard to cognitive functions, PICALM protective
AA genotype exhibited a higher AD ratio and lower mean
adjusted MMSE score (after adjusting for covariates) than
risk G carriers in the CLU risk CC group, which was
reversed in CLU protective T carriers (Table II). This pat-
tern reflected the imaging findings, but statistical signifi-
cance was not reached.

PICALM–CLU effects in young healthy adults

We next tested the interaction effects of the two loci on
bilateral hippocampal volume as well as the first three
shape components in 321 young healthy subjects. The
analysis revealed that a significant interaction existed on
the second hippocampal shape component (P 5 0.01),
demonstrating the same interaction pattern as that
observed in the elderly cohort (Fig. 3b). Even corrected
for multiple tests, this effect was still significant (adjusted

Figure 2.

Scree plots of MDS components of hippocampal shapes. (a) Elderly subjects, (b) young adults.

TABLE I. Characteristics of ADNI subjects (N 5 421) and Chinese Han young healthy adults (N 5 321) involved in

the imaging genetics study; age and education years were denoted by ‘Mean 6 SD’

ADNI subjects Chinese young healthy adults

Diagnosis 116 controls, 215 MCI, 90 AD All normal
Sex 247M/174F 163M/158F
Age 75.6 6 6.7 years 19.4 6 1.1 years
Education 15.6 6 3.1 years 12.3 6 0.8 years
CLU genotype status 160 CC/194 CT/67 TT 205 CC/96 CT/20 TT
PICALM genotype status 181 GG/186 GA/54 AA 120 GG/154 GA/47 AA
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P 5 0.04). Main effect terms of the two variants in the full
model were significant with P 5 0.01 and 0.02 for PICALM
and CLU, respectively, though their marginal main effects
were nonsignificant when interaction term was not pre-
sented. As demonstrated in Figure 5a, the second compo-
nent characterized significant outward deformations at
head, tail, and fimbria regions for mean (1) group relative
to mean (2) group, reflecting significant local volume varia-
tions at these sites. In contrast, the first shape component
with high correlation with bilateral volume (r 5 0.7,
P< 10212) indicated significant outward variation from
head to tail (Fig. 5b), which was similar to that in elderly
(Fig. 5c), but no interaction effects existed on this component
in young healthy adults (P 5 0.53). Based on this observa-
tion, we could conclude that the PICALM AA genotype

tended to result in greater volume loss in the head and tail
regions of the hippocampus than observed for the GG geno-
type in the CLU risk CC group, versus a smaller one than for
the GG genotype in CLU protective T carriers.

We also performed voxel-wise analysis of the CLU–PIC-
ALM interaction using the landmark displacement vector
as phenotype. The strongest interaction effects again
appeared at the head, tail, and fimbria regions (see Fig. 6),
consistent to the imaging pattern characterized by the sec-
ond shape component (Fig. 5a). But none of these effects
achieved statistical significance (P< 0.05) after multiple
test correction, demonstrating the necessity of dimension-
ality reduction.

In relation to the imaging interaction pattern, the PIC-
ALM protective AA genotype demonstrated a higher mean

Figure 3.

Hippocampal phenotypes for PICALM and CLU genotypes. (a) Hippocampal volume in 421 elderly

subjects, (b) the 2nd hippocampal shape component in young healthy adults. Error bars were

denoted by ’mean 6 SEM’.

Figure 4.

Hippocampal volumes for PICALM and CLU genotypes in three diagnostic groups of elderly sub-

jects. Error bars were denoted by ’mean 6 SEM’.
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WM (2-back) test score (after adjustment) than observed
for the risk G allele in CLU protective T carriers, with an
adverse effect being recorded in the CLU risk CC group
(Table II), although statistical significance was not reached.

DISCUSSION

The main findings of this study are that common LOAD
risk loci in CLU and PICALM exhibited significant interac-
tion effects on hippocampal morphology in both young
healthy adults and elderly individuals. The interaction
effects in young healthy adults were mainly manifested at
the most AD vulnerable regions, e.g., CA1 and subiculum
[Hyman et al., 1984; Van Hoesen and Hyman, 1990], but
this effect was cumulative and spread to the whole vol-
ume with aging, which finally led to differential disease

risk. In both elderly and young subjects, the PICALM
LOAD protective genotype AA was only protective against
hippocampal neurodegeneration and memory deficits in
association with the CLU protective T allele, whereas
adverse effects were observed for the CLU risk CC geno-
type. This genetic interaction pattern, together with neuroi-
maging and neuropsychological measures, provides robust
biomarkers for at-risk population identification and dis-
ease progression monitoring.

Interestingly, this study was the first to observe the sig-
nificant impact of CLU and PICALM on structural MRI
phenotypes in young healthy adults, showing the power
of this shape analysis approach in genetic association stud-
ies. Voxel-wise genetic association revealed similar interac-
tion pattern in the case of the hippocampus surface but
was underpowered. The metric based analysis also
showed greater power than the PCA based analysis.

TABLE II. AD ratios, adjusted MMSE score and WM test for PICALM genotypes with CLU CC genotype or T car-

riers in elderly or young subjects; age and residuals were denoted by ‘Mean 6 SD’

PICALM
genotype

Elderly subjects (N 5 699) Young healthy subjects (N 5 321)

Age AD ratio MMSE residual Age
Working memory test

(2-back condition)

CLU CC GG 74.5 6 6.8 22.9% 20.18 6 0.16 19.5 6 1.1 0.073 6 0.14
GA 75.7 6 6.8 19.7% 0.16 6 0.15 19.3 6 1.2 20.096 6 1.35
AA 76.0 6 6.7 26.3% 20.48 6 0.28 19.4 6 1.1 20.25 6 1.87

CLU CT/TT GG 75.5 6 6.8 23.9% 0.027 6 0.13 19.0 6 1.0 0.087 6 0.1
GA 75.4 6 6.8 25.5% 0.002 6 0.12 19.5 6 0.9 0.109 6 0.13
AA 76.3 6 6.2 19.6% 0.26 6 0.23 19.1 6 0.9 0.114 6 0.09

Figure 5.

Significant outward deformation of mean (1) group relative to mean (2) group for hippocampal

shape components. (a) Second shape component in young adults; (b) 1st shape component in

young adults; (c) 1st shape component in elderly subjects. M: medial; P: posterior. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Previous imaging genetics studies have not found signifi-
cant effects of major LOAD risk genes including APOE,
CLU, and PICALM on hippocampal volume in cognitive
normal adults aged from 20 to 50 [Jack et al., 2015; Zhang
et al., 2014), whereas our finding showed that these genetic
effects may exist in subregions of this brain structure, and
that shape analysis can capture such dynamic effects. The
second shape component indicated that a subgroup of
young healthy adults exhibited more atrophy in the hippo-
campal head and tail regions, with the interaction of CLU
and PICALM explaining 1.79% of this variance. In terms of
only the two loci considered, this effect was significant
and understandable given that a single locus can usually
explain up to 0.5% of the imaging variance [Hibar et al.,
2015], demonstrating significant impact of the two genes
in hippocampal development.

Our structural findings also corroborate the results of a
previous fMRI study which reported a CLU–PICALM

interaction on resting-state functional connectivity of the
hippocampus in an independent Chinese young healthy
cohort and indicated that PICALM protective AA genotype
with CLU risk CC homozygotes would suffer hyperactivity
of hippocampus that may predict faster cognitive decline
in the future [Zhang et al., 2014], whereas our data further
identified structural basis of this functional finding by
showing that this genotype combination exhibited the
heaviest degeneration in hippocampal head and tail
regions, which may facilitate the development of new ther-
apeutic approaches. Our study also substantially extends
previous imaging studies of CLU and PICALM in the
elderly [Biffi et al., 2010; Furney et al., 2011; Melville et al.,
2012] by showing that their interaction can significantly
increase the power in explaining hippocampal volume
variation.

The molecular mechanism underlying the effect of CLU
and PICALM interaction on neurodegeneration may
involve their reverse modulation of Ab levels that affect

the extent of neuronal loss. Clusterin (apopoliprotein J)
mediates the clearance of Ab by enhancing endocytosis
[Cirrito et al., 2008] and binding Ab into an insoluble form
[DeMattos et al., 2004; Nuutinen et al., 2009], whereas PIC-
ALM promotes Ab generation via clathrin-mediated endo-
cytosis [Ehrlich et al., 2004; McMahon and Boucrot, 2011].
Moreover, clusterin is an inducible lipoprotein, the expres-
sion of which can be greatly increased under AD patho-
logical conditions to promote the clearance of Ab

[Bertrand et al., 1995; Nuutinen et al., 2007]. This protec-
tive mechanism may explain why the interaction of the
PICALM risk GG genotype with the CLU risk CC genotype
results in less neurodegeneration than that observed in the
case of PICALM protective AA and CLU CC. In contrast,
the effect of the interaction between APOE and PICALM
reported in a previous study was quite different, showing
that the PICALM risk GG genotype in APOE risk e4 car-
riers produced the lowest gray matter volume and mem-
ory test scores [Morgen et al., 2014]. One explanation for
this is that apoE is not an inducible protein although it
has similar functions to clusterin/apoJ in terms of Ab

clearance in the brain [DeMattos et al., 2004], and its low
level expression is a marker of AD pathology. Together
with previous studies, our findings contribute to a more
profound understanding of the complex roles of major
LOAD risk genes underlying AD.

In conclusion, the hippocampal shape features derived
from the diffeomorphic metric-based shape analysis have
led to the identification of significant CLU-PICALM inter-
action effects on hippocampal morphology in young
healthy adults, which were not identified by volume mea-
surement and voxel-wise analysis. The consistent genetic
interaction pattern on imaging and cognitive measures
across young and elderly adults suggested robust bio-
markers for the early diagnosis and treatment of AD. It
showed that the interaction analysis could significantly
improve the clinical outcome of PICALM and CLU in
explaining brain development and predicting LOAD risk,
and this study may prompt further interaction analysis of
more LOAD risk genes. We can also apply this diffeo-
morphometry approach to other brain structures to dis-
cover novel neural mechanism of risk genes of LOAD and
other mental diseases.
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