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Abstract—In this correspondence paper, the robust stabilization of a
class of discrete-time nonlinear systems with uncertainties is investigated
by using an approximate optimal control approach. The robust control
problem is transformed into an optimal control problem under some
proper restrictions on the bound of the uncertainties. For the purpose
of dealing with the transformed optimal control, the discrete-time gener-
alized Hamilton–Jacobi–Bellman equation is introduced and then solved
using the successive approximation method with neural network imple-
mentation. In addition, a numerical simulation is included to illustrate
the effectiveness of the robust control strategy.

Index Terms—Adaptive dynamic programming (ADP), gener-
alized Hamilton–Jacobi–Bellman (GHJB) equation, neural net-
works, optimal control, robust control, successive approximation
method, uncertainties.

I. INTRODUCTION

It is known that the model uncertainties must be considered dur-
ing the controller design process since they may cause deterioration
of the control systems. In general, we say a controller is robust if
it works even if the actual system deviates from its nominal model
based on which the controller is designed. In fact, the robustness of
control systems has been attended and studied by control scientists
for many years. Robust control has become an important topic of
modern control theory [1]–[3]. Lin et al. [3] pointed out that under
proper restricted conditions, the robust control problem can be con-
verted into an optimal control problem. Though the detailed operation
procedure was not given, it provided an alternative method to deal
with the robust stabilization problem. Thus, optimal control methods
can be employed to design robust controllers. In fact, the research on
linear optimal control has matured during the last several decades.
However, when studying the nonlinear optimal control problem, we
have to solve the Hamilton–Jacobi–Bellman (HJB) equation, which
is often a difficult task. Therefore, some indirect methods have been
proposed in order to overcome the difficulty in solving the nonlin-
ear HJB equation. In [4], a recursive method was employed to deal
with the optimal control problem for continuous-time nonlinear sys-
tems by successively solving the generalized HJB (GHJB) equation.
The GHJB equation, which gives the cost of an arbitrary control
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law, can be used to improve the performance of this control and to
approximate the HJB equation successively as well. In [5], adap-
tive (or approximate) dynamic programming (ADP) was presented to
solve the optimal control problem, mainly for discrete-time nonlinear
systems, based on function approximation structures such as neu-
ral networks. In recent years, the research on optimal control based
on GHJB formulation and the ADP approach has acquired much
attention from scholars [6]–[10]. Specifically, ADP has become one
of the key directions for future research in intelligent control and
understanding intelligence.

Recently, by taking Taylor series expansion of the cost function,
Chen and Jagannathan [11] and Jagannathan [12] applied the GHJB
formulation to study the optimal control of discrete-time affine non-
linear systems, while the system uncertainties were not taken into
consideration. Even so, it is meaningful that the discrete-time GHJB
equation and the related discrete-time HJB equation are well-defined.
Therefore, the application scope of the GHJB-formulation-based
method is greatly extended. In addition, it presents another effective
way to solve the constrained optimal control problem of discrete-
time nonlinear systems [13]. After that, Adhyaru et al. [2] studied
the bounded robust control of continuous-time constrained nonlin-
ear systems with uncertainties by deriving the neural-network-based
HJB solution, but the proposed approach was not suitable for
discrete-time systems. Therefore, in this correspondence paper, we
will investigate the robust stabilization of a class of discrete-time
nonlinear systems with uncertainties using the discrete-time GHJB-
formulation-based optimal control approach. Remarkably, this paper
extends [11] and [12], which focuses on the GHJB-based optimal
control for discrete-time affine nonlinear system, to robust controller
design of uncertain nonlinear system. Additionally, this paper also
develops a new robust control method for discrete-time nonlinear
systems with uncertainties under the framework of the idea of ADP.

II. PROBLEM STATEMENT

In this paper, we study a class of discrete-time nonlinear systems
described by

xk+1 = f (xk) + g(xk)(u(xk) + d(xk)) (1)

where xk ∈ R
n is the state vector, u(xk) ∈ R

m is the control
vector, and f (·) and g(·) are differentiable in their arguments with
f (0) = 0. In (1), the term g(xk)d(xk) with d(xk) ∈ R

m is the
unknown perturbation that represents the matched uncertainty of
system dynamics.

Note that in this paper, stability is always with respect to x = 0.
In addition, it is assumed that d(xk) is bounded by a known function
dM(xk), that is

‖d(xk)‖ ≤ dM(xk),∀k. (2)

Moreover, we assume that d(0) = 0, so that x = 0 is an equilibrium
of system (1). It is also assumed that the bounded function d2

M(x) is
differentiable and dM(0) = 0.

Here, we aim at investigating the robust control problem for
uncertain nonlinear systems (1). In other words, we should develop a
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feedback control law u(x), such that the closed-loop system is glob-
ally asymptotically stable for all uncertainties d(xk). In the following,
we will display the result that this problem is closely related to the
optimal controller design of the corresponding nominal system, with
an appropriate choice of the cost function.

Consider the nominal system with respect to system (1) given as
follows:

xk+1 = f (xk) + g(xk)u(xk). (3)

For system (3), we assume that f + gu is Lipschitz continuous on a
set � in R

n containing the origin. In addition, we assume the system
is controllable, i.e., there exists a continuous control law on � that
can stabilize the system asymptotically.

When dealing with the optimal control of system (3), we desire to
find the control law u(x) which minimizes the infinite horizon cost
function

J(xk, u) =
∞∑

q=k

{
ρd2

M(xq) + U(xq, u(xq))
}
. (4)

In (4), ρ is a positive number and U(·, ·) is the utility function with
U(0, 0) = 0 and U(xq, u(xq)) ≥ 0 for any xq and u(xq). In this paper,
the utility function is chosen as the quadratic form U(xq, u(xq)) =
xT

q Qxq + uT(xq)Ru(xq), where Q is a positive definite matrix and R
is a symmetric positive definite matrix, all with suitable dimensions.
Note that for the optimal control problem, the designed feedback
control law must be admissible [7], [8], [11], [12].

Now, we define the optimal cost function as follows:

J∗(xk) = min{u(·)}

∞∑

q=k

{
ρd2

M(xq) + U(xq, u(xq))
}

(5)

where {u(·)} denotes the sequence of control input, i.e., u(xk),
u(xk+1), . . . . According to Bellman’s optimality principle, we can
obtain the discrete-time HJB equation

J∗(xk) = min
u(xk)

{
ρd2

M(xk) + U(xk, u(xk)) + J∗(xk+1)
}
. (6)

The corresponding optimal control u∗ is

u∗(xk) = −1

2
R−1gT(xk)

∂J∗(xk+1)

∂xk+1
. (7)

Then, using the optimal control u∗, the discrete-time HJB equation (6)
becomes

J∗(xk) = ρd2
M(xk) + U

(
xk, u∗(xk)

) + J∗(
f (xk) + g(xk)u

∗(xk)
)
.

(8)

When studying the linear quadratic regulator problem, the discrete-
time HJB equation reduces to the Riccati equation that can be solved
efficiently. However, for the general nonlinear problem, it is not the
case. Furthermore, the optimal control u∗(xk) is related to xk+1 and
J∗(xk+1), which cannot be determined at present time step k. Hence,
in the following, we will employ the GHJB formulation to deal with
the optimal control design problem. Moreover, the robust controller
for system (1) can be established based on the optimal controller.

III. ROBUST CONTROLLER DESIGN BASED ON OPTIMAL

CONTROL APPROACH USING DISCRETE-TIME

GHJB FORMULATION

In this section, the discrete-time GHJB equation considering the
modified cost function is defined first. Then, the successive approxi-
mation method is developed to solve the discrete-time GHJB equation
and a neural network is constructed for facilitating the implementa-
tion, which results in an approximate optimal control. At last, the
approximate optimal controller of system (3) is proved to be a robust
stabilizer of system (1).

A. Discrete-Time GHJB Equation

In this part, motivated by the results of [4] and [7] for continuous-
time systems and [11]–[13] for discrete-time systems, the discrete-
time GHJB equation with the modified cost function is considered.

Lemma 1: Given an admissible control μ(x) ∈ �u (�u is the set of
admissible controls) for system (3), there exists a positive definite and
continuously differentiable function V(x) satisfying V(x0) = J(x0, μ)

if the following equation holds:

ρd2
M(x) + U(x, μ(x)) + (∇V(x))T( f (x) + g(x)μ(x) − x)

+ 1

2
( f (x) + g(x)μ(x) − x)T∇2V(x)

× ( f (x) + g(x)μ(x) − x) = 0, V(0) = 0 (9)

where ∇V(x) = ∂V(x)/∂x and ∇2V(x) = ∂2V(x)/∂x2 is the Hessian
matrix given as

∇2V(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2V(x)

∂x2
1

∂2V(x)

∂x1x2
· · · ∂2V(x)

∂x1xn

∂2V(x)

∂x2x1

∂2V(x)

∂x2
2

· · · ∂2V(x)

∂x2xn
...

...
. . .

...

∂2V(x)

∂xnx1

∂2V(x)

∂xnx2
· · · ∂2V(x)

∂x2
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Proof: Assume that a positive definite V(x) exists and is continu-
ously differentiable. Besides, assume that the high-order terms of the
Taylor series expansion of V(x) are small and can be neglected. Since
μ is admissible, xk = 0 and V(xk) = 0 when k → ∞. Denoting

�V(xk) = V(xk+1) − V(xk)

≈ (∇V(xk))
T( f (xk) + g(xk)μ(xk) − xk)

+ 1

2
( f (xk) + g(xk)μ(xk) − xk)

T∇2V(xk)

× ( f (xk) + g(xk)μ(xk) − xk) (11)

where ∇V(xk) = ∇V(x)|x=xk , ∇2V(xk) = ∇2V(x)|x=xk , and consid-
ering (4) and (9), we can easily find that V(xk) = J(xk, μ) based on
the proof of [11] and [12].

In view of Lemma 1, the positive definite function V(x) is also
the value function of the optimal control problem, with admissible
control being introduced.

Now, we define the discrete-time GHJB equation for system (3) as
follows:

GHJB(V(x), μ(x)) � ρd2
M(x) + U(x, μ(x)) + (∇V(x))T

× ( f (x) + g(x)μ(x) − x)

+ 1

2
( f (x) + g(x)μ(x) − x)T∇2V(x)

× ( f (x) + g(x)μ(x) − x) = 0

V(0) = 0. (12)

The Hamiltonian function for system (3) is

H(x, μ(x), V(x)) = ρd2
M(x) + U(x, μ(x)) + (∇V(x))T

× ( f (x) + g(x)μ(x) − x)

+ 1

2
( f (x) + g(x)μ(x) − x)T∇2V(x)

× ( f (x) + g(x)μ(x) − x). (13)

The optimal value V∗(x) associated with the discrete-time GHJB
equation (12) satisfies

0 = min
μ∈�u

H(x, μ(x), V∗(x)). (14)
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Similar as [11] and [12], we observe that gT(x)∇2V∗(x)g(x) + 2R is
positive definite. In this sense, the optimal control is

μ∗(x) = arg min
μ∈�u

H(x, μ(x), V∗(x))

= −
(

gT(x)∇2V∗(x)g(x) + 2R
)−1

gT(x)

×
(
∇V∗(x) + ∇2V∗(x)( f (x) − x)

)
. (15)

As a result, by substituting the optimal control (15) into the discrete-
time GHJB equation (12), we can obtain the approximate version of
the discrete-time HJB equation as follows:

ρd2
M(x) + U(x, μ∗(x)) + (∇V∗(x))T( f (x) + g(x)μ∗(x) − x)

+ 1

2
( f (x) + g(x)μ∗(x) − x)T∇2V∗(x)

× ( f (x) + g(x)μ∗(x) − x) = 0, V∗(0) = 0. (16)

Remark 1: It is worth emphasizing that the discrete-time HJB
equation (16) is attained under the framework of discrete-time GHJB
equation. Actually, it can be regarded as an approximate version of
the ideal HJB equation (8) by carrying out the Taylor series expan-
sion. In addition, the optimal control (15) is also an approximation
of the ideal optimal control (7) to a certain degree. That is to say,
V∗ and μ∗ are approximate results of J∗ and u∗, respectively. It is
in this sense that μ∗(xk) can be expressed in terms of xk, not xk+1.
For this reason, the optimal control is available.

Remark 2: Incidentally, though errors inevitably exist during the
approximation operations, it is applicable when the high-order terms
of Taylor series expansion of the cost function are small. Therefore,
the next focal point is designing V∗ and μ∗ on the basis of discrete-
time GHJB formulation.

B. Approximation Method and Neural Network Implementation

In this part, the successive approximation method based on the
discrete-time GHJB equation is introduced. The main idea is to con-
struct two sequences, i.e., {μ(i)} and {V(i)}, where i = 0, 1, 2, . . . ,
such that μ(i) → μ∗ and V(i) → V∗ as i → ∞.

Generally speaking, if a control function μ(i)(μ(i) ∈ �u) and a
cost function V(i) satisfy relationship that GHJB(V(i), μ(i)) = 0,
an updated control can be derived by differentiating H(x, μ(i+1)(x),
V(i)(x)) = 0 with respect to μ(i+1). Then, we have

μ(i+1)(x) = −
(

gT(x)∇2V(i)(x)g(x) + 2R
)−1

gT(x)

×
(
∇V(i)(x) + ∇2V(i)(x)( f (x) − x)

)
. (17)

In the following, two lemmas are given to show that the updated
control function μ(i+1) is admissible and the related cost function is
reduced under its action.

Lemma 2: If μ(i)(x) ∈ �u, x0 ∈ �, and the positive def-
inite and continuously differentiable cost function V(i) satisfies
GHJB(V(i), μ(i)) = 0 with V(i)(0) = 0, the updated control obtained
by (17) is an admissible control for system (3) on �. In addi-
tion, if V(i+1) is the unique positive definite function satisfying
the relationship that GHJB(V(i+1), μ(i+1)) = 0, then we have
V(i+1)(x0) ≤ V(i)(x0).

Lemma 3: Given an initial control μ(0) ∈ �u, by solving
GHJB(V(i), μ(i)) = 0 and updating the control via (17) with
i = 0, 1, 2, . . . , the sequence {V(i)} is convergent as i → ∞, i.e.,
V(i) → V∗ as i → ∞. Furthermore, μ(i) → μ∗ as i → ∞.

Remark 3: In this paper, Lemmas 2 and 3 can be easily obtained
according to the convergence proof of [11] and [12]. However,
it should be noted that the modified utility function ρd2

M(xk) +
U(xk, μ(xk)) is employed instead of the traditional one U(xk, μ(xk)).
This reflects the distinguishing feature of the transformed optimal
control problem when dealing with the robust control of uncertain
nonlinear system.

Note that the discrete-time GHJB equation is easier to deal with
than the discrete-time HJB equation in theory, but the closed-form
solution still cannot be obtained. Hence, in this part, a neural network
is constructed to solve the discrete-time GHJB equation, so that a
control function in feedback form can be developed.

In view of the property that neural networks can be employed to
approximate smooth functions on a prescribed compact set, the cost
function V(x) can be approximated by a neural network as follows:

V̂(x) = ω̂T
c σc(x) =

l∑

j=1

ω̂cjσcj(x) (18)

where ω̂c = [ω̂c1, ω̂c2, . . . , ω̂cl]
T is the weight vector, σc(x) =

[σc1(x), σc2(x), . . . , σcl(x)]
T is the activation function, which is

assumed to be second-order differentiable, and l is the number of neu-
rons in the hidden layer, respectively. Note that for any j = 1, 2, . . . , l,
the activation function σcj(x) is continuous and satisfies σcj(x) = 0
when x = 0. Moreover, the set {σcj(x)} with j = 1, 2, . . . , l is linearly
independent.

The weight vector of the neural network will be trained to mini-
mize the residual error in a least squares sense. Substituting (18) into
GHJB(V, μ) = 0, we obtain the discrete-time GHJB equation with a
residual error as

GHJB

⎛

⎝V̂(x) =
l∑

j=1

ω̂cjσcj(x), μ

⎞

⎠ � ec(x). (19)

Here, the method of weighted residuals is adopted in order to derive
the least squares solution. For any x ∈ �, the weight vector ω̂c can be
acquired by projecting the residual error onto ∂ec(x)/∂ω̂c and letting
the result be zero, which can be expressed as

〈
∂ec(x)

∂ω̂c
, ec(x)

〉
= 0. (20)

In (20), the inner product 〈a(x), b(x)〉 is defined as the Lebesgue
integral, i.e., 〈a(x), b(x)〉 = ∫

� a(x)b(x)dx.
When solving ω̂c by expanding (20), the integration is computa-

tionally difficult to acquire directly. Instead, an approximate result
using the definition of Riemann integration is available. To do this,
a mesh with p points over the integral region on � is introduced
and they are x1, x2, . . . , xp. Here, the size of the mesh is denoted
as �x, which should be chosen as a tradeoff between accuracy and
computational complexity. In addition, the number of points in the
mesh should satisfy p > l. Define

A =
[
δT(x)

∣∣
x=x1 , δ

T(x)
∣∣
x=x2 , . . . , δ

T(x)
∣∣
x=xp

]T

B = [
η(x)|x=x1 , η(x)|x=x2 , . . . , η(x)|x=xp

]T
. (21)

In (21), δ(x) = [δ1(x), δ2(x), . . . , δl(x)]
T, where

δi(x) = ∇σT
ci(x)( f (x) + g(x)μ(x) − x)

+ 1

2
( f (x) + g(x)μ(x) − x)T∇2σci(x)( f (x)

+ g(x)μ(x) − x), i = 1, 2, . . . , l (22)

and η(x) = d2
M(x) + U(x, μ(x)). Then, we have

ω̂c = −
(

ATA
)−1(

ATB
)

(23)

which implies that the weight vector of the neural network can be
obtained effectively. Additionally, by using (18), the control function
related to V̂(x) can also be derived, that is

μ̂(x) = −
(

gT(x)∇2V̂(x)g(x) + 2R
)−1

gT(x)

×
(
∇V̂(x) + ∇2V̂(x)( f (x) − x)

)
(24)
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where V̂(x) = ω̂T
c σc(x). This is the approximate control function

associated with the immediate weight vector. If we get the conver-
gent weight vector, we can therefore acquire the approximate optimal
control of system (3).

Now, we present in detail the design procedure of nonlinear optimal
control scheme based on the discrete-time GHJB formulation and
neural network.

Step 1: Specify a small positive constant ε and a sufficiently large
integer imax. Construct a neural network to approximate
the cost function as V̂(x) = ω̂T

c σc(x). Set i = 0 and select
an initial admissible control μ(0)(x).

Step 2: Apply the least squares method to deal with the equation
GHJB(V̂(0), μ(0)) = 0, and obtain the weight vector ω̂

(0)
c

and the cost function V̂(0)(x). Then, update the control
function by using

μ̂(i+1)(x) = −
(

gT(x)∇2V̂(i)(x)g(x) + 2R
)−1

gT(x)

×
(
∇V̂(i)(x) + ∇2V̂(i)(x)( f (x) − x)

)
(25)

where V̂(i)(x) = ω̂
(i)T
c σc(x).

Step 3: Set i = i + 1.
Step 4: Solve GHJB(V̂(i), μ̂(i)) = 0, obtain the weight vector ω̂

(i)
c

and the cost function V̂(i)(x), and then derive the updated
control μ̂(i+1)(x) based on (25).

Step 5: If
∣∣V̂(i)(x)− V̂(i−1)(x)

∣∣ ≤ ε, go to step 7; otherwise, go to
step 6.

Step 6: If i > imax, go to step 7; otherwise, go to step 3.
Step 7: Stop.
After the neural network implementation process, the approximate

optimal cost function V̂∗ and approximate optimal control μ̂∗ for the
nominal system (3) are obtained. Next, we prove that μ̂∗ is a robust
feedback control of system (1).

C. Derivation of Robust Controller

In this section, we show in theory that the approximate optimal
controller of system (3) is a robust stabilizer of uncertain system (1).
This is the main result of the paper.

Theorem 1: For the nominal system (3) with the cost func-
tion (4), assume the solution of the discrete-time HJB equation exists.
Then, the control function μ̂∗ ensures closed-loop locally asymptotic
stability of uncertain nonlinear system (1) if the condition

ρd2
M(xk) ≥ dT(xk)Rd(xk) + 1

2
(g(xk)d(xk))

T∇2V̂∗(xk)g(xk)d(xk)

(26)

is satisfied.
Proof: Let V̂∗(x) be the approximate solution of the discrete-time

HJB equation and μ̂∗(x) be the approximate optimal control by using
the neural-network-based discrete-time GHJB formulation. Now, we
prove that μ̂∗(x) is a solution to the robust control problem, i.e., the
equilibrium point xk = 0 of system (1) is asymptotically stable for
all possible uncertainties d(xk).

Since V̂∗(x) and μ̂∗(x) satisfy the discrete-time HJB equation (16),
we can regard V̂∗(x) as a positive definite function and we also obtain

(
∇V̂∗(xk)

)T(
f (xk) + g(xk)μ̂

∗(xk) − xk
)

+1

2
( f (xk) + g(xk)μ̂

∗(xk) − xk)
T∇2V̂∗(xk)

×( f (xk) + g(xk)μ̂
∗(xk) − xk)

= −ρd2
M(xk) − U

(
xk, μ̂

∗(xk)
)
. (27)

In addition, when considering V̂∗ and μ̂∗, the formula (24) sug-
gests that
(

gT(xk)∇2V̂∗(xk)g(xk) + 2R
)
μ̂∗(xk) + gT(xk)

×
(
∇V̂∗(xk) + ∇2V̂∗(xk)( f (xk) − xk)

)
= 0. (28)

Obviously, (28) implies that
(

f (xk) + g(xk)μ̂
∗(xk) − xk

)T∇2V̂∗(xk)g(xk)

+
(
∇V̂∗(xk)

)T
g(xk) + 2

(
μ̂∗(xk)

)TR = 0. (29)

Note that the difference of the approximate optimal cost func-
tion V̂∗ is

�V̂∗(xk) = V̂∗(xk+1) − V̂∗(xk)

≈
(
∇V̂∗(xk)

)T(
f (xk) + g(xk)μ̂

∗(xk) + g(xk)d(xk) − xk
)

+ 1

2

(
f (xk) + g(xk)μ̂

∗(xk) + g(xk)d(xk) − xk
)T

× ∇2V̂∗(xk)
(

f (xk) + g(xk)μ̂
∗(xk) + g(xk)d(xk) − xk

)
.

(30)

Considering (27) and (29), we can obtain that (30) becomes

�V̂∗(xk) = −ρd2
M(xk) − U

(
xk, μ̂

∗(xk)
)

+ (
f (xk) + g(xk)μ̂

∗(xk) − xk
)T∇2V̂∗(xk)

× g(xk)d(xk) +
(
∇V̂∗(xk)

)T
g(xk)d(xk)

+ 1

2
(g(xk)d(xk))

T∇2V̂∗(xk)g(xk)d(xk)

= − ρd2
M(xk) − U

(
xk, μ̂

∗(xk)
) − 2

(
μ̂∗(xk)

)TRd(xk)

+ 1

2
(g(xk)d(xk))

T∇2V̂∗(xk)g(xk)d(xk). (31)

By adding and subtracting dT(xk)Rd(xk) to (31), we can further
obtain

�V̂∗(xk) = −ρd2
M(xk) − xT

k Qxk + dT(xk)Rd(xk)

+ 1

2
(g(xk)d(xk))

T∇2V̂∗(xk)g(xk)d(xk)

− (
μ̂∗(xk) + d(xk)

)TR
(
μ̂∗(xk) + d(xk)

)

≤ −
(

ρd2
M(xk) − dT(xk)Rd(xk)

− 1

2
(g(xk)d(xk))

T∇2V̂∗(xk)g(xk)d(xk)

)

− xT
k Qxk. (32)

Considering (26), we can conclude that �V̂∗(xk) ≤ −xT
k Qxk < 0 for

any xk �= 0. Therefore, V̂∗ is a Lyapunov function and the condi-
tions for Lyapunov local stability theory are satisfied. The proof is
completed.

The developed robust control strategy is feasible because of
the powerfulness of the GHJB-formulation-based optimal control
approach. In the following, an example will be taken to demonstrate
its effectiveness.

IV. SIMULATION

Consider the following discrete-time nonlinear system:

xk+1 =
[ −x1kx2k

x2
1k + 0.8x2k

]
+

[
0

−1

]
(u(xk) + d(xk)) (33)

where xk = [x1k, x2k]T ∈ R
2 and u(xk) ∈ R are the state and con-

trol variables, respectively. In (33), d(xk) = 2ϑx2k sin x2
1k cos x2k,
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(a) (b)

Fig. 1. Simulation results. Convergence process of the (a) norm of weight
vector and (b) cost function sequence.

(a) (b)

Fig. 2. Simulation results. (a) State trajectory under the action of robust
control μ̂∗(x) when setting ϑ = 0.5. (b) Control trajectory under the action
of robust control μ̂∗(x) when setting ϑ = 0.5.

(a) (b)

Fig. 3. Simulation results. (a) State trajectory under the action of robust
control μ̂∗(x) when setting ϑ = −0.5. (b) Control trajectory under the action
of robust control μ̂∗(x) when setting ϑ = −0.5.

which represents the unknown perturbation with ϑ ∈ [−0.5, 0.5] for
simplicity. We choose dM(xk) = ‖xk‖, which clearly satisfies the
bounded condition (2). According to the aforementioned results, the
robust stabilization problem can be transformed into the optimal con-
trol problem of the nominal system. By selecting ρ = 1, Q = I2, and
R = I, where I denotes the identity matrix with a suitable dimension,
the cost function is defined as

J(xk, u) =
∞∑

q=k

{
‖xq‖2 + xT

q xq + uT(xq)u(xq)
}
. (34)

In order to apply the discrete-time GHJB formulation to obtain
the approximate optimal control, a neural network is constructed as
follows:

V̂(x) = ω̂c1x2
1 + ω̂c2x1x2 + ω̂c3x2

2 + ω̂c4x4
1 + ω̂c5x3

1x2 + ω̂c6x2
1x2

2

+ ω̂c7x1x3
2 + ω̂c8x4

2 + ω̂c9x6
1 + ω̂c10x5

1x2 + ω̂c11x4
1x2

2

+ ω̂c12x3
1x3

2 + ω̂c13x2
1x4

2 + ω̂c14x1x5
2 + ω̂c15x6

2. (35)

During the implementation process, the mesh size is set as �x = 0.02.
The initial state vector and the initial control are chosen as x0 =
[−0.5, 0.5]T and μ(0)(x) = 0.5x2, respectively. After five iterations,
the weight vector of the neural network converges to ω̂∗

c = [2.5456,
0, 1.6993, −0.9181, 0, −0.5532, 0, −0.7105, 0.1940, 0, 0.1197, 0,
0.1080, 0, 0.1497]T. The convergence process of the norm of weight
vector is depicted in Fig. 1(a). Besides, the convergence of the cost
function sequence is displayed in Fig. 1(b). Then, the approximate

optimal control μ̂∗ of the nominal system is derived, which according
to Theorem 1, is also the robust control of the uncertain system (33).

Now, we apply the robust control μ̂∗ to system (33) for ten time
steps. Fig. 2(a) and (b) exhibits the state trajectory and control tra-
jectory, respectively, when setting ϑ = 0.5. Besides, Fig. 3(a) and (b)
exhibits the state trajectory and control trajectory, respectively, when
setting ϑ = −0.5. The simulation results illustrate that the established
approximate optimal control ensures closed-loop asymptotic stability
of the controlled plant.

V. CONCLUSION

A robust control strategy of a class of affine discrete-time nonlinear
systems with uncertainties is established based on the optimal control
approach using discrete-time GHJB formulation. By transforming the
robust control problem into the optimal control problem, the discrete-
time GHJB equation is introduced and solved through the successive
approximation method. Additionally, the detailed design procedure
via neural network is given, while the numerical simulation is also
provided to verify the control performance. In our future work, the
robust control of affine discrete-time nonlinear systems under uncer-
tain and unknown environment will be studied by employing the
ADP-based optimal control approach. In addition, more comparisons
with other traditional robust stabilization methods will be studied in
the future.
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