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Abstract—This paper proposes an effective multi-view learning 

approach to foreground detection for traffic surveillance 

applications. This approach involves three main steps. First, a 

reference background image is generated via temporal median 

filtering, and multiple heterogeneous features (including 

brightness variation, chromaticity variation, and texture variation, 

each of which represents a unique view) are extracted from the 

video sequence. Then, a multi-view learning strategy is devised to 

online estimate the conditional probability densities for both 

foreground and background. The probability densities of three 

features are approximately conditionally independent and are 

estimated with kernel density estimation. Pixel soft-labeling is 

conducted by using Bayes rule and the pixel-wise foreground 

posteriors are computed. Finally, a Markov random field is 

constructed to incorporate the spatial-temporal context into the 

foreground/background decision model. The belief propagation 

algorithm is used to label each pixel of the current frame. 

Experimental results verify that the proposed approach is effective 

to detect foreground objects from challenging traffic environments, 

and outperforms some state-of-the-art methods. 

 
Index Terms—Foreground detection, heterogeneous features, 

multi-view learning, conditional independence, Markov random 

field. 

 

I. INTRODUCTION 

OWADAYS, intelligent visual surveillance that extracts 

various information of urban traffic is attracting more and 
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more attention in the fields of computer vision and intelligent 

transportation systems [1], [2]. Foreground detection (also 

referred to as background subtraction in some works) is an 

important early task in these fields. On the basis of foreground 

detection, many other applications like object tracking, 

recognition, and anomaly detection, can be implemented [3]. 

The basic principle of foreground detection is to compare the 

current frame of a video scene with a background model and 

detect zones that are significantly different. Although it seems 

simple, foreground detection in real-world surveillance is often 

confronted with three challenges [4]–[6]: 

Moving cast shadows, caused due to the occlusion of sunlight 

by foreground objects, often exist in traffic scenes. Shadows can 

be hard under sunny condition or soft under cloudy condition. 

Anyway, they can easily be detected as foreground and interfere 

with the size and shape information of the segmented objects. 

Illumination changes are common in traffic scenes. As the 

sun moves across the sky, the illumination will change slowly. 

Sometimes it may change rapidly, e.g., when the sun gets into or 

gets out of a cloud. 

Noise is inevitably introduced during the image capture, 

compression, and transmission process. If the signal-to-noise 

ratio is too low, it would be difficult to distinguish foreground 

objects from the background scene. 

These challenges are exemplified in Fig. 1. In traffic scenes, 

numerous foreground objects (including vehicles and 

pedestrians) appear, move, and finally disappear under certain 

natural and social rules. Their appearance features (including 

brightness, chromaticity, and texture) differ significantly from 

those of the background. The probability distributions of these 

features have different forms and are time-varying. Besides, 

foreground objects are usually compact in the image space and 

move smoothly over time. Hence, spatial-temporal context 

within the video sequence can be exploited. In light of these, we 

propose an effective multi-view learning approach to 

foreground detection for traffic surveillance applications. We 

extract multiple heterogeneous image features (i.e., brightness 

variation, chromaticity variation, and texture variation) from the 

video sequence, and devise a multi-view learning strategy to 

online estimate the conditional probability densities for both 

foreground and background. The probability densities of these 

features are approximately conditionally independent and are 

estimated through the use of kernel density estimation. Then, 

spatial-temporal context is incorporated into the decision model 

under the Markov random field (MRF) framework, and optimal 
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foreground segmentation is achieved with belief propagation. 

With the proposed method, the aforementioned challenges for 

foreground detection can be alleviated. 

The remainder of this paper is arranged as follows. Section II 

surveys the related works. Section III describes feature 

extraction, Section IV explains multi-view learning to online 

estimate the conditional densities for both foreground and 

background, and Section V introduces the incorporation of 

spatial-temporal context under the MRF framework. The 

experimental results are reported in Section VI. Finally, the 

conclusion is drawn in Section VII. 

II. RELATED WORKS 

The domain of foreground detection is humongous, and many 

review papers have been published [5]–[10]. Some researchers 

[11], [12] classify foreground detection techniques into 

pixel-level models, region-level models, and frame-level 

models. But in our opinion, there are hybrid models that do not 

strictly fit into only one category. In the following subsections, 

we explore the related works briefly. 

A. Sparse Models 

Sparse techniques for background subtraction use different 

variants of principal component analysis (PCA) and matrix 

decomposition to model the background as a low-rank 

representation and the foreground as sparse outliers. Oliver et al. 

[13] proposed the eigen-background model, where the PCA was 

performed on a training sequence. A new frame was projected 

onto the subspace spanned by the principal components, and the 

residues indicated the presence of foreground objects. Tsai et al. 

[14] proposed a similar approach using independent component 

analysis (ICA). An ICA model was built in the training stage to 

measure the statistical independency, and the trained de-mixing 

vector was used to separate the foreground in a new image with 

respect to the reference background image. Zhao et al. [12] 

proposed a foreground detection approach based on sparse 

representation and dictionary learning. To build the background 

model with foreground-present training samples, they designed 

a robust dictionary learning approach, which simultaneously 

detected foreground pixels and built a correct background 

dictionary. Zhou et al. [15] addressed the foreground detection 

challenges with a unified framework of detecting contiguous 

outliers in the low-rank representation, which integrated 

foreground detection and background learning into a single 

optimization process and solved them in a batch manner. 

B. Parametric Models 

Parametric models are perhaps the most extensively studied 

models in the foreground detection domain. Gaussian 

distribution is a common choice. Pfinder [16] used a single 

Gaussian distribution to model the background at each pixel. 

However, this method cannot handle multimodal background. A 

substantial improvement was achieved by the Gaussian mixture 

model (GMM) [17], [18]. First presented in [17], GMM models 

the observed history of each pixel using a weighted mixture of 

Gaussians. This model is able to cope with the multimodal 

nature of many practical situations and lead to good results 

when repetitive background motions, such as swaying trees and 

water ripples, are encountered. Since its introduction, GMM has 

enjoyed tremendous popularity in the surveillance domain 

[19]–[27]. Lee [19] proposed an effective scheme to improve 

the convergence rate without compromising model stability in 

GMM, which was achieved by replacing the global, static 

retention factor with an adaptive learning rate calculated for 

every Gaussian at every frame. Martel-Brisson et al. [20] built a 

Gaussian mixture shadow model to learn and remove moving 

cast shadows. This model was integrated with a GMM for 

background modeling and foreground detection. Jodoin et al. 

[21] proposed a spatial variation to the traditional temporal 

modeling framework. This variation allows statistical motion 

detection with models trained on one background frame. Haque 

et al. [25] proposed perception-inspired background subtraction 

(PBS), which avoids overreliance on statistical observations by 

making key modeling decisions based on the characteristics of 

human visual perception. Haines et al. [26] proposed a 

background subtraction method based on Dirichlet process 

Gaussian mixture models (DP-GMM), which were used to 

estimate per-pixel background distributions. This method was 

said to avoid over-/under-fitting by allowing per-pixel mode 

counts to be automatically inferred. 

Other parametric models have also been used. Cheng et al. 

[28] proposed to use temporal differencing pixels of the 

Laplacian distribution model, in order to check each block for 

the presence of either moving object or background. Zhang et al. 

[29] employed the normalized ratio edge difference (NRED) 

   
(a)                                                    (b) 

   
(c) 

 
(d) 

Fig. 1.  Examples of foreground detection challenges. (a) Simple challenge 

with short shadows and slightly swaying trees. (b) Long shadows. (c) Rapid 

illumination change. (d) Low signal-to-noise ratio due to noise. The video (c) 

is from AVSS 2007 [47], and other videos are from changedetection.net [5]. 
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between the current frame and the background image for 

moving cast shadow detection. The distribution of NRED in 

shaded background area was approximated to be a chi-square 

distribution. 

C. Nonparametric and Data-Driven Models 

Some researchers employ nonparametric models due to their 

flexibility in probability density estimation. In [30], the 

nonparametric kernel density estimation method was proposed 

to construct a statistical representation of the scene background 

and detect moving objects in the scene. Sheikh et al. [31] 

proposed a nonparametric density estimation method over a 

joint domain-range representation of image pixels to model 

multimodal spatial uncertainties and complex dependencies 

between the domain (location) and range (color). They further 

modeled the foreground with the use of temporal persistence 

and built a MAP-MRF decision framework to augment the 

detection of objects. This method was susceptible to moving 

cast shadows. Rivera et al. [32] proposed a statistical 

edge-segment-based method for background modeling in 

non-ideal circumstances. This method learned the structure of 

the scene using the edges’ behaviors, which were approximated 

with kernel-density distributions. 

As a substitute to probabilistic models, data-driven models 

that utilize numerical tools like histogram to characterize the 

samples have been extensively studied for foreground detection. 

Horprasert et al. [33] proposed a computational color model 

that separates the brightness from the chromaticity component. 

This model was effective to distinguish shading background 

from the ordinary background or moving foreground objects. 

ViBe [34] stores, for each pixel, a set of values taken in the past 

at the same location or in the neighborhood, and then compares 

this set to the current pixel value to determine whether that pixel 

belongs to the background. Heikkilä et al. [35] proposed a 

texture-based method for modeling the background and 

detecting moving objects. Each pixel was modeled as a group of 

adaptive local binary pattern histograms that were calculated 

over a circular region around the pixel. Liao et al. [36] extended 

the work of [35] by proposing a scale invariant local ternary 

pattern operator and a pattern kernel density estimation 

technique to effectively model the probability distribution of 

local patterns in the pixel process. Li et al. [37] proposed a 

Bayesian framework that incorporated spectral, spatial, and 

temporal features to characterize the background appearance. 

Under this framework, the background was represented by the 

most significant and frequent features, i.e., the principal 

features, at each pixel. Lam et al. [38] proposed a texture-based 

method for extracting vehicles from the stationary background 

that was free from the effect of moving cast shadows. The 

segmentation method utilized the differences in textural 

property between the road, vehicle cast shadow, and the vehicle 

itself. The luminance and chrominance properties were further 

combined to construct the foreground mask. The selection of 

thresholds was done with a data-driven iterative algorithm. 

D. Machine Learning Models 

Some researchers employ machine learning models, such as 

support vector machine (SVM), neural network, and fuzzy logic, 

to discriminate between foreground and background. Han et al. 

[39] proposed a multiple feature integration algorithm for 

background modeling and subtraction, where the background 

was modeled via kernel density approximation and background 

and foreground were classified by a supervised SVM. 

Maddalena et al. [40] proposed a self-organizing approach to 

background subtraction, in which the background model was 

organized as an artificial neural network of a 2-D flat grid 

structure, allowing preservation of topological neighborhood 

relations among the background neurons. Chacon-Murguia et al. 

[41] proposed an adaptive neural-fuzzy method to improve the 

self-organizing map (SOM) model [40]. Especially, this method 

included a fuzzy inference module to automatically adjust the 

threshold parameters involved in the SOM model, making the 

system independent of the scenario. 

Markov random fields (MRF) are widely used to formulate 

spatial dependencies within each segmentation field and 

temporal dependencies of consecutive segmentation fields in 

the video sequence. MRF and other models are in general 

unified to better discriminate foreground from the background 

[15], [26], [31], [42]–[44]. The idea of using MRF to impose 

spatial coherence constraint was included in [15], [26], [31], 

and [42]. Huang et al. [43] proposed a region-level 

motion-based background subtraction method using MRF. This 

method consisted of motion-based region segmentation and 

MRF-based region classification. Spatial and temporal 

coherence was maintained as prior energy in the MRF model. 

Wang et al. [44] proposed a dynamic conditional random field 

(DCRF) model for foreground object and moving shadow 

segmentation in indoor scenes. Both intensity and gradient 

features were integrated, and models of background and shadow 

were updated adaptively. Moreover, spatial-temporal context 

was incorporated into the DCRF model and the segmentation 

field was estimated by approximate inference. 

E. Model Evaluation and Our Contributions 

By analyzing the state-of-the-art, we find that a good 

approach to foreground detection should have three 

characteristics. First, it should integrate multiple heterogeneous 

features, especially those complementary and uncorrelated ones. 

Many methods use only pixel intensities (grayscale or color) as 

features, since they are directly available from images and 

reasonably discriminative. However, pixel intensities are 

sensitive to illumination changes and shadows. In fact, some 

illumination invariant features such as texture can be used to 

alleviate the disadvantages of pixel intensities. Second, a good 

foreground detection method should build, from the observed 

history, not only the background model, but also the foreground 

model. If only the background model was built and foreground 

pixels were identified purely as outliers, as done in many 

existing works, then background colored object-parts cannot be 

identified. Third, a good foreground detection method should 

exploit spatial-temporal context within the video sequence, 
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which helps to improve the accuracy of foreground/background 

decision and reduce the reliance on postprocessing techniques. 

For intuitive comparison, we summarize the major references in 

Table I, in terms of how the features, models, and context are 

formulated. 

In summary, four contributions are made in this paper: 

1) Multiple heterogeneous features regarding brightness, 

chromaticity, and texture are extracted from the video sequence. 

These features are robust to shadows and illumination changes, 

and are approximately conditionally independent given the class 

label. An iterative search and multiscale fusion strategy is 

proposed to extract features reliably. 

2) A multi-view learning method is devised to online estimate 

the conditional probability densities for both foreground and 

background, and pixel soft-labeling is conducted to estimate the 

pixel-wise foreground posterior. 

3) Spatial-temporal contextual constrains are incorporated 

into the foreground/background decision model under the MRF 

framework, and optimal foreground segmentation is achieved 

via belief propagation. 

4) A novel, accurate, and robust algorithm is proposed for 

detecting foreground objects from complex, challenging traffic 

environments. 

III. FEATURE EXTRACTION 

In this section, we describe the feature extraction module, 

which is an important premise for foreground detection. The 

features that are insensitive to illumination changes and 

shadows should be used. Multiple heterogeneous features are 

unified to better discriminate foreground from the background. 

A. Generation of Reference Background Image 

First of all, we need to generate and maintain an up-to-date 

reference background image, in order to represent the inherent 

structure of the monitored scene. We use temporal median 

filtering (TMF), which takes the median value at each pixel over 

a predefined time window as the reference background of that 

pixel. In our implementation, the reference background image is 

updated once every 50 frames, by conducting TMF over the 

recent 500 frames. Note that if traffic volume becomes available 

from some top-down feedback, the time window can be adjusted 

accordingly. TMF has two advantages: 1) it can automatically 

update the reference background and adapt to gradual 

illumination changes; 2) it can capture the scene’s inherent 

structure even when some background objects, such as trees, are 

not absolutely static. Fig. 2 shows the generated reference 

background images for the four scenes in Fig. 1. 

B. Extraction of Heterogeneous Features 

After generation of the reference background image, we 

proceed to extract three heterogeneous features from the images, 

i.e., brightness variation, chromaticity variation, and texture 

variation. These features denote the brightness, chromaticity, 

and texture differences between the current image and the 

reference background image. 

TABLE I 

INTUITIVE COMPARISON BETWEEN MAJOR REFERENCES AND THE PROPOSED METHOD 

Methods Features Models Context 

Oliver et al. [13] Intensity Background No 

Tsai et al. [14] Intensity Background No 

Zhao et al. [12] Intensity Background No 

Zhou et al. [15] Intensity Background Spatial 

Pfinder [16] Intensity Background No 

Stauffer et al. [17], [18] Intensity Background No 

Martel-Brisson et al. [20] Intensity Background, shadow No 

Jodoin et al. [21] Intensity Background No 

Haque et al. [25] Intensity Background No 

Haines et al. [26] Intensity 

Background; 

foreground intensity is assumed 

to be uniform distribution 

Spatial 

Zhang et al. [29] Intensity, ratio edge Background, shadow No 

Elgammal et al. [30] Intensity Background No 

Sheikh et al. [31] Intensity Background, foreground Spatial 

Rivera et al. [32] Edge-segment Background No 

Horprasert et al. [33] Brightness, chromaticity Background No 

ViBe [34] Intensity Background No 

Heikkilä et al. [35] Texture Background No 

Liao et al. [36] Texture Background No 

Li et al. [37] Color, gradient, color co-occurrence Background No 

Lam et al. [38] Luminance, chrominance, texture Background No 

Han et al. [39] Color, gradient, Harr-like features Background No 

Maddalena et al. [40] Color (HSV) Background No 

Chacon-Murguia et al. [41] Color (HSV) Background No 

Huang et al. [43] Color, optical flow Background Spatial-temporal 

Wang et al. [44] Intensity, gradient 

Background, shadow; 

foreground intensity is assumed 

to be uniform distribution 

Spatial-temporal 

Proposed method Brightness, chromaticity, texture Background, foreground Spatial-temporal 
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Extraction of Brightness Variation and Chromaticity Variation 

The extraction of brightness variation and chromaticity 

variation is inspired by [33], in which static background was 

assumed. Considering that dynamic background may exist in 

traffic scenes, we make some extensions to the computational 

color model proposed in [33]. As shown in Fig. 3, 
iI  represents 

the observed color of a given ith pixel in the current image I , 

and 
jE  represents the expected color of the jth pixel in the 

reference background image. We assume that in challenging 

environments, nonstationary background points (such as the jth 

point) will move to nearby positions (such as the ith point) in the 

image space and keep its appearance features. This assumption 

is reasonable in some degree. The correspondence between the 

ith pixel in the current image and the jth pixel in the reference 

background image will be described later in this section. 

For a given pixel i I , we want to compute the brightness 

and chromaticity variations of 
iI  from 

jE . We first compute 

i , which is equal to the ratio between the pixel’s strength of 

brightness and the expected value. Let [ ( ), ( ), ( )]i R G BI I i I i I i  

and [ ( ), ( ), ( )]j R G BE E j E j E j represent the RGB color values. 

Referring to [33], 
i  can be computed as 

     
2 2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

R R G G B B
i

R G B

I i E j I i E j I i E j

E j E j E j


 


 

.   (1) 

Brightness variation 
iBV  is defined as the signed distance of 

i jE  from 
jE , that is, 

 1i i jBV OE  ,       (2) 

where 
jOE  denotes the straight-line distance between the 

origin and the point 
jE . According to (2), 

iBV  is 0 if the 

brightness of a given pixel in the current image is the same as in 

the reference background image. 
iBV  is negative if it is darker 

and positive if it is brighter than the expected brightness. 

As defined by [33], chromaticity variation 
iCV  is the 

orthogonal distance between the observed color 
iI  and the 

expected chromaticity line 
jOE , that is, 

     
2 2 2

( ) ( ) ( ) ( ) ( ) ( )i R i R G i G B i BCV I i E j I i E j I i E j       

(3) 

It is clear that 
iBV  and 

iCV  are both distances in the RGB 

color space and have the same measure unit. Hence the values of 

these two features can be quantified directly to integers. This is 

significant for efficient kernel density estimation. In this work, 

we choose the computational color model in the RGB space not 

only because the brightness variation and chromaticity variation 

have strict geometrical definitions, but also because they are 

conditional independent (see Section III.C). 

 

Extraction of Texture Variation 

In this work, we use ratio edge to characterize the texture 

variation. For a given ith pixel in the current image, suppose its 

neighboring region ( )N i  is an 8-pixel neighborhood ( 3 3 grid 

minus the center pixel). We can compute the ith pixel’s texture 

variation 
iTV  using the current image and the reference 

background image, that is, 
22 2

( )
( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

G GR R B B
i

m N i R R G G B B
n N j

I m E nI m E n I m E n
TV

I i E j I i E j I i E j


      
          

      


, 

where [ ( ), ( ), ( )]R G BI i I i I i  and [ ( ), ( ), ( )]R G BE j E j E j  have the 

Ej

Ii

R

G

B

O

CVi

αiEj

 
Fig. 3.  Extended computational color model in the RGB color space. 

 

          
Fig. 2.  Examples of reference background images generated by temporal median filtering. 

 

    
(a)                                                  (b) 

Fig. 4.  Result of texture variation computation without proper processing. (a) 

is the current image. The first image in Fig. 2 is the reference background 

image. The computed texture variation is multiplied by 50 and shown in (b). It 

is clear that swaying trees cause large texture variations at many background 

pixels. 
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same meanings as in (1). 

The texture variation feature is robust to illumination changes 

and moving cast shadows. However, it is sensitive to dynamic 

background. As shown in Fig. 4, without proper processing, 

swaying trees can cause large texture variation at the 

background pixels. In our opinion, if the ith pixel in the current 

image and the jth pixel in the reference background image are 

precisely matched, this trouble can be mitigated in some degree. 

Hence, we search for the pixel point j  in the reference 

background image that minimize 
iTV  around the pixel point i . 

Exhaustive search is extremely time consuming and should 

be avoided for real-time applications. Here we adopt an iterative 

search strategy. We define two pyramid search templates—a 

large one and a small one, as shown in Fig. 5. We first conduct 

coarse search using the large pyramid template. Before the 

iteration, the pixel point i  is initialized as the center point of the 

search template. At most nine positions need be explored in 

each iteration. The optimal position (which minimizes 
iTV  

among the nine positions) is set as the center point for the next 

iteration. This iterative process repeats until the optimal 

position happens to be the center point of the search template. 

We then conduct fine search using the small pyramid template. 

Five positions are explored and the optimal position is finally 

determined based on the 
iTV  minimization standard. This final 

optimal position is considered as the matched pixel j  in the 

reference background image for the pixel i  in the current image. 

Based on this association, brightness variation and chromaticity 

variation are computed with formulas (1)–(3). 

However, it is possible in practice that iterative search gets 

stuck in local minima. When background pixels have large 

ranges of motion, this becomes more probable. Although 

increasing the size of search template is able to alleviate this 

problem, it suffers from a high computational cost that we 

would like to avoid. Considering that complementary 

information may exist in multiscale images, we propose a 

multiscale fusion strategy. The original images (both current 

image and reference background image) are scaled to 1/2 and 

1/4 times. Not only on the original images, we also conduct 

iterative search on the scaled-down images and extract features 

therein. Then, the image features of different scales are fused on 

the original space simply using a median operator. An example 

of texture variation computation with the proposed iterative 

search and multiscale fusion strategy is illustrated in Fig. 6. In 

contrast to Fig. 4, it can be seen that the disturbance of dynamic 

background has been mitigated. The brightness variation and 

chromaticity variation extracted from the same images are 

shown in Fig. 7. 

C. Conditional Independence of Features 

We now explore the conditional independence of features. 

According to the definitions, brightness variation and 

chromaticity variation are orthogonal in the computational color 

model. Given the class label C  that takes on “FG” (foreground) 

or “BG” (background), the distribution of chromaticity 

variation is conditionally independent of brightness variation, 

and vice versa. In addition, texture variation reflects the spatial 

    
(a)                                                  (b) 

Fig. 7.  Brightness variation and chromaticity variation extracted from the 

same images as in Fig. 6. The brightness variation is added by 128 and shown 

in (a), and the chromaticity variation is multiplied by 2 and shown in (b). 

 

Median

 
Fig. 6.  Example of texture variation computation with the proposed iterative search and multiscale fusion strategy. 

 

    
(a)                                                      (b) 

Fig. 5.  Pyramid search templates in which black dots denote the search 

positions in an iteration. (a) Large pyramid template. (b) Small pyramid 

template. 
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layout of neighboring pixels and does not rely on the features of 

a specific pixel. Hence the distribution of texture variation is 

conditionally independent of brightness variation and 

chromaticity variation given the class label C . These 

independence relations can be represented using a naive Bayes 

model of Fig. 8. Based on this model, the conditional density 

can be factorized as 

( , , | ) ( | ) ( | ) ( | )p BV CV TV C p BV C p CV C p TV C . 

We record the feature values of the video “highway”, whose 

ground truth labels are publicly available at changedetection.net. 

Fig. 9 illustrates the correlation between every pair of features. 

As can be seen, the correlation coefficients are close to 0. This 

confirms that given the class label, the three features are 

approximately conditional independent. 

IV. DENSITY ESTIMATION VIA MULTI-VIEW LEARNING 

In this section, we describe the conditional density estimation 

of the aforementioned features. In most existing works, only the 

background model was built and foreground pixels were 

identified purely as outliers, or the foreground model was 

simply assumed to be a uniform distribution. In our opinion, an 

elaborate foreground model is essential to distinguishing 

foreground from the background. Motivated by the conditional 

independence of features, we propose a multi-view learning 

strategy to learn the foreground model from online data. 

A. Conditional Density Estimation 

According to the features’ definitions, background pixels 

(including shadows) should have low brightness variation, low 

chromaticity variation, and low texture variation, whilst 

foreground pixels should have widespread brightness variation, 

high chromaticity variation, and high texture variation. This 

claim is reasonable and widely recognized in the visual 

surveillance community [29], [33], [37], [38], and can also be 

verified by an example of Fig. 10, in which the feature values 

corresponding to background and foreground are plotted as 

histogram curves that depict the frequency data. 

The conditional independence of features is a key to 

conditional density estimation. Each feature can be regarded as 

a unique view, and a multi-view learning strategy is elaborately 

devised. Due to conditional independence of features, we have 

( | FG) ( | FG,  or  )CV TVp BV p BV CV TV    ,   (4) 

where 
CV  and 

TV  are thresholds of CV and TV , respectively. 

In other words, given the class label FGC  , the distribution of 

brightness variation does not depend on the specific values of 

chromaticity variation and texture variation. 

Furthermore, because background pixels (including shadows) 

have low chromaticity variation and low texture variation, if 

CV  and 
TV  are large enough, the pixels that satisfy 

CVCV   

or 
TVTV   can be confidently believed to be foreground 

pixels. This rule can be written as 

If 
CVCV   or 

TVTV  , Then FGC  .    (5) 

Combining (4) and (5), we immediately get 

( | FG) ( |  or  )CV TVp BV p BV CV TV    .    (6) 

The right hand side of (6) indicates that we can use those pixels 

that satisfy 
CVCV   or 

TVTV   to estimate ( | FG)p BV . 

Similarly, we can estimate the conditional densities of CV  

and TV  given the class label FGC  , 

( | FG) ( |  or  )BV TVp CV p CV BV TV    , 

( | FG) ( |  or  )BV CVp TV p TV BV CV    , 

where 
BV  is a threshold of BV . 

Let us underline that in all of our implementations, we fix 

max(40,40 median )BV k
k I

BV


  , 20CV  , and 3.6TV  . 

Here median k
k I

BV


 denotes the median value of BV  in the 

whole image. It is used to compensate for global brightness 

variation in all pixels, which may arise from global illumination 

changes or camera automatic adjustments. The three parameters 

are critical to our choosing confident foreground pixels and 

estimating the conditional probability densities for both 

foreground and background. See the next paragraphs. 

From each input frame, we apply the rule (7) to pick out the 

“confident” foreground pixels, which are then dilated using a 

square structuring element whose width is 5 pixels to propagate 

the confidence to spatially neighboring pixels and generate a 

plausible foreground mask. 

If 
BVBV   or 

CVCV   or 
TVTV  , Then FGC  .  (7) 

All the pixels outside the foreground mask constitute a 

plausible background mask, and are used to estimate the 

conditional density for background. The computation process is 

shown in Fig. 11, where it can be seen that most of the 

non-background pixels are excluded from the plausible 

background mask. 

As the system runs in practice, large amounts of data emerge 

and are accumulated for density estimation. Fig. 10 illustrates 

the histograms of the accumulated feature values from the video 

       
(a)                                               (b) 

Fig. 9.  Correlations between features. (a) The correlation coefficients between 

feature values that correspond to the foreground class. (b) The correlation 

coefficients between feature values that correspond to the background class. 

 

Class

BV CV TV

 
Fig. 8.  The naive Bayes model. 

 



0018-9545 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2015.2509465, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 

 

8 

“highway”. The top row of Fig. 10 shows feature values that are 

labeled by ground truth, whereas the bottom row shows feature 

values that are labeled by multi-view learning. Comparing the 

histogram pairs in three columns, it can be seen that the 

proposed multi-view learning idea is very effective and reliable 

to generate the frequency data. 

From Fig. 10, we also find that the distributions of feature 

values are complex and cannot be approximated using 

parametric models. Hence we would like to avoid making 

assumptions about the specific functional forms of probability 

distributions. Instead, we use nonparametric kernel density 

estimation to model their distributions. Brightness variation and 

chromaticity variation are both distances in RGB color space, so 

that their values can be quantified directly to integers. Texture 

variation can also be quantified, using 0.1 as the interval. As a 

result, the kernel density estimators require little memory, and 

the computational cost won’t grow with the size of the data set. 

In order to obtain smooth density models, we use the Gaussian 

kernel function. The kernel standard deviations   for three 

features are fixed to 2.0BV  , 2.0CV  , and 0.2TV  . 

Note that because the data set is rather large, the standard 

deviations can be small. 

B. Pixel Soft-Labeling with Bayes Rule 

After conditional density estimation, we perform pixel 

soft-labeling with Bayes rule. In other words, we compute the 

posteriors of background and foreground conditioned on the 

extracted features. This computation is based on the background 

likelihood, the foreground likelihood, and the priors at each 

     
(a)                                                                          (b)                                                                           (c) 

     
(d)                                                                          (e)                                                                           (f) 

Fig. 10.  Frequency histograms of feature values from the video “highway”. (a)(d) Brightness variation. (b)(e) Chromaticity variation. (c)(f) Texture variation. The 

top row shows feature values that are labeled by ground truth, whilst the bottom row shows feature values that are labeled by multi-view learning. In the pictures, 

blue curves correspond to the background class, and red curves correspond to the foreground class. 

 

Applying 

(7)

Dilating

Current image Confident foreground

Plausible foreground maskPlausible background mask  
Fig. 11.  Computation process of the plausible background mask. 

 

    
(a)                                                  (b) 

    
(c)                                                  (d) 

Fig. 12.  An example of pixel labeling. (a) Prior probabilities of pixels 

belonging to foreground. (b) Posterior probabilities of pixels belonging to 

foreground. The higher the intensity, the more probably the pixel belongs to 

foreground. (c) Inference result by using belief propagation. (d) Ground truth. 
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pixel. Given an extracted feature  , ,x bv cv tv  at pixel i  in 

the current image, the posteriors (say, soft-labels) of foreground 

and background are computed via 

FG,BG

( | FG) (FG)
(FG | ) ,

( | ) ( )

(BG | ) 1 (FG | ),

i
i

iC

i i

p x P
P x

p x C P C

P x P x








 

     (8) 

where ( | )p x C  denotes the likelihood and can be computed 

based on the naive Bayes model in Fig. 8, 

( | ) ( | ) ( | ) ( | )p x C p bv C p cv C p tv C . 

( )iP C  denotes the prior probability of foreground and 

background at pixel i . A prior means the preference over each 

label. In some existing works, the prior term was ignored and 

only the likelihoods were used (refer to [30], [31], and [39] for 

examples). However, we believe that the use of a sophisticated, 

data-driven prior model is essential to improving the accuracy 

of foreground detection. 

The priors should be spatially distinct. Compared with trees, 

buildings, and the sky in the scene, the road region should have 

a higher foreground prior. The priors should also be 

time-varying. In recent times, if a pixel is labeled as foreground 

more frequently than before, its foreground prior should 

increase; if the pixel is labeled as foreground less frequently, its 

foreground prior should decrease. In light of these, we maintain 

a dynamic prior model based on the labels of the previous 

frames, 

, 1 , ,(FG) (1 ) (FG) ,i t i t i tP P L      

where 
, 1(FG)i tP 

 and 
, (FG)i tP  are the ith pixel’s foreground 

priors at time 1t   and t , respectively. 
,i tL  denotes the ith 

pixel’s label at time t , which equals 1 if the pixel i  is labeled as 

foreground and equals 0 if labeled as background.   denotes 

the learning rate, fixed to 0.001 empirically. 

In the initialization stage, the foreground prior 
, (FG)i tP  is set 

to a suitable value, such as 0.2. In the updating stage, 
, (FG)i tP  

should not be too low, otherwise occasionally emerging objects 

will be missed. Formally, we demand 

 , ,(FG) max 0.01, (FG) ,i t i tP P  

which prevents the foreground prior from becoming too low. 

An example of pixel soft-labeling is illustrated in Fig. 12(a) 

and 12(b), including prior and posterior of pixels belonging to 

foreground. From Fig. 12(a), it can be seen that the road region 

has much higher foreground priors than the tree region. From 

Fig. 12(b), it is clear that true foreground objects have high 

posteriors of belonging to foreground, whereas true background 

regions have low posteriors of belonging to foreground. 

V. PIXEL LABELING WITH BELIEF PROPAGATION 

The pixel soft-labeling discussed in Section IV is conducted 

for each pixel separately, leaving out the contextual constraints 

from the spatial and temporal neighborhoods of each pixel. This 

processing is susceptible to local ambiguity and uncertainty. To 

resolve this issue a grid-structured Markov random field (MRF) 

[45] is constructed, with a node for each pixel, connected using 

a four-way spatial neighborhood. 

We are facing a binary labeling problem, where each pixel 

either belongs to the foreground or to the background. Let I  be 

the set of pixels in the current frame and L  be the set of labels. 

The labels correspond to quantities we want to estimate at each 

pixel: 1 for foreground and 0 for background. A labeling f  

assigns a label 
if L  to each pixel i I . Under the MRF 

framework, the labels should vary slowly almost everywhere but 

change dramatically at some places such as pixels along object 

boundaries. The quality of a labeling is determined by an energy 

function, 

( , )

( ) ( ) ( , ),i i i u

i I i u N

E f D f W f f
 

    

where N  is the set of undirected edges in the four-connected 

grid graph. ( )i iD f  is the data term, which measures the cost of 

assigning label 
if  to pixel i . ( , )i uW f f  is the smoothness term, 

which measures the cost of assigning labels 
if  and 

uf  to two 

spatially neighboring pixels. A labeling that minimizes this 

energy corresponds to the maximum a posterior (MAP) 

estimation of the MRF. 

The data term ( )i iD f  is composed of two parts. The first part 

is given by the posterior probabilities of a pixel belonging to the 

foreground and to the background: 

Multi-features 

extraction

Reference 

background 

image

Pixel soft-

labeling with 

Bayes rule

Density estimation 

via multi-view 

learning

Foreground 

prior

Pixel labeling 

with belief 

propagation

Current 

label

Current 

frame

Previous frame 

and label

 
Fig. 13.  Block diagram of the proposed method. 
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1
log (FG | ),   if 1,

( )
log (BG | ),   if 0,

i i

i i

i i

P x f
D f

P x f

 
 

 

 

where the posterior probabilities have been computed with (8). 

This term enforces a per-pixel constraint, and encourages the 

labeling to coincide with the per-pixel observation. 

The second part 2 ( )i iD f  enforces the temporal consistency 

constraint to the labeling. We assume that a pair of associated 

pixels in consecutive images should have the same label. The 

current frame (time t ) is back-projected to the previous frame 

(time 1t  ) by estimating the optical flow, so that each pixel 

i I  is associated with a pixel v  in the previous frame. Since 

the label 
vf  has been obtained, 2 ( )i iD f  can be defined as 

2
0,   if ,

( )
,   if ,

i v

i i

i v

f f
D f

f f


 



 

where 0   is a weight parameter, and is used to penalize the 

inconsistent labelings. Considering that optical flow may be 

erroneous due to noises, large motion, and boundary effects, we 

choose a small weight: 0.5  . 

Taking two parts together, the data term becomes 
1 2( ) ( ) ( )i i i i i iD f D f D f  . However, it should be noted that if 

the frame rate of a video is low, the temporal contextual 

constraint cannot be used, then we have 1( ) ( )i i i iD f D f . 

The smoothness term ( , )i uW f f  encourages the spatial 

continuity in the labeling. A cost is paid when two neighboring 

pixels have different labels. We define the term W  as 

0,                   if ,
( , )

( , ),   if ,

i u

i u

i u i u

f f
W f f

Z I I f f


 

 

 

where 5.0   is a weight parameter, and ( , )i uZ I I  is a 

decreasing function that is controlled by the intensity difference 

between the pixels i  and u . In general, the discontinuity of 

segmentation should coincide with the image discontinuity. 

Hence we choose the function Z  as 
2

( , ) exp ,
i u

i u

I

I I
Z I I



 
  
 
 

 

where 
I  is the variance parameter, fixed to 400 in this work. 

The optimal label is found by using the loopy belief 

propagation algorithm. Although belief propagation is exact 

only when the graph structure has no loop, in practice it has been 

proved to be an effective approximate inference technique for 

general graphical models [45]. In the experiments, we declare 

convergence when the relative change of messages is less than a 

threshold 10
−4

. Fig. 12(c) illustrates the inference result of loopy 

belief propagation. As expected, the segmented foreground is 

very close to the ground truth shown in Fig. 12(d). 

In summary, the block diagram of the proposed method is 

shown in Fig. 13. 

VI. EXPERIMENTAL RESULTS 

A. Test Videos and Evaluation Metric 

To verify the proposed method we conduct experiments on 

six benchmark videos. Five videos and their ground truth labels 

are publicly available at changedetection.net [5], [46]. Another 

video is available at AVSS 2007 website [47]. However, its 

ground truth is not provided, so we take some frames uniformly 

from this video and label them by hand. The challenges 

contained in these videos are as below: 

“Highway” contains shadows and swaying trees. 

“Bungalows” contains shadows. 

“Backdoor” contains shadows, intermittent shades, rapid 

illumination changes, and swaying trees. 

“AVSS” contains shadows and rapid illumination changes. 

“TunnelExit” contains large image noises and swaying trees, 

and has a low frame rate. 

“Turnpike” contains mild image noises and has a low frame 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 15.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “bungalows” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 

 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 14.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “highway” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 
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rate. 

To justify a foreground detection method, an evaluation 

metric must be selected. Let TP = number of true positives, FP = 

number of false positives, and FN = number of false negatives. 

The evaluation metric we use is the F-measure, which is the 

harmonic mean of the Recall and Precision: 

,

,

2 .

TP
Recall

TP FN

TP
Precision

TP FP

Recall Precision
F measure

Recall Precision








 



 

Note that the F-measure needs to be as high as possible, in 

order to minimize the segmentation errors. 

B. Comparison with Other Methods 

The proposed method is compared qualitatively and 

quantitatively with three existing methods: GMM [18], ViBe 

[34], and Lam [38]. GMM is a baseline for foreground detection, 

and has been evaluated by many researchers. In the MATLAB 

software, a system object called “vision.ForegroundDetector” is 

offered to detect foreground using Gaussian mixture models. 

We use it directly. ViBe is a recently proposed method, and its 

inventors have publicized the program at their project website 

[48]. Both GMM and ViBe use only pixel intensities as features. 

By contrast, Lam et al. [38] combined luminance, chrominance, 

and texture features in their model, but they detected foreground 

based on hard-thresholding. We implement this method in 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 17.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “AVSS” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 

 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 16.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “backdoor” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 

 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 18.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “tunnelExit” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 

 

 
(a) 

     
(b)                                    (c)                                     (d) 

     
(e)                                    (f)                                     (g) 

Fig. 19.  Comparative foreground/background segmentation results of five 

methods for one frame taken from the “turnpike” video. (a) Input image. (b) 

GMM [18]. (c) ViBe [34]. (d) Lam [38]. (e) Rounding the pixel-wise 

foreground posterior. (f) Proposed method. (g) Ground truth. 
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MATLAB. It should be noted that for a fair comparison, all the 

methods are stripped of any postprocessing operation. 

In this work, it is critical to incorporate the spatial-temporal 

contextual constraints into the foreground/background decision 

model. However, during the computation we also record the 

binary classification result by rounding the pixel-wise 

foreground posterior of (8), and this result is analyzed to verify 

the necessity of using spatial-temporal context. 

Fig. 14–19 show the comparative foreground/background 

segmentation results of five methods for six typical frames of 

the test videos. Foreground and background pixels are shown in 

white and black respectively. 

1) Highway: an example from this video is shown in Fig. 14. 

GMM and ViBe fail to remove shadows, and classify many 

foreground pixels as background. GMM also classifies many 

background pixels of the swaying trees as foreground. Lam [38] 

succeeds in removing shadows, but causes many false negatives 

and false positives. Many foreground pixels are classified as 

background, and many background pixels of the swaying trees 

are classified as foreground. By contrast, the proposed method 

can remove shadows when the vehicles move to the bottom of 

the image and the shadow areas are big enough. Meanwhile, 

very few segmentation errors are caused. 

2) Bungalows: an example from this video is shown in Fig. 15. 

Once again for this video, GMM and ViBe fail to remove 

shadows. Lam [38] is able to remove most of the shadows, but 

classifies many foreground pixels as background. The proposed 

method can remove shadows effectively. However, because the 

vehicle body has little texture and similar color with the 

background, it causes some false negatives, but fewer than those 

caused by ViBe and Lam [38]. 

3) Backdoor: an example from this video is shown in Fig. 16. 

Shadows in this video are complex, and may be soft, hard, or 

intermittent. Besides, rapid illumination changes occur 

irregularly. GMM and ViBe are still affected by the shadows, 

and classify many pixels on the human bodies as background. 

Lam [38] is insensitive to shadows, but negates many true 

foreground pixels, such as pixels on the legs of the left person in 

Fig. 16(d). By contrast, the proposed method is hardly affected 

by shadows and segments out the persons accurately. 

4) AVSS: an example from this video is shown in Fig. 17. 

Rapid illumination changes occur frequently in this video. 

GMM is affected the most, classifying many background pixels 

as foreground. The other methods are insensitive to illumination 

changes. ViBe and Lam [38] classify many foreground pixels on 

the vehicle bodies as background. By contrast, the proposed 

method causes very few segmentation errors. 

5) TunnelExit: an example from this video is shown in Fig. 18. 

There are large image noises in this video, and many objects 

have little texture and similar color with the background. GMM, 

Lam [38], and the proposed method cause many false positives, 

classifying the noisy background pixels as foreground. ViBe 

and Lam [38] cause many false negatives, classifying many 

foreground pixels on the vehicle bodies as background. 

6) Turnpike: an example from this video is shown in Fig. 19. 

There are mild image noises in this video. GMM is affected the 

most, causing many false positives. The other methods are less 

sensitive to the mild noises. However, ViBe and Lam [38] 

classify many foreground pixels on the vehicle bodies as 

background. By contrast, the proposed method causes very few 

segmentation errors. 

The recalls, precisions, and F-measures of five methods on 

the test videos are reported in Table II. Note that the numbers in 

bold indicate the best performance for the metrics, and the 

F-measures are ranked. As can be seen, the proposed method 

outperforms other competing methods on five test videos. The 

TABLE II 

QUANTITATIVE COMPARISON OF FIVE METHODS ON THE TEST VIDEOS 

 Method Highway Bungalows Backdoor AVSS TunnelExit Turnpike Mean 

Recall 

GMM [18] 0.5182 0.9653 0.9106 0.5298 0.8158 0.8735 0.7689 

ViBe [34] 0.7962 0.8012 0.7847 0.7627 0.5039 0.6825 0.7219 

Lam [38] 0.6577 0.5073 0.6842 0.7041 0.5489 0.8542 0.6594 

Rounding 

foreground 

posterior 

0.9407 0.7017 0.8463 0.8641 0.6646 0.9130 0.8217 

Proposed 

method 
0.9567 0.7030 0.8429 0.8815 0.6531 0.9252 0.8271 

Precision 

GMM [18] 0.3636 0.6406 0.4615 0.3499 0.3650 0.7048 0.4809 

ViBe [34] 0.8590 0.6756 0.6894 0.5591 0.7787 0.8500 0.7353 

Lam [38] 0.6155 0.8410 0.6985 0.7695 0.4662 0.8474 0.7064 

Rounding 

foreground 

posterior 

0.8736 0.8667 0.9381 0.7515 0.4349 0.9022 0.7945 

Proposed 

method 
0.9160 0.8912 0.9528 0.7849 0.5231 0.9213 0.8316 

F-measure 

GMM [18] 0.4273 (5) 0.7701 (3) 0.6126 (5) 0.4214 (5) 0.5043 (4) 0.7801 (4) 0.5860 (5) 

ViBe [34] 0.8264 (3) 0.7330 (4) 0.7339 (3) 0.6452 (4) 0.6119 (1) 0.7571 (5) 0.7179 (3) 

Lam [38] 0.6359 (4) 0.6328 (5) 0.6913 (4) 0.7353 (3) 0.5042 (5) 0.8508 (3) 0.6751 (4) 

Rounding 

foreground 

posterior 

0.9059 (2) 0.7755 (2) 0.8898 (2) 0.8039 (2) 0.5258 (3) 0.9075 (2) 0.8014 (2) 

Proposed 

method 
0.9359 (1) 0.7860 (1) 0.8945 (1) 0.8304 (1) 0.5809 (2) 0.9233 (1) 0.8252 (1) 
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only exception is the highly noisy video “tunnelExit”, where 

ViBe performs the best. This is perhaps because ViBe has the 

ability of representing multimodal background. By contrast, the 

proposed method generates reference background images by 

using temporal median filtering, making it essentially a 

single-modal model. Despite this, our method outperforms 

GMM and Lam [38] under this adverse environment. According 

to the mean F-measure metric, our method is the best one. 

On the other hand, if we analyze the experimental results (see 

Fig. 14–19 and Table II) of rounding the pixel-wise foreground 

posterior and other methods, we can acquire some new findings. 

Due to the use of multiple heterogeneous features and 

multi-view learning, the pixel-wise foreground posterior 

computed with equation (8) is rather informative. Leaving out 

the spatial-temporal contextual constraints in the video 

sequence, rounding the pixel-wise foreground posterior has 

outperformed GMM [18], ViBe [34], and Lam [38], according 

to the mean metrics. Introducing the MRF framework helps to 

further improve the foreground segmentation accuracy, with the 

mean F-measure increased by 2.38%. 

C. Computational Cost 

The proposed method is implemented on a PC with 2.50GHz 

Intel Core i5-3210M CPU and 4G memory. The multi-features 

extraction module and the pixel labeling with belief propagation 

module are implemented using C MEX, and the rest modules 

are implemented using MATLAB. The computational time is 

monitored by the “tic” and “toc” functions. Taking the video 

“highway” (with 320×240 pixel resolution) for example, the 

average computational time for processing one frame is about 

4.3 seconds. Cost details of the main modules are shown in 

Table III. The implementation at its present stage cannot 

achieve real-time processing. In the future, we will study 

efficient MRF inference algorithms and use parallel computing 

platforms such as GPU to speed up the computation. 

D. Limitations of the Proposed Method 

In this work, we update the reference background image once 

every 50 frames, by conducting TMF over the recent 500 frames. 

That way, gradual scene changes can be handled, but in practice 

it is sometimes expected that the TMF learning period (time 

window) varies according to the surroundings. For instance, 

when the traffic volume is low, the learning period is expected 

to be properly short, in order to capture the recent scene change 

and to reduce the computational cost; when the traffic volume is 

high, the learning period is expected to be long enough, in order 

to prevent foreground objects from being absorbed into the 

background image. However, traffic volume is a kind of 

semantic information. According to Toyama et al. [11], 

background subtraction as a low-level module should not 

attempt to extract the semantics of foreground objects on its 

own. Of course, background subtraction may work as a 

component of larger systems that seek high-level understanding 

of image sequences. In that case, it would be feasible to feed 

traffic volume back to the background subtraction module and 

adjust the TMF learning period accordingly. 

Since the conditional probability density of the foreground is 

estimated via multi-view learning, it is expected that there are 

enough foreground objects in the scene. For a video sequence 

with only one or two objects, the estimated foreground model 

may be unreliable. However, in practice several objects would 

be enough. For example, although there are only 7 foreground 

objects in the entire video “backdoor”, our approach is able to 

detect foreground pixels accurately, as shown in Fig. 16. In 

long-term traffic surveillance, because many objects (including 

vehicles and pedestrians) usually appear at irregular intervals, 

this problem can be avoided. 

Another potential problem is that the proposed method 

cannot represent the multimodal background. Due to our 

proposed iterative search and multiscale fusion strategy in 

feature extraction, slight background movement is tolerable. 

However, dramatic camera shakes, highly dynamic background, 

and large image noises may deteriorate the performance of our 

method. Solving this problem will be our future work. 

VII. CONCLUSION 

For detecting foreground objects from traffic environments, 

this paper proposed an effective multi-view learning method to 

model both the foreground and the background. First of all, 

multiple heterogeneous features including brightness variation, 

chromaticity variation, and texture variation are extracted from 

the video sequence. These features are robust to shadows and 

illumination changes, and are approximately conditionally 

independent given the class label. A multi-view learning method 

is devised to online estimate the conditional densities for both 

foreground and background. This makes our method different 

from many existing ones, which build only the background 

model and recognize foreground pixels purely as outliers. Pixel 

soft-labeling is conducted using Bayes rule and pixel-wise 

foreground posteriors are estimated. Finally, under the MRF 

framework, spatial-temporal contextual constraints are 

incorporated into the foreground/background decision model, 

and optimal foreground segmentation is achieved by belief 

propagation. 

The experimental results have verified the usefulness and 

effectiveness of the proposed method. Quanlitative and 

quantitative comparisons with the existing methods have shown 

that when confronted with challenges like shadows, illumination 

changes, and mild image noises, our method can improve the 

accuracy of foreground detection. Some limitations of our 

method have been discussed. As improvements to our method, 

multimodal background modeling and computation speedup 

TABLE III 

COMPUTATIONAL TIME FOR PROCESSING ONE FRAME 

Module 
Programming 

language 

Time 

(second) 

Multi-features extraction C MEX 1.4 

Density estimation via 

multi-view learning 
MATLAB 0.1 

Pixel soft-labeling with 

Bayes rule 
MATLAB 1.2 

Pixel labeling with belief 

propagation 
C MEX 1.6 
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will be our future work. 
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