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ABSTRACT
As the feature size of the semiconductor process is scaling
down to 10nm and below, it is possible to assemble systems
with high performance processors that can theoretically pro-
vide computational power of up to tens of PLOPS. However,
the power consumption of these systems is also rocketing up
to tens of millions watts, and the actual performance is only
around 60% of the theoretical performance. Today, power
efficiency and sustained performance have become the main
foci of processor designers. Traditional computing architec-
ture such as superscalar and GPGPU are proven to be power
inefficient, and there is a big gap between the actual and peak
performance. In this paper, we present the MaPU architec-
ture, a novel architecture which is suitable for data-intensive
computing with great power efficiency and sustained com-
putation throughput. To achieve this goal, MaPU attempts
to optimize the application from a system perspective, in-
cluding the hardware, algorithm and corresponding program
model. It uses an innovative multi-granularity parallel mem-
ory system with intrinsic shuffle ability, cascading pipelines
with wide SIMD data paths and a state-machine-based pro-
gram model. When executing typical signal processing algo-
rithms, a single MaPU core implemented with a 40nm pro-
cess exhibits a sustained performance of 134 GLOPS while
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consuming only 2.8 W in power, which increases the actual
power efficiency by an order of magnitude comparable with
the traditional CPU and GPGPU.

1. INTRODUCTION
Today, power efficiency is a key factor for mobile com-

puting. Great advances have been made to prolong battery
life and provide greater computing abilities[1][2]. However,
power efficiency is not only an important factor in mobile
computing, but also a key metric in supercomputing.

As Moore’s Law is still effective, tremendous transistors
can be used for building super processors like Intel’s Xeon
Phi co-processor and the Nvidia GPU. The Intel Xeon Phi
7120p co-processor was built with 61 cores, providing a the-
oretical peak performance of 2.4 TFLOPS. The latest Nvidia
Kepler GK210 provides a theoretical peak performance of
4.37 TFLOPS. However, the peak power levels of these two
chips are 300 W and 150 W, respectively, which means their
power efficiency levels are only 8 GFLOPS/W and 29 GFLOPS/W,
respectively. Furthermore, these figures represent their theo-
retical power efficiency; their actual power efficiency is even
lower. As reported by Green500, which aims to provide a
ranking of the most energy-efficient supercomputers in the
world, the most power-efficient supercomputer is only 0.7
GLOPS/W,

Although the power consumption of a single processor
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is not necessarily a disadvantage for indoor systems with a
sustained power supply, the aggregate power of those super-
computers built with thousands of super processors would
eventually limit the scale of the system given the increasing
cost of deployment and maintenance involved. For exam-
ple, the most powerful super computer Tianhe2 consumes 24
MW(with a cooling system) and occupies 720 square meters
of space. To build such a system, dedicated computer com-
plex and power station are needed.

Another problem with today’s computing is the gap be-
tween peak performance and sustained performance[3]. Only
a few improvements have been made today[4]. The actual
performance of the most two powerful supercomputers (ranked
by Top500 in June 2015) is only 62% and 65% of the corre-
sponding peak performance, respectively, even with a very
structured algorithm such as LINPACK applied. As their
sustained performance is much lower than their theoretical
performance, the actual power efficiency of their processors
is less than the theoretical power efficiency.

Many factors contribute to the performance gap[3], al-
though the most important one is that the compilers usually
implicitly use simplified models of processor architecture
and do not take the detailed workings of each processor com-
ponent into account, such as the memory hierarchy, SIMD
instruction extensions, and zero overhead circulations. It has
been reported that the mean usage for various GPU bench-
marks is only 45%, and that the main sources of underuse
are memory stalls, which are caused by memory access la-
tency and inefficient access patterns [4]. As a result, most
processors rely heavily on hand-optimized libraries to boost
actual performance in many applications, which makes the
compiler subsidiary in performance critical program.

Given the current abundance of chip transistors, many new
architectures leverage various ASIC-based accelerators to
increase the power efficiency and narrow the performance
gap. However, these architectures are inflexible and require
great effort to design a chip for specific applications. We
aimed to construct a programmable accelerator architecture
from a system perspective that can provide performance and
power efficiency comparable with ASIC implementation and
can be tailored by the programmer to specific workloads.
The intuitive strategy we adopt is to map the mathemati-
cal representation of the computation kernel into massive re-
configurable computing logics, and map the data into highly
reconfigurable memory systems. We call this architecture
MaPU, which stands for Mathematical Processing Unit.

In this paper, we first discuss the considerations involved
in designing MaPU. We then introduce the instruction set
architecture of MaPU in Section 2. The highlights of the
MaPU architecture are presented in Section 3. To prove the
advantages of the MaPU architecture, a chip with four MaPU
cores is designed, implemented and taped out with a 40-nm
process. The structure, performance and power of this chip
are fully analyzed in Section 4.

2. RETROSPECT AND OVERVIEW OF MAPU
ARCHITECTURE

It took us a long time to design with a feasible micro-
architecture for MaPU. Traditional superscalar has proved to
be inherently power inefficient[5], and GPGPU is also power

hungry. As such, our work excluded both of those architec-
tures. Strategies such as VLIW and SIMD were taken into
consideration. The first proposed MaPU micro-architecture
featured customized wide vector instructions in a RISC style
and an innovative multi-granularity parallel (MGP) memory.
This method was discarded for its low efficiency. We then
proposed a micro-architecture that included massive com-
puting units with hardwired state machines, in which each
computation kernel was represented by a state machine. This
micro-architecture manifested high performance and power
efficiency. However, as we tried to support more kernels,
the state machine became so complex that the circuit could
only run at a much lower frequency. The micro-architecture
then evolved into the current one in which the state ma-
chines were broken down into microcodes and became pro-
grammable. This provided the possibility of supporting var-
ious kernels with customized state machines.

As an accelerator framework, MaPU is made up of three
main components: the microcode pipeline, MGP memory
and scalar pipeline, as shown in Figure 1.
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Figure 1: MaPU Architecture Framework

The scalar pipeline is subsidiary and can be a simple RISC
core or a VLIW DSP core. It is used to communicate with
the system on chip (SoC) and controlling the microcode pipeline.
The Communication and Synchronization Unit (CSU) in the
scalar pipeline includes a DMA controller used to transport
high dimensional data to and from the SoC and some con-
trol registers that can be read/written by other SoC masters
to control or check the status of the MaPU core.

Although MaPU is an accelerator architecture, we include
this scalar pipeline to facilitate the interaction between the
MaPU cores and SoC. For example, the scalar pipeline in-
cludes exclusive load/store operation pairs to support multi-
thread primitives such as atomic addition, spin lock and fork/join.
Therefore, it would be easier to develop a MaPU runtime li-
brary to support a multi-core program framework such as
OpenMPI, OpenMP and OpenCL.

2.1 Microcode pipeline
The microcode pipeline is the key component of the MaPU

architecture. The functional unit (FU) can be an ALU, MAC
or any other module with special functions. Superscalar
components such as register rename logics and instruction
issue windows are power inefficient[5]. To eliminate the
power consumed by control logics, the FUs in MaPU are
controlled by microcodes in VLIW style. There is a highly

2



structured forwarding matrix between FUs, and its routing is
controlled dynamically by microcodes. In this way, the FUs
can cascade into a complete data path which resembles the
data flow of the algorithm. Data dependence and routing are
handled by the program to further simplify the control logic.

This micro-architecture, which consists of massive FUs
with a structured forwarding matrix, manifests high perfor-
mance and power efficiency but leaves all of the complexity
to the programmers. This is plausible because computation
kernels are usually simple and structured, such as the FFT
and matrix multiply algorithms. A library that includes com-
mon routines would decrease the complexity for program-
mers.

The microcode pipeline has many features in common
with coarse grain reconfigurable architecture(CGRA), but
with two enhancements. First, all of the FUs and forward-
ing matrix in MaPU operate in the SIMD manner and have
the same bit width, which is supposed to be wide. Wider
SIMD can amortize the power overhead of instruction fetch
and dispatch, bringing more benefits in terms of energy effi-
ciency. Second, the microcode pipeline has a highly coupled
forwarding matrix instead of dedicated routing units. With
this forwarding matrix, FUs can cascade into a compact data
path that resembles the data flow of the algorithm. There-
fore, it can provide performance and power efficiency com-
parable with that of ASIC. Furthermore, as each FU has a
dedicated path to and from other specific FUs, programmers
do not have to consider the data routing congestion problem,
making instruction scheduling much simpler than CGRA.
These benefits comes at the cost of extra wires, which oc-
cupy a considerable chip area. In fact, some implementation
has to divide the forwarding matrix into two stages to de-
crease the connecting wires between FUs, and only part of
the FUs maybe connected depending on the characteristics
of the applications .

FU0 FU1 FU2 FU3 FU4 … … Control

Operation Æ Result Destination

IALU adds values in register T0 and 
T1，and then sends the result to 
SHU0’s  register  T0

T0 + T1Æ SHU0.T0
�Repeat:   
Repeat current microcode line with specific  
times
�Loop:
Loop to specific microcode line with specific 
times

Microcode for each 
functional Unit 

Microcode  controlling next 
PC address  

Figure 2: Microcode line Format

There are N microcodes issued in a clock period for an
implementation with N FUs. These microcodes issued at
the same time are called microcode lines, which are stored
in the microcode memory and can be updated at runtime.
This coding schema is simple and effective. However, for
most kernels, only a few FUs are working simultaneously
most of the time; thus, there are NOPs in most microcode
lines. A compression strategy can be used to increase the
code density in the future.

The microcode line format is illustrated in Figure 2. Each
microcode for FU has two parts: "Operation” and "Result
Destination.” "Operation” tells the FU what should be done,

and "Result Destination” tells the forwarding logic how to
route the result. At the end of the line is the microcode for
the controller, which takes charge of the microcode fetch and
dispatch. There are two types of microcodes for the con-
troller: repeat and loop. These two types of microcodes in-
struct the controller to repeat or loop to a specific microcode
line at certain times. The MaPU architecture incorporates
these two special microcodes to support the widespread nested
loop structure in kernel applications.

2.2 Multi-granularity parallel (MGP) mem-
ory

As mentioned in previous work [4], memory access pat-
terns are an important source for processor’s underuse. How-
ever, computation kernels are always structured, and their
memory access patterns can be classified into a few cate-
gories. Therefore, it is highly possible to normalize these
patterns with a strict data model and special designed mem-
ory system.

The MGP memory system serves as a soft managed local
memory system and is designed with an intrinsic data shuf-
fle ability, supporting various access patterns. Providing a
row- and column-major layout simultaneously for matrices
with common data types, this memory architecture makes
the time-consuming matrix transposition unnecessary. With
the MaPU data model, matrices in the MGP memory system
can be treated as normal and transposed forms at the same
time. We explore this feature in more details in Section 3.1.

3. ARCHITECTURE HIGHLIGHTS

3.1 MGP memory system
The MGP memory system supports various access pat-

terns, especially the simultaneous row- and column-major
layout for matrices with common data types. Before describ-
ing the structure of the MGP memory system, some basic
concepts should be explained.

• Physical bank: On-chip SRAM that can be accessed
with multiple bytes in parallel,which can be generated
from a memory compiler or customized.

• Logic bank: a group of physical banks, on which the
address resolution is based.

• Granularity parameter: the parameter controls which
physical banks should be grouped into a logic bank and
how the inputted address is resolved.

3.1.1 Basic structure of the MGP memory system
The MGP memory system provides W bytes of parallel

access and N bytes of capacity and has three interfaces: one
read/write address, a granularity parameter(G) and data for
reading or writing. The MGP memory system has the fol-
lowing constraints.

• W should be an integer to the power of 2, and N=2kW,
where k must be a natural number.

• G should be an integers to the power of 2, ranging from
1 to W. That is, G=2k, where 0  k  log2W .
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• W physical banks, labeled from 0 to W-1, are required.
Each bank can read/write W bytes in parallel and has
N/W-byte capacity.

When accessed, this memory system operates according
to the following procedures to decode the address.

1. Logic bank formation: Physical banks cascade and
group into logic banks according to parameter G. G
consecutive physical banks labeled with i*G to (i+1)*G-
1 cascade into a logic bank i, where 0  i < W

G .

2. Address mapping: Physical banks in a logic bank are
addressed in sequence, starting from zero. All of the
logic banks have the same address space. As the size
of each physical memory bank is N/W and there are G
physical banks in a logic bank, the address of the logic
bank ranges from 0 to G*N/W-1.

3. Data access: When reading/writing, each logic bank
accesses only G bytes of the whole W bytes. The ac-
cess address is the address inputted into the MGP mem-
ory system. Each physical memory bank uses a mask
to control this partial access.
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Figure 3: MGP memory example that provides W=4
bytes of parallel access and with a total capacity of N=64
bytes. (a)G=1, address=0, one physical memory bank is
grouped into a logic bank and each logic bank accesses 1
byte. (b)G=2, address=0, two physical banks are grouped
into a logic bank and each logic bank accesses 2 bytes.
(c)G=4, address=0, four physical banks are grouped into
a logic bank and each logic bank accesses 4 bytes

Figure 3 shows an MGP memory system in which W=4,
N=64. With a granularity parameter G, the memory system
can support log2W+1 types of access patterns. The layout
of physical memories is controlled dynamically by granu-
larity parameter G. When G=W, the MGP memory system
has only one logic bank and all of the physical banks are ad-
dressed in sequence. In this case, the memory system falls
into an ordinary memory system with W bytes accessing the
interface. When combined with carefully designed data lay-
outs, the MGP memory system can provide interesting fea-
tures such as simultaneous parallel access for matrix rows

and columns. In fact, when writing data into memory with
one G value and then reading them with a different G value,
we shuffle the data implicitly. Different pairs of G represent
different shuffle patterns, which makes this MGP memory
system versatile in handling high dimensional data.

In fact, the MGP memory system is the most distinguish-
ing feature of MaPU and other designs may certainly benefit
from it. Other reconfigurable architectures focus mainly on
computing fabric, ignoring or compensating for the perfor-
mance and power penalties caused by an inefficient memory
system. MGP memory tries to address the root cause of the
problem. It is not like the scatter/gather-enabled memory in
conventional vector processors. In such a scatter/gather op-
eration, multiple addresses are sent to memory banks, and
access conflicts are unavoidable and can lead to pipeline
stall, affecting the performance and increasing the complex-
ity of pipeline control in turn. MGP memory in MaPU is a
mathematically structured, conflict-free and vectorized sys-
tem. Most vector accessing patterns can be mapped into the
MGP memory system, such as accessing a matrix row or
column with the same data layout, and reading and writing
FFT data for any stage of butterfly diagram. More of the ap-
plications that may benefit from MPG memory are explored
later.

Logic Bank 0

0 5 10 151 6 11 162 7 12 173 8 13 18

4 9 14 1920 21 22

23 24

0 1 2 3 4
5 6 7 8 9

12 13 14
15 16 17
10 11

18 19
20 21 22 23 24

Original Matrix

Logic Bank 1 Logic Bank 2 Logic Bank 3

Matrix in Multi-granularity parallel memory

Logic Bank 0

0
3
6

Original Matrix

Logic Bank 1

Matrix in Multi-granularity parallel memory

1
4
7

2
5
8

0 1
2

3 4
56

7 8

(a) Matrix layout with byte data, granularity=1

(b) Matrix layout with short data, granularity=2

Figure 4: Matrix initial layout when (a): the element’s bit
width is the same as that of the addressable units and (b)
the element’s bit width is twice as that of the addressable
units. The bit width W in this example is 4 bytes. Both
(a) and (b) show only the initial layout of the matrix. The
actual layout is controlled by granularity parameter G
when this memory is read/written.

3.1.2 Matrix layout in the MGP memory system
An matrix can be accessed in parallel in row or column or-

der simultaneously only if it is initialized in a specific layout
in the MGP memory system. Figure 4 shows two matrices
in with the initial layout can be accessed in either row or
column order. Keep in mind that figure 4 shows only the
layout in which the matrices should be initialized. The data
layout will change according to the provided G parameter
when accessed.

For matrices with elements whose bit widths are the same
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as those of the addressable units, the following procedures
would produce the initial layout.

• Set granularity parameter G=1.

• Put the ith row in logic bank i%W. Rows in the same
logic bank should be consecutive.

These procedures generate the initial layout for a 5x5 ma-
trix in an MPG memory system with W=4, as shown in Fig-
ure 4(a). Providing this data layout, the matrix can be ac-
cessed in row order with G=W and accessed in column order
with G=1. When G=1 and address=0, column elements (0, 5,
10, 15) are accessed in parallel. When G=W and address=0,
row elements (0, 1, 2, 3) are accessed in parallel.

In fact, a formal expression for the address offset of each
row during the initialization procedure and the address offset
of each element for the read/write process after initialization
can be derived for general cases. Matrices with elements
whose bit width is M times those of the addressable units,
where M is an integer to the power of 2, should be initialized
as follows ( providing the capacity of the memory system is
N, and the dimension of the matrix is PxQ).

• Set the granularity parameter G=W. (In this case, there
is only one logic bank.)

• The address offset of the ith row is A(i) = [i%(W
M )](NM

W )+

( iM
W )QM.

Table 1: Address offset for matrix elements (i, j), which
occupy M memory units. The matrix size is PxQ. The
memory width is W and the total capacity is N.

Access Mode G Address Offset
Row major W (i%W

M )NM
W +( iM

W )QM+W ( jM
W )

Column major M M j+( i
W )QM

When masters access the matrix in the MGP memory sys-
tem, they access consecutive W bytes as a whole by row or
by column. The address offset for accessing elements (i, j)
can be calculated as shown in Table 1. Here, "%"represents
the modulo operation, and all the of divisions operate with
no remainder. As masters can only access W bytes as whole,
Table 1 shows only the accessing address for these W bytes.
The address computation is complicated, but the stride of
the address is regular. Thus, it is plausible to transverse the
whole matrix with simple address generation hardware.

3.2 High dimension data model
As mentioned previously, the MGP memory system is ver-

satile in handling high dimensional data, but its address com-
putation is complicated and addresses are always not consec-
utive. To describe and access high dimensional data in the
MGP memory system, a much more expressive data model
other than vectors is required.

Figure 5 shows the basic parameters needed for each di-
mension: the base address(KB); the address stride(KS), which
is the address difference between two consecutive elements;
and the total number of elements (KI). Figure 6 shows the
two-dimensional data described by these parameters.

Dimension
KB: base address

KS: address stride KI: total number of elements

Figure 5: Parameters to describe the dimensions of data

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Dimension 1

KB0=1

KB1=1

KS0=3

KS1=8

KI0=3

KI1=4

Dimension 2

Figure 6: Example of high dimensional data description:
A4x3 matrix distributed in a 4x8 space.

With this data model, the matrix described in Table 1 can
be configured according to the access modes. All of the base
addresses of the dimensions are the same as the start address
of the matrix.

When accessed by row, the matrix in the MGP memory
system can be seen as three-dimensional data. The first di-
mension is the elements in a row. As the memory system
accesses W bytes for a time, the address stride of the dimen-
sion is W and the number of elements is QM/W. The second
dimension is the rows between the logic banks, whose ad-
dress stride is the size of the logic banks, i.e., NM/W. The
number of elements is the number of logic banks, i.e., W/M.
The third dimension is the row in the same logic bank, whose
address stride is the memory units occupied by a row, i.e.,
QM, and the number of elements is PM/W.

When accessed by column, the first dimension is the el-
ements in a column, whose address stride is the memory
units occupied by a row, i.e., QM. The number of elements
is PM/W. The second dimension is the column of the matrix,
whose address stride is M, and the total number of elements
is Q.

Table 2 shows the KS and KI configurations of these two
access modes.

Table 2: Parameters for a matrix whose size is PxQ. Each
element occupies M memory units. The memory width is
W and the total capacity is N.

Access Mode G KS0 KI0 KS1 KI1 KS2 KI2
Row major W W QM

W
NM
W

W
M QM PM

W
Column major M QM PM

W M Q

In the MaPU architecture, the number of dimensions that
the chip can support depends on implementations. These
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parameters are set by the scalar pipeline. Their values are
stored in registers of FUs that take charge of the load/store
operation. During operation, data are accessed in sequential
groups where low dimensions are accessed first, followed
by the high dimensions. The addresses of these groups are
calculated automatically, like those in DMA operations, ex-
cept that the time required to access the data is controlled by
microcode.

3.3 Cascading pipeline with state-machine-based
program model

FUs in the microcode pipeline can cascade into the data
path that suites the algorithms, like the data path in the ASIC
controlled by the state machine. Different storage elements
such as pipeline registers and caches have different access
time and energy consumptions for each operation. This cas-
cading structure can dramatically decrease data movement
between register files and memory, thus decreasing the over-
all consumed energy. Moreover, keeping the dataflow cen-
tralized in FUs and forwarding paths increases the overall
computation efficiency, as the FUs and forwarding logics are
always running at a higher frequency then caches and mem-
ories.

Figure 7 shows this concept for the FFT and matrix mul-
tiply algorithms.

Figure 7: Dataflow mapping in MaPU architecture,
which can change dynamically through microcode se-
quences.

The mapping between the dataflow and data path is repre-
sented by a microcode sequence that defines the operations
of the FUs at every clock cycle. As these microcodes are
stored in memory and can be updated at runtime, this map-
ping can be also updated dynamically.

As hardware does not handle dependency between mi-
crocodes, programmer should write the microcodes carefully
to make sure that the result will not come too early or too
late. This involves a great number of effort. MaPU imple-
ments a-state-machine based program model to simplify this
task. Programmers only need to describe the state machine
of each FU and the time when these state machines should

start. The compiler can then transform these state machines
into microcode lines that can be emitted simultaneously.

First, the programmer establishes a state-machine-based
program description. Sub-state machines for each node are
constructed using the MaPU instruction set, and the top state
machine is then constructed according to the time delay, i.e.,
data dependence. Next, according to the micro-architecture
feature of MaPU, the compiler transforms each state ma-
chine into an intermediate expression that conveys the se-
quential, cyclic or repeated structure of the basic block. The
compiler then merges the different state machines by ab-
stracting their same attributes to generate combinational state
machines and the microcode lines. Finally, the compiler im-
plements grammatical structure, resource conflict and data
dependence detection to ensure that the microcode lines sat-
isfy the MaPU instruction set constraints.

Figure 8 shows the concept of this program model.
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Figure 8: Illustration of state-machine-based program
model.

The state machine of each FU is described by microcodes
that the FU supports and microcodes for loop control. The
following code snippet shows an example state machine of a
load/store unit.

.hmacro FU1SM
//loop to label 1, loop count is stored in KI12 register
LPTO(1f)@(KI12);
//load data to Register file and calculate next load address
BIU0.DM(A++, K++)->M[0];
NOP; //idle for one cycle
BIU0.DM(A++,K++)->M[0];
NOP; //idle for one cycle
1:
.endhmicro

The following code snippet shows the top state machine of
the algorithm.

.hmacro MainSM
FU1SM; //start FU1 state machine at cycle 0
REPEAT@(6); // wait six cycles
FU2SM || FU3SM; //start FU2 and FU3 state machine at cycle 7
REPEAT@(6); // wait six cycles
FU4SM; //start FU4 state machine at cycle 13
.endhmicro
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4. THE FIRST MAPU CHIP
To prove the advantages of the MaPU architecture, we de-

sign, implement and tape out a chip with four cores that im-
plement MaPU the instruction set architecture.

4.1 SoC architecture
Figure 9 shows a simplified diagram of this chip. The
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Figure 9: Simplified SoC structure

MaPU cores in this chip are called APE, which stands for
Algebraic Processing Engine. In addition to the for MaPU
cores, there are other subsidiary components like the Cortex-
A8 core and IPs. This chip also includes some high-speed
IOs like DDR3 Controller, PCIe and RapidIO, and some
other low-speed interfaces. All of these components are con-
nected by a three-level bus matrix. This chip is implemented
with a TSMC 40-nm low-power process. Figure 10 shows
the final layout. The total area is 363.468mm2.

Figure 11 shows the APE structure. The microcode pipeline
in APE runs at 1 GHz an the other components run at 500MHz.
There are 10 FUs in each APE, as listed below. Each FU can
handle 512 bits of data in the SIMD manner.

• IALU: for integer computation, with an SIMD ability
for 8-, 16- and 32-bit data types.

• FALU: for IEEE 754 single and double precision float-
ing point computation.

• IMAC: for integer multiply accumulation,with an SIMD
ability for 8-, 16- and 32-bit data types.

• FMAC: for IEEE 754 single and double precision float-
ing point multiply accumulation.

• BIU0,BIU1,BIU2: for load/store operation. Calcu-
lates next data address automatically and supports data
access with four dimensions.

• MReg: 128x512bit matrix register file with slide win-
dow and auto index features.
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• SHU0, SHU1: shuffle unit that can extract specific
bytes in the source register and write them into the des-
tination register in any order.

Some special function units are designed to explore data
locality. Therefore, data flow can be concentrated inside the
microcode pipeline and decrease the load/store operations.
For example, SHU can perform cascading shift operations,
in which two 512-bit registers are connected and shifted for
1, 2 or 4 bytes circularly, just like the sliding window in
the finite impulse response (FIR) algorithm. Combined with
large matrix register files, the coefficients and input datum
need to load only once in the whole FIR process.

The bus, forwarding matrix and memory system are also
512 bits wide. To decrease the scale of the forwarding ma-
trix, not all of the FUs are connected. For example, the
FMAC result can not be forwarded to the IALU and IMAC.
The microcode syntax embodies these constraints. There are
six data memories in total, each of which is an MGP memory
system, with a 2M bit capacity. The microcode line includes
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14 microcodes, each of which is assigned to an FU except for
MReg, which requires 4 microcodes. The microcode line is
328 bits wide, and the microcode memory (MIM) can hold
2,000 microcode lines. To accelerate the turbo decoding pro-
cess, we add a dedicated turbo co-processor in APE.

The scalar pipeline is a 32-bit VLIW DSP core that con-
tains four FUs :

• SCU: for 32-bit integers and IEEE 754 single precision
floating point computation.

• AGU: for load/store and register file transfer.

• SYN: for microcode pipeline configuration and con-
trol.

• SEQ: for the jump, loop and function call.

These four FUs can run in parallel and the scalar pipeline
can issue four instructions at one cycle. Figure 12 shows the
final layout of APE. The total area is 36 mm2.
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Figure 12: Final layout of APE. FMAC, IMAC, FALU,
IALU and MReg are distributed in eight blocks, each of
which can handle 64 bits of data. The microcode pipeline
runs at 1 GHz an the other components run at 500MHz
in typical cases.

The tool chain of APE is based mainly on an open source
framework, as shown in Table 3.

4.2 Performance
Before taping out the chip, we simulate many typical sig-

nal processing algorithms in APE with the final RTL and
compare the performance with that of the TI C66x core, a
commercial DSP with a similar process node and computa-
tion resource. We suppose that APE runs at 1 GHz and that
the C66x core runs at 1.25Hz. We obtain the performance of

Table 3: MaPU tool chains
Tool Name Open Source Framework
Compiler for microcode pipeline Ragel & Bison & LLVM
Compiler for scalar pipeline Clang & LLVM
Assembler/Disassembler Ragel & Bison & LLVM
Linker Binutils Gold
Debugger for scalar pipeline GDB
Simulator Gem5
Emulator OpenOCD

the C66x core by running an algorithm in Code Composer
Studio (CCSv5) with the official optimized DSP library and
image processing library (DSPLIB and IMGLIB).

Table 4: Complex SP FFT performance ( TimeUnit: us )
length 128 256 512 1024 2048 4096
C66x 0.65 1.18 2.82 5.49 13.09 26.00
APE 0.56 0.88 1.41 2.63 4.75 9.79

Table 4 shows the execution time of a complex single pre-
cision floating point FFT algorithm of varying lengths. Ta-
ble 5 shows the execution time of a complex 16-bit fixed
point FFT algorithm. The specific FFT algorithm used here
is cached-fft [6]. In this algorithm, butterflies are divided
into groups. Each group contains multiple butterflies and
stages that can be computed independently without interact-
ing with the data in other groups. Thus, a group of butter-
flies can be loaded and computed thoroughly without writing
back to memory. Figure 13 (a) shows a dataflow diagram
of a butterfly group within a complex single floating point
FFT. Figure 13 (b) shows the corresponding data path of the
FUs. Although the butterfly in a group can be computed in-
dependently, the datum must be shuffled between groups in
different epochs. This is done naturally using MGP mem-
ory. The result of a group is stored back to memory with one
G value after computation and then loaded back to the mi-
crocode pipeline with a different G value. The loaded data
can be computed directly without any shuffle operation. As
different pairs of G values are used for the FFT with different
data types, the memory access pattern matches the data path
perfectly. As result, the overall performance is boosted and
the power is reduced. The original work was implemented
with a dedicated co-processor. In this paper, the algorithm is
re-implemented with only microcodes.

The average speedups of APE vs. the C66x core for the SP
FFT algorithm are 2.00x and 1.89x, respectively, for a fixed
point FFT. In fact, we can further improve the performance
of APE through microcode optimization. For example, the
execution time for a 4,096-point 16-bit FFT can be reduced
from 4.80 us to 4.10 us after further microcode optimization,
an improvement of almost 15%. From this example, we can
see that MaPU has a huge performance potential with cus-
tomized state machines.

We implement other typical algorithms with the same FFT
strategies, in which the data path resembles the dataflow and
MGP memory provides the matched access patterns. Table 6
summarizes the average speedups of APE vs. C66x for these
algorithms. These algorithms have different data types and

8



MR2

BIU0/2 BIU1

MReg

SHU1 SHU0

FMAC
FALU

BIU0/2

DM0/4 DM1

DM0/4

MR0MR1

(a) FFT butterfly diagram, each cross 
indicates a butterfly

(b) Cascading pipeline for FFT, multiple stages 
of butterfly are computed before write the 

result back to memory 

D
at

a 
re

ad
 fr

om
 m

em
or

y

D
at

a 
w

rit
e 

to
 m

em
or

y

Figure 13: FFT dataflow diagram and data path map-
ping in APE.

Table 5: 16-bit complex fixed point FFT performance (
TimeUnit: us )

length 256 512 1,024 2,048 4,096
C66x 0.60 1.33 2.59 5.91 12.03
APE 0.56 0.79 1.50 2.41 4.80

dataflow. However, given the cascading pipeline and intrin-
sic shuffle abilities of MGP memory, all of them are mapped
successfully in APE, and their performance is quite impres-
sive. APE has hundreds of speedups for table lookups due
to its SHU units, which can handle 64 parallel queries for a
table with 256 records within 5 cycles. Taking the frequency
of both processors into consideration, APE has more advan-
tages in terms of architecture as it runs at a lower frequency
but performs better.

4.3 Power efficiency
Before taping out the chip, we estimate the power of APE

using Prime Time with various algorithms. The switching
activity is generated through the final post-simulation with
the final netlist and SDF annotation. We also test the power
of APE when the chip returns from fab. As in the SoC, there
are dedicated power domains and clock gates for AP. As we
can turn on the power supply and clock for each APE sep-
arately, the power of each APE can be measured precisely
by the power increase when it is invoked. Table 7 shows the
power data of the typical algorithm. The data types of each
algorithm are the same in Table 6.

All of the used micro-benchmarks are held in on-chip mem-
ory, but the overall amount of power consumed by memory
is small. The number of DMs in APE is designed for scal-
ability. For benchmarks that exceed the size of DM, three

Table 6: APE vs. C66x core: Actual performance com-
parison

Algorithm Speedup Data Types
Cplx SP FFT 2.00 Complex single floating point
Cplx FP FFT 1.89 Complex 16-bit fixed point
Matrix mul 4.77 Real single floating point
2D filter 6.94 Real 8-bit fixed point
SP FIR 6.55 Real single floating point
Table lookup 161.00 table with 8bit address, 256 records
Matrix Trans 6.29 16bit matrix

Table 7: Estimated and Tested Power of APE at 1GHz
(PowerUnit : Watt)

Algorithm Est Tested Diff Size
Cplx SP FFT 2.81 2.95 -5% 1,024
Cplx FP FFT 2.63 2.85 -8% 1,024
Matrix Mul 3.05 3.10 -2% 65*66, 66*67 matrix
2D Filter 4.13 4.15 -1% 508*508, 5*5 template
FIR 2.19 2.20 -1% 4,096, 128 coefficients
Table lookup 2.75 2.95 -7% 4,096 queries
Matrix Trans 2.28 2.45 -7% 512*256 matrix
Idle 1.51 1.55 -2% While APE stand by

of the six DMs can be used for computation buffers, and the
other three DMs can be used for DMA transfers. The aggre-
gated power of all of the MGP memories (six DMs in Figure
13) for benchmarks in Table 7 (in order, except for Idle) are
8%, 6%, 3%, 3%, 2%, 3% and 15%, respectively. The 15%
is for matrix transpose, which consists entirely of memory
read/write operations. Taking DMA transfers into consider-
ation, the energy efficiency will degrade slightly but remain
almost the same as the presented result.

We can see clearly from the table that the power consump-
tion of most of the algorithms is below 3 W and that the
standby power of APE is as high as 1.55 W. Preliminary
analysis indicated that the clock network contributed most
of the idle power, which will require improvement in future.
It is also can be seen from Table 7 that the estimated and
measured power are almost the same. This indicates that our
power evaluating method is effective and our module based
power analysis discussed later is highly reasonable.

To compute the actual dynamic power efficiency of APE,
we collect detailed instructions statistics. Table 8 shows the
number of microcodes issued when APE runs different al-
gorithms. The data type and size are the same as in Table
7.

Based on the microcode statistics in Figure 8, we know
how many data operations are needed to complete an algo-
rithm. We obtain the actual GFLOPS or GOPS of APE for
different algorithms by dividing the number of operations
with corresponding execution times. The corresponding ac-
tual GFLOPS/W and GOPS/W are computed by dividing
GFLOPS or GOPS with the power, as show in Figures 14
and 15.

The computation operations include IALU, IMAC, FALU,
FMAC and SHU0, SHU1(each MAC instruction is consid-
ered as two operations) and the total operations includes
computation, register file read/write and load/store opera-
tions.

Figure 14 shows that the maximum actual computation
performance of APE for floating point application is 64.33
GFLOPS with the SP FIR algorithm. The maximum actual
computation performance for the fixed point is 255.21 GOPS
with an 8-bit 2D filter application.

When taking power into account, the maximum actual to-
tal power efficiency of APE for floating point application is
45.69 GFLOPS/W with the SP FFT algorithm. The max-
imum actual total power efficiency across all of the algo-
rithms is 103.49 GOPS/W with a 2D filter application, as
shown in Figure 15.

Table 9 summarizes the energy efficiency of several pro-
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Table 8: Microcode statistics for different algorithms
Algorithm MR0 MR1 MR2 MR3 SHU0 SHU1 IALU IMAC FALU FMAC BIU0 BIU1 BIU2
Cplx SP FFT 1,908 1,841 1,888 12 1,878 1,836 0 0 1,771 1,847 807 746 832
Cplx FP FFT 942 930 897 10 894 894 0 885 0 0 255 193 288
Matrix mul 29,478 0 0 1,650 29,478 0 0 0 12,854 29,476 1,650 488 7,451
2D filter 20,336 20,336 0 0 105,740 105,740 0 105,737 0 0 8,703 20,344 7,599
FIR 2,048 2,049 0 0 34,817 34,817 0 0 1,792 34,817 265 2,048 511
Table lookup 258 192 128 0 257 0 320 0 0 0 4 64 64
Matrix tran 0 0 0 4,098 0 0 0 0 0 0 4,099 0 4,096
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Figure 14: Actual Performance of APE for different al-
gorithms. The units are GFLOPS for floating point ap-
plication and GOPS for fixed point application.

Table 9: Estimated performance of current proces-
sors[7].

Processor Process GFLOPS GLOPS/W
Core i7 960 45nm 96 1.2
Nvidia GTX280 65nm 410 2.6
Cell 65nm SOI 200 5.0
Nvidia GTX480 40nm 940 5.4
Stratix IV FPGA 40nm 200 7.0
TI C66x DSP 40nm 74 7.4
Xeon Phi 7210D 22nm 2,225 8.2
Tesla K40(+CPU) 28nm 3,800 10.0
Tegra K1 28nm 290 26.0
MaPU Core 40nm 134 45.7

cessors, as presented in [7]. From this table and the data
presented in [4], we can see that the peak energy efficiency
of GPGPU and processors are below 10 GFLOPS/W. The
actual maximum energy efficiency of APE is around 40-50
GLFOPS/W, a 4x to 5x improvement for the floating point
applications and a 10x improvement for the fixed point ap-
plications.

4.4 Discussion
In addition to the instruction statistics in Table 8, we gather

the power data for each individual module through detailed
simulation. With the microcode count and power, we can es-
timate the average dynamic energy consumed per microcode,
as presented in Table 10. Table 7 shows the estimated and
tested power from real chip are very close, thus the power
statistics here that based on simulation are highly reliable.
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Figure 15: Actual power efficiency tested from real chip.
The units are GFLOPS/W for floating point application
and GOPS/W for fixed point application.

The result is calculated as follows:

(Running Power� Idle Power)⇤Time
Instruction Count

(1)

The average load/store energy includes the load/store unit,
data bus and memory. Table 10 clearly shows that the regis-
ter file access is mostly energy efficiency. The energy con-
sumed by most of the computation FU is almost half that of
the load/store unit, except for IMAC, which requires further
improvement.
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Figure 16: Microcode composition for different algo-
rithms. MReg access includes microcodes for MR0-
MR3; computation includes microcodes for SHU, IALU,
IMAC, FMAC and FALU; load/store includes mi-
crocodes for BIU0-BIU2.
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Table 10: Dynamic energy consumed per microcode
Algorithm Energy Per Microcode ( Unit : pJ, 512 bit)
Register R/W 133.25
Load/Store 609.20
FALU 345.65
IALU 335.18
FMAC 387.23
IMAC 788.77
SHU 213.04

As the energy consumed by FUs is much less than that
consumed by load/store operations, it is reasonable to keep
data moving between FUs through cascading pipelines as
much as possible. Figure 16 shows microcode compositions
for different algorithms. Using the MGP memory system
and cascading pipelines, typical algorithms can be mapped
into structured data paths in which the operations mainly
comprise register file access and computation operations, which
consume much less energy than the load/store operations.

Figure 17 further shows the average usage and average en-
ergy consumption for different components when APE runs
algorithms in Table 7, except for matrix transpose. A trend
can be seen in Figure 17: the register file access opera-
tion consumes much less energy than the load/store opera-
tions but is used much more, and the computation units are
used much more than the file registration and memory units.
As such, the energy-efficient FUs are used much more fre-
quently than the energy-inefficient FUs.

This is an important factor that contributes to the remark-
able energy efficiency of MaPU. Power efficiency benefits
from two aspects. The first aspect is the novel micro archi-
tecture. MaPU consists of massive FUs but simple control
logic. As in ASIC, most of the energy is consumed by FUs
that do the real computations, and energy-hungry operations
such as memory access are minimized through MPG mem-
ory systems. Therefore, it is possible to achieve high power
efficiency in MaPU. In particular, instruction fetching and
dispatching logic consume only 0.18% power, and FUs con-
sume up to 53% power in the FFT benchmark.

The second aspect is the elaborately optimized algorithm
of MaPU. To achieve outstanding power efficiency, data lo-
cality should be explored at the algorithm level and state
machines should be constructed in a manner that central-
izes data movements in the FUs and forwarding matrix. Fig-
ure 17 indicates that benchmarks have been mapped mostly
into the computation and register file access operations. As
power-consuming load/store operations are only a small part
of the overall operations, power consumption is reduced over-
all.

Great efforts have been made to optimize the micro bench-
marks presented in this paper. Although the state-machine-
based program model has simplified the optimization pro-
cess, it would take about one month to implement a kernel
on MaPU for those familiar with the micro-architecture. We
develop an informal flow to facilitate the optimization pro-
cess. We would like to explore this flow more thoroughly in
the near future and hope to develop a more convenient and
high-level program mode based on the one adopted in this
paper.
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Figure 17: Average usage and energy consumption of dif-
ferent components

5. RELATED WORK
In general, MaPU can be classified into CGRA and vec-

tor processors. One principle under MaPU involves mapping
the computation graph into a reconfigurable fabric while map-
ping the data accessing pattern into an MGP memory sys-
tem. The computation mapping of MaPU is similar to DySER[8].
However, MaPU uses a crossbar-based forwarding logic rather
than a switching network. Furthermore, the reconfiguration
fabric and computation sub-region in DySER is more like an
instruction extension to the scalar pipeline. The reconfigura-
tion fabric and microcode pipeline in MaPU is a standalone
processor core that can execute kernel algorithms such as
matrix multiply and 2D filter algorithms. MaPU is not like
GARP [9]and SGMF[10]. GARP uses fine-grained reconfig-
urable arrays to construct FUs such as adders and shifters in
a way that resembles FPGA. MaPU uses FUs to map high-
level algorithms. At the same time, MaPU has no thread
concept and thus no data dependence handling logic. This is
different from SGMF[10].

The power efficiency of computer architecture has become
more and more important in recent years. Voltage and fre-
quency adjustments and clock gating are two main techniques
used to decrease the power of previous processors[11]. How-
ever, although chips are integrating far more transistors than
before, their total power is still strictly constrained. Only
a few parts of the chip can be lighted, which leads to the
idea of using so-called dark silicon [12]. In this new design
regime, heterogeneous architectures have been proposed in
which some general-purpose cores are augmented by many
other cores and accelerators of different micro-architectures[13].
GreenDroid[14] is such an aggressive dark silicon proces-
sor with great power efficiency. Although the dedicated co-
processor c-core in this chip can be reconfigured after man-
ufacture, its compatibility with algorithm updates presents a
concern for programmers.

Some other customized processors that aim at power ef-
ficiency are less aggressive. Most of them focus mainly on
improving data path computation, such as by adding a vec-
tor processing unit[7][1], adding chained FUs[7] and adding
specialized instructions[2][15]. Although improvements have
been made through these techniques, they are limited by
their memory access efficiency.

11



Transport triggered architecture possesses many advan-
tages including modularity, flexibility and scalability. Its
low-power potential is exploited in [16] but mainly focuses
on compiler optimization and the reduction of register file
access.

As clock distribution networks consume around 20-50%
of the total power in a synchronous circuit[17], an asyn-
chronous circuit is considered an alternative to build low-
power processors[18]. However, asynchronous circuits are
difficult to design, and related EDA tools are far from mature
and may only be successful in special chips such as neuro-
morphic processors [19].

6. CONCLUSION
The novel MaPU architecture is presented in this paper.

With an MGP memory system, cascading pipeline and state-
machine-based program model, this architecture possesses
great performance and energy potential for computation in-
tensive applications. A chip with four MaPU cores is de-
signed, implemented and taped out following a TSMC 40-
nm low-power process. The performance and power of the
chip are fully analyzed and compared with other processors.
Although the implementation of the first MaPU chip can be
further improved, the results indicate that MaPU processors
can provide a performance/power efficiency improvement
10 times higher than the traditional CPU and GPGPU.

The first MaPU chip presented here is only an example of
the MaPU architecture. Designers can easily implement this
architecture in specific domains through customized FUs.

Great efforts are needed in programming MaPU. Although
a low-level state-machine-based programming model has been
proposed, we hope to develop a more efficient model at a
high level. Furthermore, we are also trying to implement
a heterogeneous computing framework such as OpenCL on
MaPU, which would hide all of the hardware complexity and
provide efficient runtimes and libraries designed for specific
domains. In addition, we are now working hard to construct
relevant wiki pages and make detailed documentation and
tools available to the open source community.
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