Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity

Yang Du, Marie Yang, Syann Lee, et al.

Genes Dev. 2012 26: 1306-1311
Access the most recent version at doi: [10.1101/gad.191031.112](http://genesdev.cshlp.org/content/26/12/1306.full.html#ref-list-1)

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2012/06/19/26.12.1306.DC1.html

References
This article cites 27 articles, 14 of which can be accessed free at: http://genesdev.cshlp.org/content/26/12/1306.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genesdev.cshlp.org/subscriptions)
Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity

Yang Du,† Marie Yang,† Syann Lee,‡ Cassie L. Behrendt,§ Lora V. Hooper,§,∥ Alan Saghatelian,∥ and Yihong Wan†,∥

†Department of Pharmacology, ‡Department of Internal Medicine, Division of Hypothalamic Research, §Department of Immunology, ∥The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; †Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA

Corresponding author

For all newborn mammals, mother’s milk is the perfect nourishment, crucial for their postnatal development. Here we report that, unexpectedly, maternal western diet consumption in mice causes the production of toxic milk that contains excessive long chain and saturated fatty acids, which triggers ceramide accumulation and inflammation in the nursing neonates, manifested as alopecia. This neonatal toxicity requires Toll-like-receptors (TLR), but not gut microbiota, because TLR2/4 deletion or TLR4 inhibition confers resistance, whereas germ-free mice remain sensitive. These findings unravel maternal western diet-induced inflammatory milk secretion as a novel aspect of the metabolic syndrome at the maternal offspring interface.

Supplemental material is available for this article.

Received February 29, 2012; revised version accepted May 11, 2012.

RESULTS AND DISCUSSION

Maternal WD causes neonatal toxicity and inflammation

Wild-type female C57Bl6j mice were fed either a normal chow or a western-like rodent diet containing extra fat, cholesterol, and sucrose for 2 wk before breeding with wild-type male mice and were maintained on chow or WD throughout pregnancy and lactation. Surprisingly, the pups from the WD-fed mothers (WD moms) started to lose their body hair at around postnatal day 18 (P18) [Fig. 1A], the hair loss persisted until approximately P30 and was recovered after weaning [data not shown]. The pups from the WD moms also exhibited an increased body weight [Fig. 1B]. H&E staining revealed that the skin of the pups from the WD moms developed follicular cysts and a thicker fat layer compared with the skin of the pups from the Chow moms [Fig. 1C]. Oil Red O staining indicated that the skin of the pups from WD moms contained more lipids [Fig. 1C], which was confirmed by the significantly higher lipid/skin weight ratio [Fig. 1D]. Furthermore, the skin of the pups from the WD moms exhibited precocious leukocyte infiltration [Fig. 1E] and elevated expression of inflammatory genes [Fig. 1F]. Consistently, the intestines and livers of the pups from the WD moms also had increased expression of inflammatory genes [Supplemental Fig. S1]. These phenotypes, such as skin inflammation, were also recovered after weaning [Fig. 1F]. Together, these results indicate that maternal WD feeding causes neonatal toxicity, manifested as lipid accumulation, inflammation, and alopecia.

The neonatal toxicity originates from defects in lactation, rather than gestation

To determine whether the neonatal toxicity was associated with maternal WD feeding during gestation or lactation, we performed cross-fostering experiment by switching pups between WD moms and chow moms on P2. The results showed that pups born from Chow moms but nursed by WD moms developed alopecia at a penetrance comparable with pups born and nursed by WD moms. In contrast, pups born from WD moms but nursed by Chow moms were largely refractory to hair loss [Fig. 2A]. These results indicate that the maternal WD-mediated neonatal toxicity was caused by postnatal defects in lactation, rather than...
prenatal defects in gestation. This phenotype persisted when the extra cholesterol or sucrose was individually removed from the WD (data not shown). Moreover, when the fat content of the diet was increased to 60% Kcal, the neonatal toxicity was more severe, as evidenced by lethality at P10–P20. Together, these results indicate that the excessive fat in the WD was mainly responsible. Because the WD contains not only a higher fat content, but also a higher percentage of saturated fatty acids (FAs) (Fig. 2B), we next examined lipid accumulation and FA composition in the mammary glands (MGs) and milk.

Maternal WD increases long chain and saturated FAs (LcS-FAs) in milk

H&E staining and Oil Red O staining showed that the MGs of WD moms had more and larger adipocytes as well as higher lipid content on lactation day 10 (L10) (Fig. 3A). Consistent with these results, the MG lipid/tissue weight ratio was increased by 2.4-fold [Fig. 3B], and the lipid/milk weight ratio was increased by 24% for the milk from WD moms (WD milk) compared with the milk from chow moms (chow milk) (Fig. 3C).

Maternal WD increases ceramides (Cer) in pups

Saturated FAs induce the biosynthesis of Cer and glucosylceramides (GlcCer) to promote inflammation, insulin resistance, and metabolic diseases (Holland et al. 2007; Neville and Picciano 1997). Previous studies showed that inflammation is specifically activated by saturated FAs but not unsaturated FAs [Lee et al. 2001, 2003a,b; Shi et al. 2006; Saberi et al. 2009] and by long chain FAs (C16:0 and C18:0) but not medium/short chain FAs (C8:0–C12:0) (Hommelberg et al. 2009). Therefore, we next investigated the FA composition of milk triglycerides by shotgun lipodomic analysis using neutral loss mass spectrometry (Han and Gross 2005). The results showed that the elongation ratio [(C18:0)/(C10:0)] (Fig. 3D) was significantly increased by 1.9-fold in the WD milk compared with the chow milk, indicating a higher percentage of long chain FAs. Moreover, the saturation ratio [(C18:0)/(C18:2)] was also 2.8-fold higher in the WD milk (Fig. 3E), indicating a higher percentage of saturated FAs. These results revealed that the WD milk not only had a higher fat content, but also contained excessive LcS-FAs. To test whether the LcS-FA in the WD milk was the cause of alopecia, we supplemented pups from chow moms with either palmitic acid (C16:0) or linoleic acid (C18:2) by oral gavage, starting at P1. The results showed that excessive intake of palmitic acid, but not linoleic acid, was sufficient to cause pup hair loss (Fig. 3F).
Maternal WD increases LcS-FAs in milk and Cer in pups. (A) Increased fat in the MGs of WD moms. (Top) H&E staining shows increased number and size of adipocytes (arrows). (Bottom) Oil Red O staining shows increased lipid accumulation. Bars, 25 μm. (B) Quantification of the lipid weight in lactating MGs (n = 3). (C) Quantification of the lipid content in milk (n = 4). (D,E) Shotgun lipidomic analyses of the FA composition in milk triglycerides by mass spectrometry. (D) Ratio of long chain versus short chain FAs (n = 4). (E) Ratio of saturated versus unsaturated FAs (n = 4). (F) Oral supplementation of palmitic acid, but not linoleic acid, to the pups from chow moms, starting at P1, was sufficient to cause hair loss (n = 4). (G) Quantification of the lipid content in pup skin and intestines (n = 4). (H) Expression of serine palmitoyl-CoA transferases in pup skin and intestines (n = 4). (I) LacCer-induced inflammatory genes in macrophage. RAW264.7 macrophage cell line was treated with d18:1/12:0 LacCer at the indicated concentrations for 6 h (n = 3).

Holland and Summers 2008]. To further investigate whether the LcS-FAs in the WD milk were the cause of its inflammatory property, we tested whether ingesting the WD milk increased Cer levels in the pups. Both Cer and GlcCer were significantly more abundant in the skin and intestines of the pups nursed by WD moms (Fig. 3G). Consistently, the expression of the key enzymes for Cer biosynthesis, serine palmitoyl-CoA transferase 1 (Sptlc1) and Sptlc2, was elevated in the skin and intestines (n = 4). (I) LacCer-induced inflammatory genes in macrophage. RAW264.7 macrophage cell line was treated with d18:1/12:0 LacCer at the indicated concentrations for 6 h (n = 3).

Previous studies have shown that both TLR2 and TLR4 mediate saturated FA-induced inflammation and insulin resistance, suggesting functional redundancy [Senn 2006; Shi et al. 2006; Poggi et al. 2007; Tsukumo et al. 2007; Caricilli et al. 2008]. To further investigate whether the neonatal toxicity associated with maternal WD feeding was caused by LcS-FA-mediated inflammation, we tested whether TLR2/4 double-knockout (DKO) mice were resistant to maternal WD-induced pup hair loss. Wild-type or TLR2/4 DKO female mice were fed with WD for 2 wk before breeding to wild-type or TLR2/4 DKO male mice, respectively, and were maintained on WD throughout pregnancy and lactation. The results showed that while wild-type pups developed alopecia in all of the litters, TLR2/4 DKO pups were completely refractory to hair loss (Fig. 4A). CD11b immunofluorescence staining showed that maternal WD-mediated leukocyte infiltration in pup skin was largely abolished by TLR2/4 deletion (Fig. 4B). Gene expression analysis of a panel of proinflammatory cytokines/chemokines/enzymes showed that maternal WD-induced inflammation in pup skin was significantly dampened by TLR2/4 deletion (Fig. 4C). Mass spectrometry analysis showed that maternal WD-induced Cer accumulation in pup skin was also attenuated by TLR2/4 deletion (Fig. 4D). Cross-fostering experiments revealed that wild-type pups still developed alopecia when fostered with TLR2/4 DKO WD moms, whereas TLR2/4 DKO pups were still resistant to hair loss when fostered with wild-type WD moms. These results indicate that TLR2/4 deletion in the pups confers resistance to the toxic milk, rather than that TLR2/4 deletion in the moms corrected the milk composition.

To determine whether the inflammatory response was mediated by TLR signaling in macrophages, we next tested mice harboring macrophage-specific deletion of the TLR adaptor protein Myd88 [Myd88−/−/lysozyme-Cre]. These mice were also resistant to hair loss (Fig. 4E), suggesting that the maternal WD-induced neonatal toxicity is mainly caused by activation of the TLR2/4–Myd88 signaling pathway in the macrophages.

Germ-free mice remain sensitive to maternal WD-induced neonatal toxicity

It has been shown that WD-induced metabolic disorders may involve the alteration of gut microbiota and that TLR2/4 can mediate inflammatory responses induced by not only saturated FAs, but also bacterial components [DiBaise et al. 2008; Konner and Bruning 2011]. In order to determine whether gut microbiota were required for the
maternal WD-induced neonatal toxicity, we subjected germ-free wild-type mice to the same WD feeding and breeding experimental scheme. The results show that instead of resistance, the pups nursed by WD-fed germ-free moms developed a more severe phenotype, evident from an earlier onset (P13) and a higher penetrance (100% of pups and litters) of the alopecia (Fig. 4F), as well as an 80% lethality by P25. This suggests that certain intestinal bacteria may be protective to this toxicity. Together, the findings that TLR2/4 or Myd88 deletion, but not bacteria elimination, effectively rescues this phenotype provide strong in vivo and genetic evidence that the inflammatory activity in the WD milk resides mainly in the Lcs-FAs.

Neonatal treatment with a TLR4 inhibitor prevents maternal WD-induced toxicity

We next investigated whether pharmacological inhibition of the TLR signaling could prevent this phenotype. Genetic rescue experiments revealed that TLR4 deletion was more effective (0% hair loss) than TLR2 deletion (20% hair loss), thus, we tested the effect of a synthetic TLR4 inhibitor, TAK-242 [Li et al. 2006; Sha et al. 2007]. Pups from the same WD mom were divided into two groups and orally gavaged with either TAK-242 (10mg/kg per day) or vehicle control starting at P2. While 67% of the pups in the vehicle-gavaged control group developed alopecia, none of the pups in the TAK-242-treated group exhibited hair loss (Fig. 4G). This result indicates that maternal WD-induced neonatal toxicity can be effectively treated by TLR4 inhibitors.

In summary, here we show that maternal WD feeding causes the secretion of inflammatory milk that contains excessive Lcs-FAs, which activate the TLR2/4–Myd88 pathway to elevate the levels of Cer as well as proinflammatory cytokines and enzymes, consequently triggering neonatal toxicity [Fig. 4H]. Therefore, conceptually, our findings unravel the WD-induced breast milk toxicity and inflammatory milk as a novel aspect of the metabolic syndrome at the maternal offspring interface. Understanding how maternal defects such as WD consumption lead to toxic milk secretion may have implications in the etiology and treatment of neonatal inflammatory disorders.

Mother’s milk represents a unique metabolic entity that exerts direct consequences on the developing newborns, whose digestive and immune systems are still immature. Indeed, our findings reveal that neonates are very sensitive to the alterations of milk lipid composition and that excessive Lcs-FAs in the milk causes toxicity and inflammation, manifested as a visually identifiable transient alopecia phenotype. Importantly, we gained key mechanistic understanding of this abnormality by demonstrating that TLR2/4 DKO mice, but not germ-free mice, are resistant to this alopecia. Therefore, technically, our study highlights the milk–neonate axis as a novel in vivo experimental system to identify new genetic or biochemical factors that regulate lipid metabolism and inflammation.

Materials and methods

Mice and diet

TLR2/4 DKO mice on C57B6 background have been described [Hoshino et al. 1999; Takeuchi et al. 1999]. Wild-type C57B6, lysozyme-cre [Claussen et al. 1999], and Myd88 flox (Hou et al. 2008) mice were from Jackson Laboratory. Mice were fed ad libitum with irradiated chow or WD that had been tested under various culture conditions to be free of bacteria and fungi (Harlan Laboratories). The WD was whole-grain-based, as was the chow control diet, in order to support pregnancy and lactation and contain a composition of extra fat, cholesterol, and sucrose similar to that of the typical synthetic WD. Germ-free C57B6 mice were maintained in plastic gnotobiotic isolators as described [Cash et al. 2006]. For MG, milk, and pup analyses, 8- to 10-wk-old female mice were prefed with WD or Chow for 2 wk before breeding and were maintained on WD or Chow throughout pregnancy and lactation. The litter sizes were normalized to six pups. Milk was collected as described [Schwertfeger et al. 2003; Wan et al. 2007]. For FA supplementation, pups from the same chow mom were orally gavaged with palmitic acid or linoleic acid at 100mg/kg per day or vehicle control. For TLR4 inhibitor treatment, pups from the same WD mom were orally gavaged with either TAK-242 (10mg/kg per day) or vehicle control starting at P2.
WD mom were orally gavaged with TAK-242 (CL-095, Invivogen) at 10mg/kg per day or vehicle control. All protocols for mouse experiments were approved by the Institutional Animal Care and Use Committee of University of Texas Southwestern Medical Center.

Histology and staining

For histological analysis, the tissues were immediately fixed in 10% PBS-buffered formalin overnight, then processed, paraffin-embedded, sectioned, and H&E-stained according to standard protocols. For Oil Red O staining, the tissue sections were immediately frozen in OCT compound in a dry ice/ethanol bath and stored at −80°C until sectioning. The frozen sections were fixed in formalin for 10 min, dipped in 60% isopropanol, and then stained in Oil Red O working solution (60% 3 mg/mL Oil Red O in isopropanol) for 15 min. For immunofluorescence staining, frozen OCT sections were fixed in acetone for 10 min and stained with FITC-conjugated antibodies specific for CD11b/Mac-1.

Gene expression analyses

Tissue samples were snap-frozen in liquid nitrogen and stored at −80°C. RAW264.7 macrophages were treated with D18:1/12:0 LacCer (Avanti Polar Lipids) or vehicle control for 6 h. RNA was extracted using Trizol (Invitrogen), treated with RNase-free DNase I, reverse-transcribed into cDNA using a ABI High-Capacity cDNA RT kit, and analyzed using real-time quantitative PCR (SYBR Green) in triplicate. All RNA expression was normalized by L19.

Lipid analysis by mass spectrometry

Organic soluble metabolites were extracted from tissue or milk samples with a 2:1:1 CHCl₃/MeOH/H₂O solution and homogenization as described (Wan et al. 2007). Samples were stored at −80°C and dissolved in CHCl₃ prior to analysis. Cer were quantified by LC-MS/MS in positive ionization multiple reaction monitoring (MRM) mode as described (Sullards and Merrill 2001). Shotgun lipidomic analyses were performed using an Agilent Triple Quadrupole mass spectrometer under neutral loss mode as described (Han and Gross 2005). A C17:0 triglyceride standard (Sigma) was added to each sample at 100 nmol/mg prior to lipid extraction and was used to normalize the results.

Statistical analyses

All statistical analyses were performed with Student’s t-test and are represented as mean ± standard deviation (s.d.). **P** < 0.05, ***P** < 0.01, (**) **P** < 0.001, (***) **P** < 0.0001, [a.s.] not significant (* P > 0.05).

Acknowledgments

We thank Chandrashankar Pasare at University of Texas Southwestern Medical Center for TLR4/2 DKO mice, David Mangelsdorf and Joel Elmquist at University of Texas Southwestern Medical Center for discussion, University of Texas Southwestern Medical Center Molecular Pathology Core for histology, and Sunia Trauger at the Small Molecule Mass Spectrometry Facility of Harvard FAS Center for Systems Biology for assistance with lipid analysis. Y.W. is a Virginia Murchison Littinhcum Scholar in Medical Research and a recipient of the Basil O’Connor Scholar Award. A.S. is an investigator of the Howard Hughes Medical Institute. This work was supported by the March of Dimes (#5-FY10-1 to Y.W.), the Welch Foundation [I-1751 to Y.W.], CPRIT (RP100841 to Y.W.), the NIH [R01 DK089113 to Y.W., and R01 DK078555 to L.V.H.], and University of Texas Southwestern Medical Center Endowed Scholar Startup Fund [to Y.W.].

References

