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Visual Tracking Based on Dynamic Coupled
Conditional Random Field Model

Yuqiang Liu, Kunfeng Wang, and Dayong Shen

Abstract—This paper proposes a novel approach to visual track-
ing of moving objects based on the dynamic coupled conditional
random field (DcCRF) model. The principal idea is to integrate a
variety of relevant knowledge about object tracking into a unified
dynamic probabilistic framework, which is called the DcCRF
model in this paper. Under this framework, the proposed approach
integrates spatiotemporal contextual information of motion and
appearance, as well as the compatibility between the foreground
label and object label. An approximate inference algorithm, i.e.,
loopy belief propagation, is adopted to conduct the inference.
Meanwhile, the background model is adaptively updated to deal
with gradual background changes. Experimental results show that
the proposed approach can accurately track moving objects (with
or without occlusions) in monocular video sequences and outper-
forms some state-of-the-art methods in tracking and segmentation
accuracy.

Index Terms—Coupled conditional random field, dynamic
models, visual tracking, region-level tracking, spatiotemporal
context.

I. INTRODUCTION

NOWADAYS, intelligent visual surveillance that collects
various information of road traffic flow is attracting more

and more attention in the fields of computer vision and in-
telligent transportation systems (ITS) [1]–[6]. Visual object
tracking is an important and challenging task in these fields. As
an active research topic, tracking takes many forms, including
automatic or manual initialization, single or multiple objects,
still or moving camera, etc., each of which has been associated
with an abundant literature [7]–[10].

Visual tracking is typically applied to locating objects and
measuring their trajectories in the video sequence for the
traffic analysis [7]. However, from the viewpoint of tracking

Manuscript received September 30, 2014; revised January 28, 2015,
April 27, 2015, and August 11, 2015; accepted September 24, 2015. Date of
publication October 26, 2015; date of current version February 26, 2016. This
work was supported in part by the National Natural Science Foundation of
China under Grant 61304200 and in part by the MIIT Project of Internet of
Things Development Fund under Grant 1F15E02. The Associate Editor for this
paper was H. Huang. (Corresponding author: Kunfeng Wang.)

Y. Liu is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and also with Qingdao Academy of Intelligent Indus-
tries, Qingdao 266109, China (e-mail: yuqiang.liu@ia.ac.cn).

K. Wang is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: kunfeng.wang@ia.ac.cn).

D. Shen is with the Research Center for Computational Experiments and Par-
allel Systems, National University of Defense Technology, Changsha 410073,
China (e-mail: dayong.shen89@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2015.2488287

results, there are mainly two types of tracking problems in the
literature: trajectory-level tracking and region-level tracking.
Trajectory-level tracking mainly aims to obtain the object tra-
jectory (usually the center of the object in each image frame),
while region-level tracking aims not only to locate the object
continuously, but also to segment the object as accurately as
possible. Nowadays, the first type of tracking receives most
of the attention from computer vision researchers [11]–[13].
In visual surveillance, trajectory-level tracking usually uses a
rectangle or an ellipse mask to represent the object, which is not
enough to precisely compute the traffic parameters. By contrast,
the second type of tracking enables us to locate the objects and
measure their attributes more accurately. However, it is much
more difficult to perform region-level tracking, and few efforts
have been made on this type of tracking.

Existing tracking methods are characterized by how fea-
tures are employed. Traditional region-level tracking methods
conduct foreground segmentation and object tracking as two
separate tasks. They first segment out the foreground regions
from input images, then extract some features from the fore-
ground regions, and finally track objects based on these features
[14]–[16]. As shown in Fig. 1(a), the largest drawback of this
research strategy is that the errors in foreground segmentation
inevitably spread forward, leading to errors in object tracking.
In fact, foreground segmentation and object tracking are closely
related. On one hand, the results of foreground segmentation di-
rectly determine the accuracy of feature extraction, and further
affect the performance of region-level object tracking. On the
other hand, the tracking results can provide a top-down cue for
foreground segmentation. Therefore, simultaneous foreground
segmentation and object tracking has potential to take full
advantage of the correlation between them and realize a bi-
directional flow of information, which can greatly improve the
performance of object tracking. Moreover, moving objects can
be characterized by their spatial and temporal cues in the video
sequence. In light of these, we attempt to integrate these cues
into a single probabilistic framework, which is called dynamic
coupled conditional random field (DcCRF) model in this paper.
Our research strategy is shown in Fig. 1(b). In the following
sections, we will present this novel probabilistic framework for
region-level tracking.

The rest of this paper is organized as follows. In Section II,
related works are reviewed. The DcCRF-based tracking frame-
work is detailed in Section III. Section IV describes the im-
plementation techniques of our tracking method. In Section V,
experimental results and discussion are presented. Finally, a
conclusion is drawn in Section VI.
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Fig. 1. Two different research strategies for region-level tracking. (a) Tradi-
tional research strategy. (b) Our research strategy.

II. RELATED WORKS

In the past two decades, numerous efforts have been devoted
to solving the tracking problem [7]–[24]. Before tracking mov-
ing objects, one needs to represent the objects using their shapes
and appearances. One can use active contours or silhouettes
to represent objects for region-level tracking, and the contours
and silhouettes can be updated continuously and automatically.
This kind of representation is applicable to tracking of complex
objects. For example, the contour of two vehicles was used in
[15] to resolve occlusion based on the convexity of the vehi-
cle shape. However, compared with the silhouette, it is more
difficult to ensure the robustness of contour-based algorithms
in splitting merged objects, which is the main reason why we
choose silhouette for object representation. In [16], foreground
regions were first extracted, and then the objects with occlusion
were segmented based on features regarding color and location.
However, this method did not consider the contextual rela-
tionship between adjacent local blocks. Aeschliman et al. [17]
proposed a probabilistic framework for joint segmentation and
tracking of moving objects, which improved the robustness of
object tracking. However, the spatial relationship within the
image space was not considered, resulting in a number of holes
and splits in the segmented regions. Recently, the authors [18]
extended this framework to track vehicles through shadows and
occlusions in wide-area aerial video.

On the other hand, the probabilistic graphical model is a kind
of useful mathematical tool for tracking objects and solving
the inference problem of motion estimation. Bugeau et al.
[19], [20] proposed a method for simultaneous tracking and

segmentation of multiple objects by minimizing the energy
function. Before tracking, the observation candidates were
obtained by external object detection. The model combined
low-level pixel-wise measures (including color and motion),
high-level observations obtained by an external object detection
method, and motion predictions. A spatial-temporal Markov
random field (S-T MRF) model was proposed in [21] and [22]
for vehicle tracking in urban scenes. The input image of size
640 × 480 was divided into 80 × 60 blocks. Each block
corresponds to a node in the S-T MRF model. The S-T MRF
model was used to model the tracking problem and generate
labels for the blocks. Both spatially adjacent blocks and tem-
porally adjacent blocks in consecutive frames were considered
as neighbors for the model. The S-T MRF model predicted a
current object-map of the current frame based on the current im-
age, the previous image, and the previous object-map. In [23],
the S-T MRF model was used in H.264/AVC-compressed video
sequences for tracking moving objects. This model was estab-
lished according to the motion vectors and block coding modes
from the compressed bit stream. However, this method used
only the motion vector feature to track objects, which could
not accurately obtain object regions in complex scenes. In [24],
a bidirectional association graph similar to MRF model was
used to track regions and handle the splitting and merging
of regions over an image sequence. Each region in a frame
corresponded to a node in the graph. The graph had two
partitions representing the regions from the previous frame and
the current frame, respectively. The edges between vertices
in the two partitions indicated that the previous regions were
associated with the current regions. The weights of edges were
the areas of overlap between regions in the two partitions. The
region tracking problem was transformed to the problem of
solving the maximal weight of the graph.

However, existing tracking methods that use S-T MRF model
mainly use the motion information for tracking, which in fact
can be categorized as a kind of motion detection methods. As
a result, these methods usually produce only bounding boxes
of objects, rather than precise regions that can characterize the
objects. Moreover, in the existing literature, many graph cuts-
based methods have been proposed for segmentation, but very
few works use this methodology for tracking. In light of these,
we have developed an accurate region-level tracking method
based on the DcCRF model. In this paper, we focus on region-
level multi-object tracking with a static monitoring camera,
including resolving occlusions by combining the tracking and
segmentation processes. Based on these ideas, we achieve accu-
rate tracking under contextual constraints in both the temporal
domain and the spatial domain. The contributions of this work
are as follows:

1) We propose a DcCRF model to incorporate the motion
and appearance information, and spatial-temporal con-
straints in a single dynamic probabilistic framework, in
order to jointly track and segment moving objects in
region level. This is a key step toward object attribute
measurement and behavior understanding.

2) Rather than combining all the relevant cues in a single
layer of random fields, we construct a coupled CRF
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(which has a novel two-layer structure) as the graphical
template, whose structures and parameters are repeated
over time. Based on coupled CRF, the compatibility
between foreground label and object label is incorporated
into the tracking model.

3) Our tracking method can be applied to a wide range of
scenarios. We do not limit the physical characteristics of
the tracked objects, so this method is a general-purpose
one and can be applied to track objects of various sorts,
such as vehicles, pedestrians, and many others that are
moving in the scene.

III. TRACKING AND SEGMENTATION BASED ON DCCRF

We first make a brief introduction to the dynamic condi-
tional random field (DCRF) model. The definition of DCRF
is proposed by Sutton and McCallum in [25] and [26], which
can be used as a dynamic probabilistic framework for labeling
structured data. A DCRF is a conditional distribution that
factorizes according to an undirected graphical model whose
structures and parameters are repeated over time. We can define
a DCRF on observation O and unobservable random variables
P = {P1, . . . ,PT } over the video sequence. Specifically, let
C be a set of clique indices, F = {fk(Pt,cO, t)} be a set of
feature functions and Λ = {λk} be a set of real-valued weight
coefficients. Then the model is a dynamic conditional random
field if and only if the conditional probability P satisfies

P (P|O) =
1

Z(O)
ΠtΠc∈C exp

(∑
k

λkfk(Pt,c,O, t)

)
(1)

where Z(O) =
∑

PΠtΠc∈C exp(
∑

k λkfk(Pt,c,O, t)) is the
partition function.

In the following sections, we will describe our tracking
model on the basis of DCRF.

A. Definition of the Tracking Model

Generally speaking, the moving object is characterized by
its spatial and temporal characteristics. For example, the object
usually does not change its appearance in the camera view, the
object often moves smoothly (without dramatic speed change
in adjacent frames), and all pixels in the object region have
similar motion features. The object is compact, that is to say, it
will not break up into multiple disconnected parts in the camera
view. If two objects in two adjacent frames are actually the
same object, the spatial distance between them must be close.
Based on all these characteristics, our tracking model incor-
porates the motion and appearance information in the spatial-
temporal domain.

The structure of our tracking model is shown in Fig. 2. Given
observation O, we want to assign an optimal label P to all the
pixels. This model is composed of two inter-related processes:
foreground segmentation and object tracking. The label P is
determined through a combination of them. Let S denote the
foreground label and T denote the object label. Suppose at time
t, there are Lt objects to be tracked. For the labels S and T, the
label for a pixel measurement Ot(i) with index i = 1, . . . , D in
the tth image frame is denoted by St(i) and Tt(i), respectively.

Fig. 2. Structure of the DcCRF-based tracking model. S and T denote
the foreground label and the object label respectively, and O denotes the
observation. Note that O is not generated by the model.

Fig. 3. Structure of the coupled CRF at each time slice. S and T denote
the foreground label and the object label, respectively, and O denotes the
observation. Note that O is not generated by the model.

The largest advantage of this model is the natural combination
of two processes to perform tracking.

Many existing methods build a single layer of random field
model to solve the tracking problem. However, there are some
inherent limitations in these methods. Region-level tracking
includes two processes: tracking and segmentation. These two
processes have distinct characteristics and dynamics. One dis-
tinction lies in the estimation of object boundary; for segmen-
tation, we tend to consider the edge in the image as object
boundary, while for tracking we tend to employ spatial-
temporal constraints based on motion information rather than
appearance information. If we use a single-layer model to
combine all these cues, we will have to make a tradeoff between
these two processes. Besides, as discussed in [27], there exist
some other distinctions on the measurements of coarseness,
homogeneity, and entropy of the object boundary. More discus-
sions on the advantages of using coupled rather than single-
layer random fields were presented with model learning and
evaluation in [27]. In light of these, we use coupled CRF for
region-level tracking.

The coupled CRF shown in Fig. 3 consists of foreground
segmentation layer and object tracking layer. In the foreground
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segmentation layer, we use the objects appearances and motion
information to establish the relationship between foreground
and background. The energy function is defined based on mul-
tiple cues, including temporal relationship, local smoothness,
global affinity and compatibility. We will give more details later
in the following sections. Moreover, the minimum of the energy
function will correspond to an optimal segmentation. In the
object tracking layer, our goal is to find an optimal label that
can interpret the object image under a few hypotheses. For that,
we use the spatial and temporal relationships presented in the
video images.

Given an observation sequence O = {O1, . . . ,Ot}, the con-
ditional probability of foreground label and object label at time
t can be expressed as

P (Tt,St|O, θ) ∝ exp {−Et(Tt,St)} (2)

where Et(Tt,St) is the total energy function with respect to the
labels Tt and St. Furthermore, Et(Tt,St) is defined as

Et(Tt,St)

=
∑
i

⎧⎨
⎩ψ (Tt(i)|O; θψ) + ρ (St(i)|O; θρ)

+
∑
j∈Ni

{η (Tt(i),Tt(j)|O; θη)+τ (St(i), St(j)|O; θτ)}

+ γ (St(i),Tt(i)|O; θγ)

⎫⎬
⎭ (3)

where (ψ, ρ, η, τ, γ) are energy functions, Ni denotes the
8-pixel spatial neighborhood, and θ is the model parameter. It
should be noticed that this model consists of two unary energies
(i.e., ψ and ρ) and three pairwise energies (i.e., η, τ , and γ).

As can be seen from (3), the proposed tracking model
integrates the spatial-temporal contextual information and ap-
pearance information of the object based on a dynamic coupled
probabilistic framework. In this paper, this framework is called
dynamic coupled conditional random field (DcCRF) model. In
the following subsections, we will detail the energy terms and
their parameters.

B. Temporal Relationship

Most object tracking algorithms hold a basic assumption that
the objects in two adjacent frames are the same one if the
spatial distance between them is very small. We also consider
the temporal cues to perform tracking. In order to establish
the association relationship in temporal domain, we use dense
optical flow [28] to estimate the motion information of the
tracked object. Compared with sparse optical flow, such as
Lucas-Kanade approach [29], dense optical flow generates the
optical flow of each pixel. In contrast to the method proposed in
[30] and [31], optical flow can provide a better representation
of the corresponding relationship among pixels in consecutive
frames. An intuitive idea is that we can use optical flow to
project the pixel Ot(i) in the current frame backward to a pixel

Fig. 4. Example of back-projection using optical flow: (a) previous frame,
(b) current frame, (c) ground truth object label in the current frame,
(d) predicted object label via back-projection in the current image, (e) differ-
ence between (c) and (d).

in the previous frame. If the label of the corresponding pixel
Ot−1(j) in the previous frame is object, then the pixel Ot(i)
should also be labeled as object. Fig. 4 illustrates this idea
intuitively.

From Fig. 4(e), it is clear that back-projection can predict
the object label very well for most part of the object. However,
there exist some prediction errors near the object boundary. In
addition, optical flow is sensitive to noises if we consider only
the corresponding pixel in the previous frame, which may result
in holes and splits in the object label. Inspired by the work [23]
for single object tracking, the temporal association is quantified
by the degree of overlap between the label in the previous frame
and the back-projected candidate label in the current frame.

After getting the optical flow, we can compute the degree
of overlap R, as shown in Fig. 5. Consider a candidate pixel
Ot(i) with the coordinate (xi, yi) in the current frame, we can
project it backward to the pixel Ot−1(i

′) in the previous frame
along its optical flow vt = (vx, vy), that is, (xi′ , yi′) = (xi +
vx, yi + vy). The degree of overlap R(i) can be computed as
the fraction of pixels in the neighborhood of the back-projected
pixel in the previous frame that carry the label l in Pt−1, which
can be formulated as

R(i) =
∑

j∈Mi′

|(xi′ − xj)(yi′ − yj)| δ (Pt−1(j)− l) (4)
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Fig. 5. Degree of overlap R(i): the fraction of pixels within the neighborhood
of the back-projected pixel in the previous frame that carry the label l in Pt−1.
x and y are the integer part of the coordinates of Ot−1(i′). The line segments
with the same number are of the same length.

Fig. 6. Dense optical flow (best viewed in color) from two adjacent frames.
(a) Previous frame. (b) Current frame. (c) and (d) Dense optical flow in x and
y direction.

where | · | denotes the absolute value, δ(·) is the Kronecker
delta function, and Mi′ denotes the 4-pixel spatial neighbor-
hood in the previous frame. By that we can define the temporal
association function as

U(i) = R(i)δ (Tt(i)− l) . (5)

Temporal association is a useful cue for object tracking and
can provide relatively accurate results in many cases. However,
it highly depends on the optical flow that may be inaccurate,
especially near the object boundary. The dense optical flow
calculation does not always work well because it often chooses
a region to search, but such a searching strategy is not appro-
priate for low rate video. Moreover, the optical flow can be
contaminated by complex illumination and background, which
may cause inaccuracy especially near the object boundary.
Fig. 6 shows an example clearly. Finally, the errors in previous
labeling will be transferred to the current frame for we use the
degree of overlap based on labeling of the previous frame. This
accumulative error will deteriorate the tracking result.

Fig. 7. Initial foreground segmentation using GMM: (a) background image,
(b) current frame, (c) foreground mask where black pixels denote foreground
and gray pixels denote suspicious shadows.

On the other hand, background-related temporal or dynamic
information is useful to handle the scene evolution over time.
The background model can be adaptively updated from the
recent history of observation images, in order to handle various
non-stationary background processes, such as gradual illumi-
nation changes [30]. It can also be regarded as a description of
the pixel changes in the temporal domain. A background image
can be constructed using Gaussian mixture model, to make
an initial segmentation of foreground. Note that there are also
other methods for foreground segmentation [42]–[44], these
works can give a more accurate segmentation. However, we use
GMM in our work, mainly due to its time-saving and simplicity.
The use of foreground cues to tackle the inaccuracy in optical
flow will become more important for long-term tracking. In
light of these, we use background subtraction to filter out the
background and make the tracking system more robust. In this
paper, we adopt the algorithm in [32] to learn Gaussian mixture
models and detect foreground and moving shadows, as illus-
trated in Fig. 7. Morphological operations are used to remove
noises and join disperse elements. However, morphology can
exert a bad effect on the quality of segmentation on the edges.
Hence, there is a tradeoff between this energy and the local
smoothness energy.

This foreground association function can be defined as

B(i) = g(i)δ (Tt(i)− l) . (6)

Here, we introduce another labeling function g : i �→ [0, 1],
which associates each pixel in the current image with object
or background via GMM.

Combining the temporal association function (5) and the
foreground association function (6), the energy term for de-
scribing the temporal relationship is defined as

ψ (Tt(i)|O; θψ) = θψ (U(i) + ωψB(i)) (7)
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where ωψ is a weight to regulate the tradeoff between temporal
association and foreground association.

C. Local Smoothness in Tracking Process

Like many others, we assume the object is spatially compact.
That is to say, for a certain pixel, the more neighbors belong
to the object, the more likely that pixel belongs to the object.
We represent the neighboring relationship by connecting each
pixel to its nearest neighbors in the image space and encoding
a local smoothness constraint. Let j ∈ Ni, then we can define
the pairwise energy as

η (Tt(i),Tt(j)|O; θη) = θη
1

(dist(i, j))2
(1−δ (Tt(i)−Tt(j)))

(8)

where θη is the weight, and dist(i, j) denotes the Euclidean
distance between two neighboring pixels indexed by i and j.
We tend to assign a larger weight to the closer neighbors, so
that two neighboring pixels are more likely to have the same
label. A cost is then paid when two neighboring pixels i and j
have different object labels.

D. Global Affinity

The global affinity consists of two aspects: appearance and
motion. For the appearance affinity, we represent the color
model in RGB space using Gaussian Mixture Models (GMMs).
The mixture coefficients of the model depend on the object
label. One GMM is related to the background, and others
related to the tracked objects. Each GMM is a mixture of full-
covariance Gaussian distributions, typically with five compo-
nents. The GMM of object appearance is as follow:

Pc (Ot(i)|k) = N

(
Ot(i)|μk,

∑
k

)
(9)

where μk and
∑

k denote the mean and covariance matrix of the
color cluster of object k. Given the observation Ot(i) of a pixel
i at time t, the conditional probability that the pixel belongs to
object kth is given by

Pc (k|Ot(i)) ∝ Pc (Ot(i)|k) p(k). (10)

Note that we assume each object has the same prior to appear.
Based on the color model, the unary color energy has the
following form:

C(i) = −logPc (k|Ot(i)) . (11)

In natural scenes, another important characteristic of the
tracked object is that all pixels belonging to the same object
have relatively coherent motion vectors, as shown in Fig. 6(c)
and (d). Similar to the color model, we use the Gaussian mixture
model (GMM) to represent the distribution of optical flow. The
K-means method is used to cluster the motion vectors, and
the number of components is set to 5. We can compute the
probability of pixels belonging to each object based on the
motion distribution of objects. In general, different objects have

different motion models, making it reasonable to use this cue to
segment different objects.

Based on the motion model, the unary motion energy is
defined as

M(i) = −logPm (k|Ot(i)) (12)

where Pm(k|Ot(i)) denotes the probability that the pixel i is
generated by the object k based on the motion model.

The final global affinity energy can be defined as

ρ (St(i)|O; θρ) = θρ (C(i) + ωρM(i)) (13)

where θρ and ωρ are weights. Moreover, we update the ap-
pearance and motion models automatically in terms of the
sequential tracking results.

E. Local Smoothness in Segmentation Process

For the local smoothness term used in the segmentation
process, we tend to give a penalty to the pixels at the foreground
boundary. Inspired by the work of [33], the smoothness term
can be defined as

τ (St(i), St(j)|O; θτ ) = θτ
exp

{
− (Ot(i)− Ot(j))

2 /β
}

dist(i, j)

× (1 − δ (St(i)− St(j))) (14)

where θτ is the weight, and dist(i, j) denotes the Euclidean
distance between two neighboring pixels indexed by i and j.
The constant β is computed automatically from the current
image [34], that is

β = 2
〈
(Ot(i)− Ot(j))

2
〉

where 〈·〉 denotes expectation over the current image, to en-
sure that the exponential term in (14) switches appropriately
between high- and low-contrast images. According to (14), two
neighboring pixels with similar intensities are more likely to
have the same label.

F. Compatibility Between Foreground Label and Object Label

The compatibility energy for the coupled links is used to
make the foreground segmentation process and the object track-
ing process mutually consistent. In other words, the pixels that
are labeled as foreground should also be labeled as object, and
the pixels that are labeled as object should also be labeled as
foreground. However, it should be noticed that this intuition
can be extended to allow slightly inconsistent labeling. The
compatibility energy term is defined as

γ (St(i),Tt(i)|O; θγ) = θγ (1 − δ (Tt(i)− St(i))) (15)

where θγ is the weight, and δ(·) is the Kronecker delta function.
From (15), the labeling of two layers tends to be consistent. The
introduction of compatibility energy is an important contribu-
tion of our work.
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IV. IMPLEMENTATION TECHNIQUES

As we use optical flow to construct the temporal relationship
in Section III-B, the accuracy of optical flow will have a large
effect on the performance of our tracking method. For that, we
use a median filter to eliminate the outliers. In this paper, we use
the 3σ rule to detect outliers, and then use the median values to
replace the outliers.

Generally speaking, as for the problem of segmentation, for
example, the work in [36], we usually have many training
samples and we can train our model offline based on these
samples. However, we do not have many train samples on the
issue of tracking. We usually have to use the initialization data
as the training data to estimate the parameters of our model.
In our work, we only use the first frame, which is labeled by
hand, to construct the color model. And the first two frames are
used to construct the motion model. Then we have to make our
model to deal with the change of the appearance of the object
during tracking by using the spatial and temporal context in an
online way. This is also a major difference between our tracking
method and the object segmentation on static image.

For the parameters in the total energy (3), each energy term
makes a different contribution, which is usually impacted by
its reliability. Learning the DcCRF parameters is generally
difficult. Ideally, the model parameters can be learned through
maximum likelihood estimation [35]. However, it is difficult to
compute likelihood probability due to the partition function Z .
Since exact computation of likelihood probability is intractable,
the model learning has to resort to approximation techniques. In
our work, we use a more pragmatic solution based on piecewise
training to determine the parameters, which minimizes an upper
bound on the log partition function [36]. Piecewise training
divides our model into pieces corresponding to different terms
in (3). The parameters of these pieces in our model are then
tuned independently, as if each of them was the only term in
the conditional model. Finally, we combine these pieces with
weights. Specifically, we find that the terms which stand for
temporal relationship and local smoothness are more sensitive
to the change of their value, while the global affinity term can
be chosen in a wider range.

For example, we can train the parameters of global affinity by
maximizing the likelihood of the normalized model containing
just that potential and parameters are updated using

θ =

(∑
i δ (St(i)− k)P (k|Ot(i)) + α∑

i P (k|Ot(i)) + α

)w

. (16)

In practice, α was set to 0.1 and w was set to 3. The values of
parameters in the pairwise energy terms were manually selected
in practice.

As for the training of the parameters in GMM, we use
K-means clustering. The number of components is determined
by cross validation and in our paper this parameter is set to 5.

Given the DcCRF model and its learned parameters, we wish
to find the most probable joint labeling T∗ and S∗ via (17), i.e.,
the label that maximizes the conditional probability of (2)

(T∗,S∗) = argmax
T,S

P (Tt,St|O, θ). (17)

Based on the coupled CRF model, the motion and appearance
information of objects in the video sequence are decomposed
into multiple channels. Each channel captures a distinct facet
about object tracking. Besides, in our experiment, we find that
the most suitable labeling for region-level tracking is not always
the labeling result T∗ or S∗. In light of that, it is better for us
to find a way to combine them and get a more suitable labeling
result. Then, we use a global score function to combine these
information channels, which provides us with a global view.
The score is computed with the similarity of histogram. The
combination result of the segmentation and tracking processes
is shown as below

Pfinal = argmin
P={T∗,S∗}

dB(HP, Hinitial) (18)

where dB(·) denotes the Bhattacharyya distance to measure
the similarity between two histograms, and H denotes the
corresponding histograms. We choose the label whose his-
togram is the most similar to the initial histogram, as the final
tracking result. However, it should be noted that this idea can
be extended to a weighted combination of these two processes,
instead of only one process being chosen as the tracking result
at each time slice.

During tracking, if the region of the target at time t has a
size of Wt ×Ht, then we need to construct a graph of the
same size so that each pixel corresponds to a node in the graph.
Because the size of the target will change over time, we need to
construct a new graph every time. Then we have to calculate the
potential energy, which contributes most to the computational
cost of our approach. For example, if we want to calculate
the temporal association defined by (5), all the Wt ×Ht nodes
have to be considered. The others energies are computed in the
same way. At last, we use the loopy belief propagation (LBP)
algorithm for approximate inference. In fact, belief propagation
is exact only when the graphical structure has no loop. How-
ever, in practice it has been proven to be a rapid and effective
approximate inference technique for general graphical models
[37]. In practice, we declare convergence when the relative
change is less than a threshold 10−4.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We conduct experiments on four video sequences:
“PETS2001” [38], “streetLight” [39], “roadway”, and
“intersection”. “PETS2001” and “streetlight” are publicly
available on the Internet, while “roadway” and “intersection”
are captured by us at Zhongguancun Road, Beijing. In these
videos, objects appear with different sizes and poses, and
sometimes they interact with each other. Since our tracking
method is a general-purpose one, the appearances and poses of
objects have little effect on the final tracking results. In the first
image frame, we use hand-made initialization.

A. Segmentation Results Using Coupled CRF and
Single-Layer CRF

To compare the coupled CRF model with traditional single-
layer CRF model, we combine all the energies in a single
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Fig. 8. Comparison of tracking results (best viewed in color) on the “roadway” video, where vehicles experience large scale changes. The top row shows the
tracking results from our method, where the tracked vehicles are represented with different color masks. The bottom row shows the tracking results from the
method [41], where the tracked vehicles are represented with contours of different colors.

Fig. 9. Comparison of tracking results (best viewed in color) from coupled
CRF and single-layer CRF: (a) tracking results from coupled CRF, (b) track-
ing results from single-layer CRF. The tracked objects are represented with
different color masks.

layer CRF. More specifically, the single-layer CRF contains
only energy terms ψ, ρ, and η in (3). Fig. 9 shows a visual
comparison of these two models on the “roadway” video. From
Fig. 9(a), it is shown that coupled CRF achieves more accurate
segmentation on the tracked objects as we can see from Table II.
By contrast, single-layer CRF, which lacks the ability to model
two distinct labeling processes, cannot track and segment the
objects as accurately as coupled CRF.

B. Tracking Vehicles With Large Scale Changes

It is often the case that there are changes in scale and
the target and the background contain some similar colors.
The changes and similarity of color make it difficult to get
an accurate segmentation. So we conduct experiments on the
videos “roadway” and “streetLight”. We compare our tracking
result with the Adobe After Effects CS5 (AAE) (based in
part on [41]) and the TLD method [40], and the latter is a
trajectory-level method. Note that in the evaluation of AAE,
we used the Rotobrush tool to get an automated segmentation
of the object. In addition, the AAE methods can only track
single target. We put all the single tracking results together.
Figs. 8 and 10 show the experimental results of four frames

from each of the videos. From the top row of Figs. 8 and 10,
we find that the proposed method can precisely track vehicles
in region level. However, there are some trivial segmentation
errors near the vehicle boundaries, which are caused mainly
by the low discrimination between vehicle boundaries and the
background.

The AAE method generates contours of the objects, as shown
in the bottom row of Fig. 8. However, when there are similar
colors, this method is affected more than our method. This can
also be seen from the quantitative comparison on the video
“roadway” in Table II. As a comparison with trajectory-level
method, we compare our method with the TLD method [40], as
shown in the bottom row of Fig. 10. In TLD method, tracked
vehicles are represented with bounding boxes. Compared to the
TLD method, as a kind of region-level tracking method, our
method is able to segment all the objects in the video sequence.
Based on the proposed tracking method, we can acquire more
information about the tracked objects, such as their sizes, poses,
and some other attributes.

In addition, Table I describes the quantitative comparison of
center position errors from the proposed method and the TLD
method. The center position error is defined as the average
Euclidean distance between the center positions of the tracked
objects and the ground truth. In “roadway”, three vehicles are
investigated. In “streetLight”, five vehicles are investigated. As
Table I shows, the proposed method is highly accurate and
achieves center position error of about one pixel, while the
TLD method achieves center position error that is three times
higher than our method. Therefore, region-level tracking with
our method is able to improve the accuracy of object location
in video sequences.

C. Tracking Interacting Objects in PETS2001

As mentioned before, our tracking method is a general-
purpose one, meaning that it can be applied to scenarios where
multiple objects interact with each other. Fig. 11 shows the
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Fig. 10. Comparison of tracking results (best viewed in color) on the “streetLight” video. The top row shows the tracking results from our method, where the
tracked vehicles are represented with different color masks. The bottom row shows the tracking results from the TLD method, where the tracked vehicles are
represented with bounding boxes.

TABLE I
COMPARISON OF CENTER POSITION ERRORS FROM THE PROPOSED

METHOD AND THE TLD METHOD [40]

tracking results on a publicly-available PETS2001 video, in
which a vehicle partially occludes a pedestrian. We compare
our tracking result with the result from two state-of-the-art
methods [17] and [41]. As can be seen from Fig. 11(c) and (d),
our method realizes accurate tracking in region level. There
are only some trivial segmentation errors near the object
boundaries. In fact, region-level tracking on the PETS2001
video is quite challenging, because the image quality is low
and it is difficult even for a human expert to make a perfect
segmentation.

By contrast, from Fig. 11(e) and (f) we find that there are a
lot of holes and splits in the segmented object regions. This is
mainly because the method [17] constructs a Gaussian distri-
bution for each pixel, without considering the spatial-temporal
constraints among neighboring pixels. Besides, [17] uses the
same motion prediction for all the pixels of one object, making
it perform poorly when tracking non-rigid objects, such as the
pedestrian in this experiment. As a result, [17] is not enough to
make a good segmentation of object silhouettes.

The AAE method proposed in [41] can obtain the contour
of the vehicle, as shown in Fig. 11(g) and (h). However, the
method fails to segment the pedestrian caused by the occlusion.
This is mainly because the AAE method lacks of explicit occlu-
sion modeling. The quantitative comparison with our method
can also be seen in Table II.

D. Tracking Interacting Pedestrians

We continue to evaluate our method on the “intersection”
video, in which the pedestrians interact with each other at

Fig. 11. Comparison of tracking results (best viewed in color) on PETS2001.
The first row is ground truth, the second row shows the tracking results from our
method, the third row shows the tracking results from the method [17], and the
fourth row shows the tracking results of the method [41]. Note that the images
have been cropped for a clearer visualization.

an urban intersection, as shown in Fig. 12. Although the
background of this scene is stable, there are severe occlusions
among the pedestrians, making it difficult to achieve accurate
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TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT METHODS

Fig. 12. Comparison of tracking results (best viewed in color) on the “inter-
section” video. The first column shows the original images. The second column
shows the tracking results from our method, where the tracked objects are
represented with different color masks. The third column shows the tracking
results from the method [41], where the tracked objects are represented with
contours of different color.

segmentation. From Fig. 12, we find that our method can track
the interacting pedestrians in region level. However, if the
difference between the object boundary and the background is
too small, the segmented object masks will contain errors. For
example, when the woman in Fig. 12 is occluded by the man,
part of her legs is falsely segmented and labeled. This error
stems mainly from inaccurate optical flow and low foreground-
background difference. After the occlusion ends, the two people
are tracked and segmented accurately again. By contrast, the

tracking results from the method [41] are shown in the third
column of Fig. 12. As can be seen, the method fails because the
dynamic background and occlusion occur simultaneously when
the two people interact. Moreover, there is a larger segmen-
tation error because the target and the background inherently
contain some similar colors.

E. Quantitative Analysis of the Proposed Method

Traditional analysis often uses the center position error to
evaluate the performance of object tracking methods. Although
eligible for evaluating trajectory-level tracking, it is not enough
to evaluate region-level tracking. In light of that, we employ the
segmentation accuracy to evaluate the performance of the pro-
posed tracking method. Table II shows a quantitative analysis
in terms of precision, recall, and F-measure, which are defined
in (19)–(21)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F -measure =
2 · Precision · Recall

Precision+Recall
. (21)

For each object, the true positive (TP) is the number of object
pixels that are labeled correctly, the false positive (FP) is the
number of pixels that are falsely labeled as the object, and
the false negative (FN) is the number of object pixels that are
falsely labeled as non-object. Note that the number in bold
indicates the best performance on that metric in Table II.

The results in Table II indicate that fairly high average
precisions can be attained using the proposed method. The
main reason is that our method can combine the segmentation
and tracking cues and also incorporate multi-information in the
proposed framework. However, the average recalls are not very
high for the occluded objects in the videos “PETS2001” and
“intersection”. This is mainly because the images are blurred
or the appearance of parts of the pedestrians is very similar
to the background, making it difficult to segment the objects
accurately near the object boundaries. Hence, some object
pixels are falsely labeled, resulting in a significant decrease
in recall, especially when the objects are occluded. This is the
main limitation of our method. Note that the TLD method has
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a higher recall than other methods, while has a lower precision
in the partition of foreground and background.

Lastly, we describe the computational cost. The tracking
method is implemented on a PC with 3.1GHz Intel CPU and
4G memory. We realize the DcCRF-based tracking in
MATLAB and C++ We also use some library functions in
OpenCV, including image de-noising, dense optical flow and
morphology operation. The main program of our work can
be divided into two parts: calculation of energy function and
inference of the model. Assume M is the number of nodes, the
size of which can be affected by many factors, such as the size
of the object and the resolution, which also determine the size
of the corresponding graph. The calculation of energy functions
consists of a set of sum and product steps and the total amount
required is O(M). As for the inference, analogously, an update
of loopy BP in a model with pairwise factors requires O(M2)
time in general CRFs, that is, quadratic time in the number
of M [45]. Note that the complexity O(M2) in the algorithm
refers to one update of loopy BP. In addition to this, the total
execution time is related to the condition of convergence. We
also measured its execution speed for the video “PETS2001”
with the resolution of 768 by 576, and it is on average
6 seconds per frame. Speed-ups are possible, for example, some
MATLAB code which is executed multiple times can be written
in C++.

VI. CONCLUSION

In this paper, we propose to build a dynamic coupled condi-
tional random field (DcCRF) model for region-level tracking.
Given an observation sequence {Ot}, foreground segmentation
and object tracking are coupled together and constrained to be
consistent. The use of DcCRF model allows us to incorporate
spatial-temporal contextual information of object motion, the
object appearance information, and the compatibility between
foreground label and object label. In order to build this model,
we use dense optical flow to establish the temporal relationship
for objects in consecutive frames, global affinity to segment
different objects and the background, compatibility to make
foreground label and object label mutually consistent, and local
smoothness to constrain spatially neighboring pixels. Com-
bining all these relevant cues, we construct the total energy
function and achieve region-level tracking via loopy belief
propagation. Experimental results demonstrate that the pro-
posed method can track moving objects and resolve partial
occlusions in challenging traffic scenes, and outperforms some
state-of-the-art methods in tracking and segmentation accuracy.

In the future, we plan to extend the DcCRF-based tracking
method by endowing it with the abilities of automatic initial-
ization and processing complete occlusions. We believe this
extension will make the tracking method more effective and
useful in practice.
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