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Abstract-This paper proposes an approach to moving 

vehicle tracking in surveillance videos based on conditional 

random fields (CRF). The key idea is to integrate a variety of 

relevant knowledge about vehicle tracking into a uniform 

probabilistic framework by using the CRF model. In this work, 

the CRF model integrates spatial and temporal contextual 

information of vehicle motion, and the appearance information 

of the vehicle. An approximate inference algorithm, loopy belief 

propagation, is used to recursively estimate the vehicle region 

from the history of observed images. Moreover, the background 

model is updated adaptively to cope with non-stationary 

background processes. Experimental results show that the 

proposed approach is able to accurately track moving vehicles 

in monocular image sequences. Besides, region-level tracking 

realizes precise localization of vehicles. 
Index Terms-Vehicle tracking, conditional random fields, 

region-level tracking 

I. INTRODUCTION 

Nowadays, visual traffic detection which collects various 
parameters of road traffic flow is attracting more and more 
attention in the fields of computer vision and intelligent 
transportation systems. Meanwhile, visual object tracking is 
an important and challenging task in these fields [1-3]. As an 
active research topic, tracking takes many forms, including 
automatic or manual initialization, single or mUltiple objects, 
still or moving camera, etc. , each of which has been associated 
with an abundant literature. 

Vehicle tracking is typically used to measure the vehicle 
trajectories in video sequences for analysis of urban traffic [4]. 
However, from the view of tracking results, there are mainly 
two types of tracking problems: trajectory-level tracking and 
region-level tracking. Trajectory-level tracking only gets the 
object trajectory (usually the center of the object in each 
frame), while region-level tracking aims at not only locating 
the object continuously, but also segmenting the object as 
accurately as possible. The first type of tracking receives most 
of the attention from researchers. In traffic surveillance, 
trajectory-level tracking usually use a bounding box to 
represent the object, which is not enough to precisely obtain 
the traffic parameters. In contrast, the second type of tracking 
enables us to locate the object and measure object attributes 
accurately. However, it is more difficult for us to perform 
region-level tracking. 
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The rest of this paper is organized as follows. In Section II, 
a review of existing methods is presented. In Section III, the 
CRF-based tracking framework is discussed. Section IV 
describes the implementation of our tracking system. In 
Section V, details of experimental results and discussion are 
proposed. Finally, Section VI draws a conclusion for this 
work. 

II. RELATED WORKS 

Numerous efforts have been devoted to addressing the 
tracking problem [5]. Existing tracking methods can be 
categorized according to how the features are used for tracking. 
A type of traditional region-level tracking approaches treats 
foreground segmentation and object tracking as two problems. 
They firstly obtain the foreground, then extract features from 
the foreground and finally track the objects based on the 
features [3, 6]. The main disadvantages of this processing 
method are that the errors of foreground segmentation always 
propagate forward, leading to object tracking errors. In fact, 
foreground segmentation and object tracking are closely 
related to each other. Firstly, foreground segmentation results 
directly determine the accuracy of feature extraction and 
further impact the performance of object tracking in region 
level. Secondly, the tracking results can provide a top-down 
cue for foreground segmentation. Therefore, simultaneous 
foreground segmentation and object tracking is able to make 
full use of the correlation between them and realize a 
bidirectional flow of information, which can greatly improve 
the performance of object tracking. 

In [6], the foreground segmentation is firstly extracted and 
then the objects with occlusion are segmented based on the 
features of color and location. However, this method does not 
take the information of relationship between adjacent local 
blocks. Based on the observation of the candidates, Bugeau etc. 
[3] presents a kind of tracking and segmentation method by 
minimizing the energy function. Before tracking, the 
observation is obtained by an external object detection method. 
The model combines the low-level pixel-wise measures (color, 
motion), high-level observations obtained by an external 
object detection method and motion predictions. A 
probabilistic framework is introduced in [7] for joint 
segmentation and tracking based on Bayesian inference, 
which improves the robustness of tracking a variety of objects. 
However, the spatial relationship is not considered in the 
segmentation and there will be holes and splits in the results. 

On the other hand, probabilistic graphical models are kind 
of mathematical tools for tracking for solving the inference 
problem of motion estimation. The spatial-temporal Markov 
random field (S-T MRF) is used in [ 8-10] for vehicle tracking 
in urban traffic scenes. The input image, which consists of 640 
x 4 80 pixels, is divided into 80 x 60 blocks. Every block 
corresponds to a node in an S-T MRF. The S-T MRF is used to 
model the tracking problem and generate labels for the blocks. 
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Blocks in consecutive frames that are adjacent in spatial and 
temporal domain are considered neighbors for the model. The 
S-T MRF model estimates a current object-map of the current 
frame based on the current image, the previous image, and the 
previous object map. In [11], the S-T MRF is used in 
H.2 64/A VC-compressed video sequences for tracking moving 
objects. The model is established according to the motion 
vectors and block coding modes from the compressed bit 
stream. However, this method only uses the motion vector 
feature to track the object, which can not obtain an accurate 
region of the object in a complex scene. In [12], a bidirectional 
association graph similar to MRF is used to track regions and 
handle the splitting and merging of region over a sequence of 
images [4]. Every region in a frame corresponds to a node in 
the graph. The graph has two partitions represent the regions 
from the previous and current frame respectively. The edges 
between vertices in the two partitions indicate that the 
previous regions are associated with the current regions. The 
weights of edges are the area of overlap between regions in the 
two partitions. The region tracking problem is considered as 
the problem of solving the maximal weight as of the graph. 

However, the above methods using S-T MRF model 
mostly consider the motion information, which in fact can be 
categorized as a kind of motion detection methods. As a result, 
these methods can only give a bounding box of the objects 
without precise region characterizing the object. Moreover, in 
the literature, many graph cuts-based methods have been 
proposed for segmentation issues, but very few works use this 
methodology for tracking[2]. As a result, our methods take 
advantage of these methods to achieve accurate region-level 
tracking. To track individual objects effectively, we have 
developed a tracking algorithm based on the CRF model. In 
this paper, we focus on multi-object tracking in the region 
level by using a static camera, by combining the advantages of 
tracking and segmentation. Based on these ideas, we achieve 
the tracking in both the temporal domain and the spatial 
domain. Our contribution is that we use CRF model to 
incorporate motion and appearance cues in a single unified 
framework to jointly track and segmentation objects, a key 
step towards traffic scene understanding. In addition, since we 
do not specify the unique features of the object, the method 
presented in this work is a general framework and can track 
different kinds of objects. 

III. SEGMENT A nON AND TRACKING BASED ON CRF 

The definition of a conditional random field (CRF) is 
given by Lafferty et al. in [13]. As a probabilistic framework 
for labeling and segmenting structured data, CRF is being 
widely used in computer vision. Specifically, we can define a 
CRF on observations X and random variables Y over the video 
scene. Let G = (V, E) be a graph such that Y = (YV)VEV, so 
that Y is indexed by the vertices of G. Then (x, y) is a 
conditional random field when the random variables Yv, 
conditioned on x, obey the Markov property with respect to 
the graph: 

P(Yvlx, yw, w"* v) = P(Yvlx, yw, w-v) (1) 

where w-v means that wand v are neighbors in G. The 
conditional distribution for a CRF takes the form [14]: 

P(ylx) = 
Z�X) 

n�=l1jJa(Ya, xa) (2) 

where 1jJa is a potential function and the x-dependent partition 
function Z(x) = Ly n�=l1jJa(Ya' xa) is a normalization 
factor which ensures that the distribution P(ylx) given by (1) 
is correctly normalized. In the next sections, we will describe 
our tracking model based on the CRF model. 

A. Definition of the Tracking Model 

Generally speaking, the moving object is characterized by 
its spatial and temporal characteristics. For example, the 
appearance usually does not change during the tracking, the 
object often has relatively consistent motion features and the 
region occupied by the object has similarity of motion. In 
addition, the object will not disperse across different parts of 
the frame. In the spatial domain, if the vehicles in two adjacent 
frames are the same one, the spatial distance is close. Based on 
all these characteristics, our CRF model incorporates the 
motion and appearance for tracking the vehicles. 

Tracking can be treated as a problem of fmding the most 
likely assignment of every pixel, that is inferring maximwn a 
posteriori (MAP) solution of the CRF model. The CRF model 
uses the graph structure in Fig. l. More specifically, given an 
image sequence {xt} .  As shown in Fig.l, the node y, 
represents the object labels, and the node Xi represents the 
observation. For the object labels y, the label for a pixel with 
the index i = 1, ... , D within the tth image is denoted by Yt(i). 
We want to infer the tracking label Yt(i) E {D, 1, ... , N }  given 
the observed image sequence {xt}, which is, in fact, the 
inference of the MAP of CRF. 

��d . . .  Trackmglabel 

• • •  Observation 

Figure 1. Graphical representation of CRF. where the y; represents the 
object labels, and the X; represents the observation. Note that X; is not 
generated by the model. 

In this work, we define the conditional probability of the 
foreground segmentation and tracking process given an image 
sequence {xt} as 

log P(Yt IY t-v x , B) 
ex: L (1jJi (Yt(i), Y t-V xt-1:t; B1jJ) + Wi (Yt(i), xt-1:t; Bw) 

+Pi(Yt(i), x; Bp) + L(i,j)ENi Ti(Yt(i), YtU), xt-1:t; BT)) (3) 

where 1jJi' Wi, Pi and Ti are potential functions, 9 = 

{B1jJ' Bw, Bp' BT} are the model parameters, and Ni denotes the 
8-pixel spatial neighborhood. Note that the model consists of 
three unary potentials and one pairwise potential. In following 
sections, we will give a description of the energy functions and 
their parameters used for tracking objects. 

B. Temporal Association Relationship 

In order to establish the association relationship in 
temporal domain, we employ dense optical flow as the simple 
motion estimation of the tracked object based on the approach 
proposed in [15]. Note that the energy used in foreground 
segmentation also implicitly uses motion information, but 
only considers the general motion characteristic. Compared to 
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the method prosed in [16, 17], we think the optical flow can 
give a better representation of the corresponding relationship 
between pixels in consecutive frames. An intuitive idea is that 
we can use the optical flow to backwards-project the pixel 
xt(i) in current frame. If the corresponding pixel xt-I U) in 
the previous frame is labeled as object, then the pixel xt(i) 
should be labeled as object. The intuitive example is shown in 
Fig.2 . 

(a) (b) 

(c) (d) 

50 '00 ,so 

(e) 

Figure 2. Projection result using the optical flow: (a) previous frame, (b) 
current frame, ( c) ground truth image, (d) backwards-projection image, ( e) 
difference between the backwards-projection and the ground truth. 

From the results in Fig. 2 (e), we can see that the simple 
backwards-projection can get a good performance except the 
boundary. However, it is usually sensitive to the noise if we 
only consider the corresponding pixel in the previous frame, 
which will result in lots of holes and split in the tracking. 
Inspired by the work proposed in [11] for single object 
tracking, the temporal association relationship is measured by 
the overlap, which can be determined by the 
backwards-projected candidate labeling for the current frame 
and the labeling of the previous frame. 

As shown in Fig. 3, after getting the optical flow, we 
backwards-project the pixel in the tth frame back to the pixel 
in the (t - l)th frame. Specifically, consider a pixel P in the 
current frame and we can project it backwards into the pixel P' 
in the previous frame along its optical flow vt(i) = 

(vx(i), vy(i) ) , that is (x + Llx, y + Lly), where I1x and l1y is 

the fraction of P'. The degree of overlap R is computed as the 
fraction of pixels within the backwards-projected pixel in the 
previous frame which carries the object label according to the 
labeling Yt-I' 

This temporal association relationship potential can be 
defined as: 

where R(-) denotes the overlap, 8(-) is the Kronecker delta 
function. We now introduce a labeling function A: Xt � 
[0; N], which associates each pixel of the current image with 
an object or the background. 

i .. �:P 
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Figure 3. Degree of overlap R. The point P is the candidate point in current 
frame, while the projected point P' is the point with the coordinate Xt-1 (i) + 
vt(i), that is(x + Llx,y + Lly).!:J.x and!:J.y is the fraction of P'. 

C. Foreground Segmentation 

Temporal association relationship is a powerful cue for 
object tracking and can provide relatively accurate results in 
many cases. However, it highly depends on the optical flow 
which may be inaccurate especially near object boundaries, 
which is more evident in Fig. 5. The dense optical flow 
calculation does not always work well for we often choose a 
region to search and for the low rate video this assumption is 
not appropriate. Moreover, the motion vector can be affected 
by the illumination and complex background, which will 
result in a lot of holes and that the boundary is usually not 
precise. Besides the errors from the optical flow, the errors in 
previous labeling will transfer to the current frame for we use 
the overlap based on labeling of the previous frame. The 
accumulative error would lead to a bad tracking result. 

'�" ,.'. , -. I�i�"� 

./:f7#P.. �. \-

/ " .\ I � - , ' 
(a) (b) 

,�>:-.. 

, 
(c) 

Figure 4. Foreground segmentation result: (a) background image, (b) 
current frame, ( c) foreground mask where black pixels denote foreground. 

On the other hand, we can employ temporal or dynamic 
infonnation to handle the evolution of the scene. Moreover, in 
order to handle non-stationary background processes, we can 
update the background model in an adaptive way based on the 
recent history of observed images [16]. A background image 
is constructed using GMM, to give an mask of the tracked 
object. The importance of using foreground segmentation cues 
to address the inaccuracy of optical flow will become more 
evident in the experimental results (Section 5.A). As a result, 
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we use background model to filter the noise and make the 
tracking system more robust. In this paper, we construct the 
background model by using GMM[18], as shown in Fig. 4 .  In 
addition, morphology is used to remove noise and join 
disparate element. 

This foreground segmentation potential can be defined as: 

wJYt(i), xt-1:t; ()u:,) = ()wo(g(Xt(i)) - i) (5) 

where ()w is the weight of the potential. A labeling function is 
introduced here g: xt � [0,1] . The labeling function 
associates each pixel of the current image with the object or 
the background via GMM. 

D. Motion Coherence 

In natural video, one characteristic of rigid object is the 
relative coherence of the motion characteristics of pixels 
belonging to the object, as shown in (c) and (d) of Fig. 5. In 
this work, we will use the Gaussian mixture model (GMM) to 
model the distribution of the optical flows. The clusters of 
optical flows are performed in an unsupervised manner using 
k-means and the number of components of the GMM is 
typically set to 5. As shown in (e) of Fig.5, we can calculate 
the probability of pixels to belong to each object exploiting the 
motion distribution of objects. In Fig.5(t), we set the posterior 
probability of the background to a constant, which makes the 
posterior probability of the objects more clear. We can see that 
different objects often have different motion model, which can 
be used as a cue for classification of different objects. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. Dense optical flow of the vehicle. (a) Previous frame. (b) Current 
frame. (c) and (d) show the dense optical flow in x and y direction. (e) and (f) 
are the posterior probability using GMM modeling and (f) set the posterior 
probability of the background to a constant. 

The potential function is defined as follows: 

Pi(Yt(i), x; ()p) = ()p 10gP(Yt(i) Ix) (6) 

where ()pis the weight and P(Yt(i) Ix) denotes the probability 
of each pixel to belong to the object based on the motion 
model. 

E. Local Smoothness 

Generally speaking, we assume that the object is spatially 
compact. To be more specific, for the candidate pixel, the 
more neighbors there are belonging to the object , the more 
likely the pixel belongs to the object. We take this neighboring 
relationship into account by connecting each pixel variable to 
its nearest neighbors in the image plane to encode a local 
smoothness constraint. Specifically, let YtU) E Ni be the 
neighborhood pixel, we define a potential function term with 
the type as follows: 

Ti(Yt(i), YtU), xt-1:t; ()r) 

= ()r IIXt(O_
l
Xt(j)1I2 ( 1 - o(Yt(i) - YtU))) (7) 

where ()r is the weight and we tend to give a larger weight to 
the closer neighbors. Thus, two neighboring pixels are more 
likely to have the same label. 

IV. IMPLEMENT A nON 

For the accuracy of optical flow will have an effect on the 
performance of our tracking method, we use a filter to 
eliminate the outliers by using statistical approach. In this 
paper, we use 3(1 rule to detect the outliers and then use a 
median value to replace them. 

As for the tuning of parameters, we think that the 
contribution of every energy function is different, which is 
influenced by its reliability. Therefore, when we determine the 
parameters we measure its reliability to tune the parameters. 
However, learning the CRF parameters proves difficult. In our 
work, we use a more pragmatic solution based on piecewise 
training [19] to determine the parameters. P iecewise training 
divides the CRF model into pieces corresponding to the 
different terms in (3). These pieces in our model are then 
trained independently, as if each of them was the only term in 
the conditional model. Finally, we recombine these pieces 
with weights. When we use piecewise training in our work, 
the parameters ()1/J' ()w> ()p and ()r can be learned by 
maximizing the conditional likelihood in each of the four 
models. In each case, only the factors in the model which 
contain the relevant parameter vector are retained. In addition, 
this training method minimizes an upper bound on the log 
partition function. 

Given the structure of the CRF model and the learned 
parameters, we can infer the MAP solution of the model, i.e., 
the labeling that maximizes the conditional probability of (3). 
That is to find the most probable labeling y* as shown in (8), 

y* 
= argmaxy log P(Yt IYt- l > x ,  9 ) (8) 

The optimal labeling is found by applying the loopy belief 
propagation. Although belief propagation is exact only when 
the structure has no loop, in practice it has been proved to be a 
successful approximate inference method for general 
graphical models [2 0]. 
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V. EXPERIMENT AND DISCUSSION 

We implement the CRF tracking in Matlab and c++ 
without any code optimization and also use some functions in 
OpenCV. The experiments are carried out on an Intel 3.1GHz 
P C  platform with 4 GB memory. The reference parameters 
used in this paper are presented as follows. The weight 
parameters in the foreground segmentation layer are 81/1 = 

0.55,8w = 1, 8p = 0.5 , and 8r = 0.5. We conduct our 
experiment on the sample video in MATLAB and the video of 
ours captured at Zhongguancun Road. The video shots include 
vehicles under different scales and poses. Because our method 
is a general tracking method, the unique appearance and 
decoration have little effect on the final results. In the first 
frame, we use the hand-made initialization. 

A. Tracking vehicle with large scale change 

In this experiment, the video is from the sample video in 
MATLAB, from the results we can see that the algorithm can 
deal with the tracking problem on the highway. The reason is 
that the scene is simple and there is not much interference and 
the background is stable. From the results, we can see that the 
vehicle can be tracking in region level while the size of the car 
changes dramatically during the tracking. However, there are 
some errors near the boundary, which are caused partly by the 
difference between the car and the background and partly by 
the accurate manual annotation. 

(a) (e) 

(b) (0 

(c) (g) 

�7 ." � 
(d) (h) 

Figure 6. Result of vehicle tracking with large scale change. (a)-(d) are 
results of tracking for Frame #73, #77, #80, and #81 respectively. (e)-(h) are 
results of tracking for Frame #73, #77, #80, and #81 respectively after setting 
the wight Ow to zero.True positives (TPs) are shown as green, false positives 
(FPs) as blue, and false negatives (FNs) as red. 

On the other hand, we propose an analysis of the influence 
on the results of the foreground segmentation tenn of the 
energy defined in (5). If the parameter SU) is set to zero, it 
means that no foreground segmentation is applied to the 
tracking. The fmal tracking result of the vehicle then only 
depends on the optical flow and the probability of each pixel to 
belong to the object. That is the reason why the vehicle is not 
well segmented in (e)-(h) of Fig. 6. 

B. Tracking vehicle on urban road 

In this experiment, we evaluate our method in the urban 
scene at Zhongguancun Road. In this traffic scene, the 
background is more complex and has more noise, which 
makes it more difficult to achieve precise region-level tracking 
of the vehicle. 

From the results shown in Fig. 7, we can see that our 
algorithm can track the object in region level. However, if the 
difference between the background and the boundary of the 
vehicle is small, the segmentation will contain errors. From 
the results, we can see that there are errors in the boundary, 
resulting from inaccurate optical flow and low image 
resolution. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 7. Result of vehicle tracking on urban road. (a)-(f) are Frame #2060, 
#2062, #2068, #2070, #2072, and #2074 respectively. True positives (TPs) 
are shown as green, false positives (FPs) as blue, and false negatives (FNs) as 
red. 

C. Quantitative Analysis 

Table 1. shows a quantitative analysis in terms of Accuracy, 
Recall, and False alarm, which are defined as in (9), (10) and 
(11). 

Accurac = 

TP+TN 
Y TP+FN+FP+TN 

Recall = � 
TP+FN 

False alarm = � 
FP+TN 

(9) 

(10) 

(11) 
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As shown in Table. 1, we can get a good performance for 
the vehicle tracking through our method. However, as 
mentioned before, if the background and the boundary of the 
vehicle have the similar appearance, the segmentation will 
contain errors. Moreover, for the tracking in urban road, the 
recall is not as good as in the sample video in MATLAB. The 
main reason of this is that the environment in urban road is 
more complex. 

TABLE I 
COMPARISON OF TRACKING METHODS IN TERMS OF THE AVERAGE 

ACCURACY RECALL AND FALSE ALARM , , 

Accuracy Recall False Alarm 

Section A 99.6% 94.7% 0.2% 

Section B 99.5% 91.8% 0.3% 

VI. CONCLUSION 

In this paper, we use a conditional random field (CRF) 
model to build the conditional distribution over vehicle 
tracking given an image sequence {xt}. The application of 
conditional random fields allows us to incorporate various 
motion and appearance information into a single unified 
framework. For this model, we employ dense optical flow to 
establish the relationship between the objects in consecutive 
frames, GMM background model to segment foreground and 
background, and local smoothness to impose constraints 
between the neighboring pixels. By jointly employing these 
cues, we succeed in achieving accurate vehicle tracking. 

In the future, we will extend the tracking model by 
endowing it with the abilities of automatic initialization, 
shadow suppression, and occlusion handling. These 
extensions will make the approach more effective and useful 
in practice. 
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