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Sparse Hierarchical Clustering for
VHR Image Change Detection
Kun Ding, Chunlei Huo, Yuan Xu, Zisha Zhong, and Chunhong Pan

Abstract—The traditional clustering approaches are limited for
the unsupervised change detection of very high resolution images
due to the multimodal distribution of change features. To over-
come this difficulty, a sparse hierarchical clustering approach is
proposed. Discriminative change features are generated by stack-
ing bitemporal multiscale center-symmetric local binary pattern
features. In order to explore the multimodal and hierarchical
distribution of the change features, a tree-structured dictionary
is learned from the pseudotraining set and the unlabeled data.
The sparse reconstruction error, a more robust distance compared
to the Euclidean distance, is used to determine the label of each
change feature. Comparative experiments demonstrate the effec-
tiveness of the proposed method.

Index Terms—Change detection, multimodal distribution,
sparse hierarchical clustering (SHC).

I. INTRODUCTION

CHANGE detection aims at detecting land-cover transi-
tions from the coregistered remote sensing images taken

over the same geographic area but at different times. It is im-
portant for practical applications such as disaster management,
urban studies, etc. In general, the traditional change detection
approaches consist of two steps: change feature extraction
and change map generation by classification or clustering.
The classification-based change detection methods [1], [2] re-
quire hand-labeled training samples, while the clustering-based
methods [3], [4] can automatically split the change features
into disjoint categories. However, the main difficulties in ap-
plying clustering to very high resolution (VHR) image change
detection are the complex distribution of the change feature
as explained by Fig. 1 and the limitation of the traditional
clustering approaches for such a complex distribution.

In the literature, many change detection approaches con-
struct change feature by differencing [3], [5] or stacking [1]
the bitemporal features, e.g., spectral feature. Differencing is
sensitive to the atmosphere, lighting, and seasonal variation. In
addition, the low spectral resolution of VHR images results in
high intraclass variability and low interclass variability [6]. The
information loss caused by differencing will further aggravate
this difficulty. Compared to differencing, stacking is more
promising in improving interclass variability. However, the
distribution of change feature by stacking is very complicated.
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Fig. 1. Multimodal distribution of change feature. (a) Image X1. (b) Image
X2. (c) Distribution of change feature. “o” and “x” stand for the changed and
unchanged classes, respectively. Details are in Section II-A.

For illustration, Fig. 1(c) plots some change features generated
by projecting the high-dimensional stacked center-symmetric
local binary patterns (CS-LBP) [7] features to the 2-D principal
component space. Apparently, the samples of the changed class
(marked with “o”) spread in wide range with multiple dense
regions. Such a multimodal distribution makes the traditional
clustering approaches, e.g., K-means [3], [4], difficult to cluster
the change features. Note that these K-means-based methods
represent each class by one center and assign a label for each
change feature based on the Euclidean distance. However, one
center is inadequate to capture the complex distribution, and the
Euclidean distance is less robust to classify the change features.

In this letter, a sparse-representation-based hierarchical clus-
tering approach is proposed to address the aforementioned
problems. Compared with the related change detection ap-
proaches [3], [4], the contributions of the proposed approach
are twofold: 1) A tree-structured dictionary is learned from all
of the change features to represent the multimodal distribution.
This structure helps in capturing the multimodal nature of
change feature. 2) Sparse reconstruction error (SRE) is utilized
to measure the sample-to-class distance. The sparsity makes the
error-based distance robust to false changes.

II. PROPOSED APPROACH

The proposed change detection approach consists of two
steps: change feature extraction and sparse hierarchical clus-
tering (SHC). These two steps are the basis of the proposed
method, and they will be elaborated in the following sections.

A. Change Feature Extraction

The change feature should be discriminative to capture the
salient structures of VHR images and robust to lighting condi-
tion variations, seasonal changes, and sensor noise. The simple
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Fig. 2. Illustration of change feature extraction.

spectral feature has difficulty in meeting the aforementioned
requirements simultaneously. This letter employs the CS-LBP
feature [7], as it is robust to flat areas, tolerant to illumination
changes, and efficient in computation.

Change is closely related to scale (i.e., the size of the ob-
servation window), and different changes can be detected at
different scales. For this reason, the CS-LBP feature is extracted
in a multiscale manner. Fig. 2 illustrates the feature extraction
process using three different concentric patches.

For the coregistered multitemporal VHR images X1 and X2,
CS-LBP features are computed at each pixel at S different
scales. For pixel (i, j) of image Xt (t = 1, 2), the multiscale
CS-LBP feature ft = [fTt1, . . . , f

T
tS ]

T is formed by stacking all
of the single-scale CS-LBP features fts (s = 1, . . . , S). Prin-
cipal component analysis (PCA) is then employed to reduce
the dimension of multiscale CS-LBP features and merge the
information from various scales (Fig. 2). Let us denote the
reduced version of f1 and f2 as v1 and v2, respectively. By
stacking v1 and v2, the final change feature v = [vT

1 ,v
T
2 ]

T is
formed. It is used in our SHC algorithm.

We observed that the change feature computed by the afore-
mentioned strategy is of multimodal distribution,1 which can
be explained by Fig. 1. In Fig. 1(a) and (b), an unchanged
region (ellipse in black) and some changed regions (ellipses in
other colors) are labeled manually, and the change features v
are extracted within these ellipses. To validate the multimodal
distribution of the stacked change feature (v), we use PCA to
reduce the dimension of v1 and v2 to one, respectively, and get
two scalars z1 and z2. Stacking them generates the 2-D change
feature z = [z1, z2]

T . Fig. 1(c) plots each z with the same color
with the ellipses in Fig. 1(a) and (b). From Fig. 1(c), the black
“x”s form an unchanged class modality, while other colored
“o”s form a changed class modality. Hence, the distribution
of z [p(z)] is bimodal. As z is the linear projection of v, the
distribution of v [p(v)] is also bimodal. Moreover, the changed
class (marked with “o”) has multiple modalities: the green
modality, the red modality, and other modalities. In detail, the
green modality indicates the change from the buildings to the
grass, while the red modality is the change from the land to
the buildings. In consequence, both the conditional distributions
p(z|change) and p(v|change) are multimodal. In short, one

1In this letter, the item “multimodal” is to specify the multimodal distribution
(i.e., a statistical distribution of values with multiple peaks) rather than the
different acquisition modalities (e.g., radar and optical).

center is not representative enough for each class (the changed
and unchanged classes).

B. SHC

In this letter, SHC is proposed to cluster the aforementioned
change features. In this method, SRE is adopted to measure the
sample-to-class distance. The sparsity in SRE makes it more
robust than the Euclidean distance used in K-means clustering
[3], [4]. The robustness helps in reducing the false changes
caused by registration error and lighting variation. On the
other hand, the hierarchical dictionary learning is employed
to capture the complex distribution of change features. This
dictionary learning method has three advantages over the tra-
ditional one [8]: 1) Each dictionary atom is a cluster center
that has the explicit meaning; 2) the hierarchical structure of
the dictionary is helpful in reducing the false alarms; and
3) the dictionary updating strategy is simple to implement. In
detail, SHC consists of three steps: 1) dictionary initialization;
2) label assignment; and 3) dictionary updating. Steps 2) and 3)
are iterated alternatively until the convergence is reached.

1) Dictionary Initialization: This step is to learn an initial
structured dictionary that roughly models the distribution of
change feature. An appropriate initialization is helpful for the
stable clustering.

A pseudotraining set is required to produce the initial dic-
tionary. An intuitive idea to obtain the pseudotraining set is
picking the most reliable samples that are much easier to be
identified as change or no change in an unsupervised manner.
Given the bitemporal CS-LBP features f13 and f23 at the scale
s = 3, the magnitude of the CS-LBP change vector is a =
‖f13 − f23‖2, where ‖ · ‖2 denotes the Euclidean norm of a
vector. As [2], the magnitude is assumed to be the bimodal
Gaussian mixture distribution (GMD), where one modal near
the origin stands for the unchanged class and the other cor-
responds to the changed class. Therefore, the reliability of a
training sample can be measured by the magnitude a. Formally,
the pseudotraining set is defined as

L = {v|a ≥ θT + (1− θ)μc or a ≤ (1− θ)μu + θT} . (1)

T is the Bayesian optimal threshold that separates the changed
class from the unchanged class, which can be obtained by max-
imizing a posteriori (MAP). θ controls the number of selected
pseudotraining samples. μc and μu are the mean values of the
GMD, and they are estimated by the expectation maximization
(EM) algorithm.

For convenience, we denote the set of unlabeled data as U .
In addition, a new set F is defined to denote the samples whose
labels need assigning or updating. It is related to U and L and
has different formulations at the different stages of SHC. In
the dictionary initialization step, F = L since only the labeled
pseudotraining set is needed. At the first iteration (τ = 1, where
τ represents the number of iterations) of the label assignment
step, only the labels of unlabeled data need being assigned, and
thus, F = U . At the remaining iterations (τ ≥ 2), F = L ∪ U ,
since the labels of all of the samples need to be updated.

Given the pseudotraining set F = L, we compute the
initial dictionary via hierarchical K-means as illustrated in
Fig. 3. For the unchanged class Wu, all of the pseudotrain-
ing samples belonging to this class are clustered into N
subclasses {Cu

i }Ni=1. Hence, the dictionary of this class is
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Fig. 3. Tree structure of clustering. Each node is a subset of the change
features, and each child node is a subset of its father node.

Du = [du
1 , . . . ,d

u
i , . . . ,d

u
N ], where du

i is the cluster center of
class Cu

i . For the changed class Wc, considering the multimodal
distribution, all of the samples having the pseudolabel “change”
are grouped into m (m ≥ 1) subclasses {Wcj}mj=1; each class

Wcj is further clustered into Mj clusters {Ccj
i }Mj

i=1. The dictio-
nary of class Wc is denoted as Dc = [Dc1 , . . . ,Dcj , . . . ,Dcm ],
where Dcj = [d

cj
1 , . . . ,d

cj
i , . . . ,d

cj
Mj

] (j = 1, . . . ,m), and d
cj
i

is the cluster center of class Ccj
i . Concatenating Du and Dc

produces a tree-structured dictionary D = [Du,Dc]. The pa-
rameters satisfy the constraints: M =

∑m
j=1 Mj and Mj/M =

|Wcj |/|Wc| (j = 1, 2, . . . ,m), where | · | denotes the size of
a set. N and M are the dictionary sizes of the unchanged
and changed classes, respectively. Note that N and M are
related to the number of clustering center; the excessive unbal-
ance between them would produce biased classification results.
Therefore, we set them to be equal. After the initialization
step, a tree-shaped clustering structure (Fig. 3) is built, which
captures the hierarchical distribution of the change feature in
Fig. 1(c).

Since the pseudotraining set is a part of all of the samples,
the initial dictionary is difficult to model the statistics of the data
completely. In consequence, it is necessary to take the unlabeled
change features into account and refine the dictionary. The
refinement process is implemented by alternatively iterating the
following two steps.

2) Label Assignment: Given the dictionary D learned at the
(τ − 1)th iteration, only the labels of the unlabeled change
features (i.e., the samples in U ) are assigned (τ = 1), or the
labels of all of the change features (i.e., the samples in L ∪ U )
are assigned (τ > 1). An appropriate distance is needed for
assigning the labels. Since the SRE is more robust than the
Euclidean distance [9], it is employed at the nodes F and Wc,
while at the nodes Wu and Wcj (j = 1, . . . ,m), the Euclidean
distance is adopted for its sufficiency in measuring the distance
locally and its computational efficiency.

For label assignment, two SREs should be computed for each
sample v ∈ F

el =
∥
∥
∥v −Dlα̂l

∥
∥
∥
2

2
, l ∈ {u, c} (2)

where the column vector α̂ = [(α̂u)T , (α̂c)T ]T is the best
representing coefficient under the structured dictionary D =
[Du,Dc], and it can be obtained by solving

α̂ = argmin
α

‖v −Dα‖22, s.t. ‖α‖0 ≤ L (3)

where ‖ · ‖0 is the l0-norm, which counts the number of
nonzero entries in a vector. L controls the sparsity of α̂.
The aforementioned problem can be solved by the orthogonal

matching pursuit algorithm [10]. Given eu and ec, the label of
v will be W l̂, where

l̂ = argmin
l∈{u,c}

el. (4)

The reason that the category of v can be determined by (4) lies
in the following fact: if v belongs to the class Wu, then the
nonzero elements of α̂ will concentrate in α̂u, and the repre-
sentation error eu will be much smaller than ec and vice versa.
The aforementioned class-determination process is consistent
with the sparse-representation-based classification proposed
in [9].

As illustrated by Fig. 3, the sublabels of v can be de-
termined sequentially based on the label of its father node
Wu or Wc. In detail, if the label of v is Wu and î =
argmini∈{1,...,N} ‖v − du

i ‖2, v will be assigned to the class

Cu
î

. Otherwise, the subclass label Wcĵ (ĵ ∈ {1, 2, . . . ,m}) can
be assigned to v by a multiclass extension of (2)–(4). The ex-
tension is naive by replacing the dictionary D = [Du,Dc] with
Dc = [Dc1 , . . . ,Dcj , . . . ,Dcm ] and by replacing the set {u, c}
with {c1, . . . , cj , . . . , cm} in these equations. Furthermore, the
subclass label Ccĵ

î
(̂i ∈ {1, 2, . . . ,Mĵ}) is assigned to v, where

î = argmini∈{1,...,Mĵ} ‖v − d
cĵ
i ‖2.

3) Dictionary Updating: Dictionary updating is to approx-
imate the real distribution of change feature progressively by
achieving a new dictionary (i.e., a collection of cluster centers)
based on the updated labels. More specifically, for a class Cj

i
(j ∈ {c1, . . . , cm}, i ∈ {1, . . . ,Mj}) or Cu

i (i ∈ {1, . . . , N}),
the new cluster center is the mean vector of all of the la-
beled and unlabeled data that belong to it, and the new dic-
tionaries are Dcj = [d

cj
1 , . . . ,d

cj
i , . . . ,d

cj
Mj

] (j = 1, . . . ,m),
Dc = [Dc1 , . . . ,Dcj , . . . ,Dcm ], Du = [du

1 , . . . ,d
u
i , . . . ,d

u
N ],

and D = [Du,Dc].

III. EXPERIMENTAL RESULTS

A. Data Set Description

For space limitation, two data sets (DS1 and DS2) are used
to assess the effectiveness of the proposed change detection
method. The data sets and the corresponding reference change
maps are shown in Fig. 4(a)–(c). Each data set is composed
of two coregistered and pansharpened VHR images taken by
QuickBird 2 satellite over Beijing in 2002 and 2003. The
resolution of these pansharpened images is 0.7 m/pixel. The
image sizes of DS1 and DS2 are 1024 × 1024 and 600 ×
519 pixels, respectively.

B. Experimental Settings

To investigate SHC in detail, it is compared with the follow-
ing five related methods.

1) EM-based method (EM) [11]. For the EM-based method,
the magnitude ‖f1 − f2‖2 is utilized and assumed to obey
a GMD. The optimal threshold for generating the binary
change map is computed by MAP.

2) K-means-based method (K-means). K-means clusters the
stacked change feature v into two classes. To obtain better
performances, we make two modifications: a) The two
cluster centers are initialized on the pseudotraining set
that is used in SHC, and b) the labels of the initial labeled
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Fig. 4. Data sets and change maps. From up to down: DS1 and DS2. From left to right: images in 2002, images in 2003, ground truth (GT), EM-based method,
K-means-based method, parcel-based method, IR-MAD method, SVM-based method, SHC with m = 1, SHC with m = 2, and SHC with m = 3. In (c)–(i), the
changed class is in red. In (j), the changed class is in red and cyan, while in (k), the changed class is in red, green, and blue. Different colors mean different change
types (best viewed in color). (a) 2002. (b) 2003. (c) GT. (d) EM. (e) K-means. (f) Parcel. (g) IR-MAD. (h) SVM. (i) SHC-1. (j) SHC-2. (k) SHC-3.

samples keep fixed in the label updating step. Note that
updating these labels will make K-means fail due to the
complex change feature distribution.

3) Parcel-based method (parcel) [5]. In this method, the pa-
rameters in hierarchical segmentation are tuned to obtain
the best performances.

4) Regularized iteratively reweighted multivariate alteration
detection method (IR-MAD) [12].

5) Support vector machine based method (SVM) [1]. SVM
directly classifies the stacked features v’s. The same
pseudotraining samples as SHC are used to train SVM.
RBF kernel SVM is adopted, and its parameters are
selected by fivefold cross-validation.

For a fair comparison, K-means, SVM, and SHC use the
same pseudotraining sets. In the parcel-based method and IR-
MAD method, we use the multiscale CS-LBP feature (f1 and
f2) instead of spectral feature as we found that CS-LBP can
get better performances. The thresholds for getting the change
maps in these two methods are manually set to obtain the lowest
total error rates (TERs). Comparison is made qualitatively by
checking the final change maps and quantitatively by comput-
ing false alarm rate (FAR), missed alarm rate (MAR), TER, and
kappa coefficient.

For our method, m determines the structure of clustering. As
the change types contained in DS1 and DS2 are not very rich,
we change m from 1 to 3 and denote the approach as SHC-m
(m ∈ {1, 2, 3}).

The influence of θ, L, and N on FAR, MAR, and TER
is shown in Fig. 5, where the curves are presented for DS1
when m = 2, and similar results could be obtained on the other
data set when m ≥ 1. First, the increase of θ will increase the
lower threshold and decrease the higher threshold in (1), which
enlarges the number of pseudotraining samples and mislabeled
samples simultaneously. Therefore, FAR increases slightly with
θ [Fig. 5(a)]. Second, the increased L will result in the increased
FAR and the reduced MAR [Fig. 5(b)]. The underlying reason
is the dropped discriminative ability of SRE. In consequence, L
could be set to be a small value for different data sets, e.g., five.
Finally, the dictionary is required to be overcompleted; a too
small dictionary size will produce high FAR and MAR. When
the dictionary size is large enough, its effects on TER can be
ignored [Fig. 5(c)]. We recommend to set the dictionary size
according to the image size and the change richness, and the
balance between the performance and the computational com-
plexity. Considering these, we use the settings θ = 0.15, L = 5,
and N = M = 1200 for both data sets.

Besides the aforementioned parameters, some other param-
eters also need to be set properly. The number of scales S is
set to be three. A higher image resolution enables the use of

Fig. 5. Influence of θ, L, and N on FAR, MAR, and TER by SHC-2 on DS1.

larger scales. The window size parameters hs and ws determine
the spatial range of the extracted feature. A larger window
would strengthen the robustness of change features to the false
changes caused by registration error and viewpoint change
but may lose some detail information. For DS1, the windows
with the sizes hs = ws = 32, 48, 64 are used, since it contains
mainly large-scale changes. Considering that there are some
subtle changes, hs = ws = 24, 32, 40 are adopted in DS2. The
dimension of the multiscale local features (f1 and f2) after
PCA is 200, which retains about 95% of the total energy and
generates a 400-dimensional change feature (v).

C. Results and Analysis

The results of different approaches are shown in Fig. 4. The
EM-based method [Fig. 4(d)] performs poor on both DS1 and
DS2 because of the unreasonable assumption of the bimodal
GMD and the pure usage of change vector magnitude. K-means
[Fig. 4(e)] has many missed alarms and false alarms. This poor
performance mainly lies in the multimodal distribution of the
change feature and the limitation of utilizing K-means of only
two clusters and the Euclidean distance to deal with the multi-
modal distribution problem. The parcel-based method is prone
to detecting some fragment-like false changed regions [e.g., the
areas marked by the green rectangles in Fig. 4(f)]. IR-MAD
is robust to the illumination changes for the low-to-medium
resolution images, but it is less effective for VHR images.
It has missed some real changed areas on DS1 and regarded
some false changes caused by the illumination variation as real
changes on DS2 [e.g., the regions marked with the blue rectan-
gles in Fig. 4(g)]. The results of SVM are comparable to that of
SHC on DS1, since the kernel technique makes the multimodal
change feature more separable in the high-dimensional space.
However, due to the less representative training samples, some
changed regions [e.g., some small regions in the yellow squares
of Fig. 4(h)] are missed by SVM. By taking the advantages of
SHC, they are correctly detected by the proposed approach.

The performances of the different approaches are listed in
Table I. From the table, we can conclude that SHC is superior
to other methods in terms of TER and kappa coefficient. The
advantages of the proposed change detection approach are
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TABLE I
PERFORMANCE COMPARISON

mainly taken from the multiscale change feature representation,
hierarchical dictionary, and SRE. The stacked multiscale CS-
LBP feature improves the discriminative ability and the robust-
ness of the change feature. As the hierarchical dictionary is
learned from all features, it captures the multimodal distribution
effectively. This dictionary makes both FAR and MAR low.
Furthermore, SRE is robust to false changes, which further
reduces FAR.

When comparing SHC-1, SHC-2, and SHC-3, the TER of
SHC-2 (SHC-3) is lower than that of SHC-1 (SHC-2) on all data
sets. The improvements could be attributed to the exploration
of the distribution structure of the changed class. Besides the
advantages in improving the performances, the achieved change
structure partition is helpful in understanding the change types
(e.g., from the inhomogeneous structure to the homogeneous
structure). In contrast, EM, K-means, parcel, IR-MAD, and
SVM can only provide the information on where the changes
happened. As shown in the upmost figure of Fig. 4(j), the cyan
regions denote the changes from the inhomogeneous structures
(complex buildings and complex wasteland) to the homoge-
neous structures (grass and very simple buildings), and the red
regions mean the changes from the homogeneous structures
(wasteland) to the inhomogeneous structures (buildings) and
other weak changes. Similarly, the change types can be inferred
from other figures in the rightmost two columns of Fig. 4. The
capability of recognizing change types is mainly attributed to
the discriminant information contained in the CS-LBP features,
i.e., similar local structures (e.g., buildings with different di-

mensions) are encoded by close features, and similar changes
(e.g., changes from land to buildings with different dimensions)
are grouped together by SHC.

IV. CONCLUSION

In this letter, a novel SHC approach has been presented for
VHR image change detection. The promising performances on
real data sets validate the effectiveness of the tree-structured
dictionary learning and the sparse reconstruction error based
distance, which are helpful in dealing with the complex dis-
tribution of the change feature. Future work will focus on
combining the object level strategy with the proposed approach
to further improve the performance.
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