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Off-Policy Reinforcement Learning for H∞ Control
Design

Biao Luo, Huai-Ning Wu, and Tingwen Huang

Abstract—The H∞ control design problem is considered for
nonlinear systems with unknown internal system model. It is
known that the nonlinear H∞ control problem can be trans-
formed into solving the so-called Hamilton–Jacobi–Isaacs (HJI)
equation, which is a nonlinear partial differential equation that
is generally impossible to be solved analytically. Even worse,
model-based approaches cannot be used for approximately solv-
ing HJI equation, when the accurate system model is unavailable
or costly to obtain in practice. To overcome these difficulties, an
off-policy reinforcement leaning (RL) method is introduced to
learn the solution of HJI equation from real system data instead
of mathematical system model, and its convergence is proved.
In the off-policy RL method, the system data can be gener-
ated with arbitrary policies rather than the evaluating policy,
which is extremely important and promising for practical sys-
tems. For implementation purpose, a neural network (NN)-based
actor-critic structure is employed and a least-square NN weight
update algorithm is derived based on the method of weighted
residuals. Finally, the developed NN-based off-policy RL method
is tested on a linear F16 aircraft plant, and further applied to a
rotational/translational actuator system.

Index Terms—H∞ control design, Hamilton–Jacobi–Isaacs
equation, neural network, off-policy learning, reinforcement
learning.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a machine learn-
ing technique that has been widely studied from the

computational intelligence and machine learning scope in the
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artificial intelligence community [1]–[4]. RL technique refers
to an actor or agent that interacts with its environment and
aims to learn the optimal actions, or control policies, by
observing their responses from the environment. Sutton and
Barto [2] suggested a definition of RL method, i.e., any method
that is well suited for solving RL problem can be regarded
as a RL method, where the RL problem is defined in terms
of optimal control of Markov decision processes. This obvi-
ously established the relationship between the RL method and
control community. Moreover, RL methods have the ability
to find an optimal control policy from unknown environment,
which makes RL a promising method for control design of
real systems.

In the past few years, many RL approaches [5]–[23] have been
introduced for solving the optimal control problems. Especially,
some extremely important results were reported by using RL
for solving the optimal control problem of discrete-time sys-
tems [7], [10], [14], [17], [18], [22]. Such as, Liu and Wei [17]
suggested a finite-approximation-error based iterative adaptive
dynamic programming approach [17], and a novel policy itera-
tion (PI) method [22] for discrete-time nonlinear systems. For
continuous-time systems, Murray et al. [5] presented two PI
algorithms that avoid the necessity of knowing the internal
system dynamics. Vrabie et al. [8], [9], [13] introduced the
thought of PI and proposed an important framework of integral
reinforcement learning (IRL). Modares et al. [21] developed
an experience replay-based IRL algorithm for nonlinear par-
tially unknown constrained-input systems. In [19], an online
neural network (NN) based decentralized control strategy was
developed for stabilizing a class of continuous-time nonlin-
ear interconnected large-scale systems. In addition, it is worth
mentioning that the thought of RL methods have also been
introduced to solve the optimal control problem of partial dif-
ferential equation (PDE) systems [6], [12], [15], [16], [23].
However, for most of practical real systems, the existence of
external disturbances is usually unavoidable.

To reduce the effects of disturbance, robust controller is
required for disturbance rejection. One effective solution is
the H∞ control method, which achieves disturbance attenu-
ation in the L2-gain setting [24]–[26], that is, to design a
controller such that the ratio of the objective output energy
to the disturbance energy is less than a prescribed level. Over
the past few decades, a large number of theoretical results on
nonlinear H∞ control have been reported [27]–[29], where the
H∞ control problem can be transformed into how to solve the
so-called Hamilton–Jacobi–Isaacs (HJI) equation. However,
the HJI equation is a nonlinear PDE, which is difficult or
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impossible to solve, and may not have global analytic solutions
even in simple cases.

Thus, some works have been reported to solve the HJI equa-
tion approximately [27], [30]–[35]. In [27], it was shown that
there exists a sequence of PIs on the control input such that the
HJI equation is successively approximated with a sequence of
HJB-like equations. Then, the methods for solving HJB equa-
tion can be extended for the HJI equation. In [36], the HJB
equation was successively approximated by a sequence of lin-
ear PDEs, which were solved with Galerkin approximation
in [30], [37], and [38]. In [39], the successive approximation
method was extended to solve the discrete-time HJI equation.
Similar to [30], a PI scheme was developed in [31] for the
constrained input system. For implementation purpose of this
scheme, a neuro-dynamic programming approach was intro-
duced in [40] and an online adaptive method was given in [41].
This approach suits for the case that the saddle point exists,
thus a situation that the smooth saddle point does not exist
was considered in [42]. In [32], a synchronous PI method was
developed, which is the extension of the work [43]. To improve
the efficiency for computing the solution of HJI equation, Luo
and Wu [44] proposed a computationally efficient simultane-
ous policy update algorithm (SPUA). In addition, in [45] the
solution of the HJI equation was approximated by the Taylor
series expansion, and an efficient algorithm was furnished to
generate the coefficients of the Taylor series. It is observed
that most of these methods [27], [30]–[33], [35], [40], [44],
[45] are model-based, where the full system model is required.
However, the accurate system model is usually unavailable
or costly to obtain for many practical systems. Thus, some
RL approaches have been proposed for H∞ control design
of linear systems [46], [47] and nonlinear systems [48] with
unknown internal system model. But these methods are on-
policy learning approaches [32], [41], [46]–[49], where the
cost function should be evaluated by using system data gen-
erated with policies being evaluated. It is found that there are
several drawbacks (to be discussed in Section III) to apply the
on-policy learning to solve real H∞ control problem.

To overcome this problem, this paper introduces an off-
policy RL method to solve the nonlinear continuous-time H∞
control problem with unknown internal system model. The rest
of the paper is rearranged as follows. Sections II and III present
the problem description and the motivation. The off-policy
learning methods for nonlinear systems and linear systems are
developed in Sections IV and V, respectively. The simulation
studies are conducted in Section VI and a brief conclusion is
given in Section VII.

Notations: R, Rn and Rn×m are the set of real numbers, the
n-dimensional Euclidean space and the set of all real matri-
ces, respectively. ∥ ·∥ denotes the vector norm or matrix norm
in Rn or Rn×m, respectively. The superscript T is used for
the transpose and I denotes the identify matrix of appropriate
dimension. ▽ ! ∂/∂x denotes a gradient operator notation.
For a symmetric matrix M, M > (")0 means that it is a pos-
itive (semi-positive) definite matrix. ∥v∥2

M ! vTMv for some
real vector v and symmetric matrix M > (")0 with appro-
priate dimensions. C1(X ) is function space on X with first
derivatives are continuous. L2[0,∞) is a Banach space, for

∀w(t) ∈ L2[0,∞),
∫∞

0 ∥w(t)∥2dt < ∞. Let X ,U and W be
compact sets, denote D ! {(x, u, w)|x ∈ X , u ∈ U , w ∈ W}.
For column vector functions s1(x, u, w) and s2(x, u, w), where
(x, u, w) ∈ D define inner product ⟨s1(x, u, w), s2(x, u, w)⟩D !∫
D sT

1 (x, u, w)s2(x, u, w)d(x, u, w) and norm ∥s1(x, u, w)∥D !(∫
D sT

1 (x, u, w)s1(x, u, w)d(x, u, w)
)1/2. Hm,p(X ) is a Sobolev

space that consists of functions in space Lp(X ) such that their
derivatives of order at least m are also in Lp(X ).

II. PROBLEM DESCRIPTION

Let us consider the following affine nonlinear continuous-
time dynamical system:

ẋ(t) = f (x(t)) + g(x(t))u(t) + k(x(t))w(t) (1)

z(t) = h(x) (2)

where [x1 ... xn]T ∈ X ⊂ Rn is the state, u = [u1 ... um]T ∈
U ⊂ Rm is the control input and u(t) ∈ L2[0,∞), w =
[w1 ... wq]T ∈ W ⊂ Rq is the external disturbance and
w(t) ∈ L2[0,∞), z = [z1 ... zp]T ∈ Rp is the objective output.
f (x) is Lipschitz continuous on a set X that contains the origin,
f (0) = 0. f (x) represents the internal system model which is
assumed to be unknown in this paper. g(x), k(x), and h(x) are
known continuous vector or matrix functions of appropriate
dimensions.

The H∞ control problem under consideration is to find a
state feedback control law u(x) such that the system (1) is
closed-loop asymptotically stable, and has L2-gain less than
or equal to γ , that is

∫ ∞

0

(
∥z(t)∥2 + ∥u(t)∥2

R

)
dt ≤ γ 2

∫ ∞

0
∥w(t)∥2dt (3)

for all w(t) ∈ L2[0,∞), R > 0 and γ > 0 is some prescribed
level of disturbance attenuation. From [27], this problem can
be transformed to solve the so-called HJI equation, which is
summarized in Lemma 1.

Lemma 1: Assume the system (1) and (2) is zero-state
observable. For γ > 0, suppose there exists a solution V∗(x)
to the HJI equation

[
∇V∗(x)

]T f (x) + hT(x)h(x)

−1
4

[
∇V∗(x)

]T g(x)R−1gT(x)∇V∗(x)

+ 1
4γ 2

[
∇V∗(x)

]T k(x)kT(x)∇V∗(x) = 0 (4)

where V∗(x) ∈ C1(X ), V∗(x) " 0 and V∗(0) = 0. Then, the
closed-loop system with the state feedback control

u(t) = u∗(x(t)) = −1
2

R−1gT(x)∇V∗(x) (5)

has L2-gain less than or equal to γ , and the closed-loop system
(1), (2) and (5) (when w(t) ≡ 0 ) is locally asymptotically
stable.
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III. MOTIVATION FROM INVESTIGATION OF RELATED

WORK

From Lemma 1, it is noted that the H∞ control (5) relies on
the solution of the HJI equation (4). Therefore, a model-based
iterative method was proposed in [30], where the HJI equation
is successively approximated by a sequence of linear PDEs

[∇V(i,j+1)]T(f + gu(i) + kw(i,j)) + hTh + ∥u(i)∥2
R

− γ 2∥w(i,j)∥2 = 0 (6)

and then update control and disturbance policies with

w(i,j+1) ! 1
2
γ −2kT∇V(i,j+1) (7)

u(i+1) ! −1
2

R−1gT∇V(i+1) (8)

with V(i+1) ! lim
j→∞

V(i,j). From [27] and [30], it was indicated

that the V(i,j) can converge to the solution of the HJI equation,
i.e., lim

i,j→∞
V(i,j) = V∗.

Remark 1: Note that the key point of the iterative scheme
(6)–(8) depends on the solution of the linear PDE (6).
Thus, several related methods were developed, such as,
Galerkin approximation [30], synchronous PI [32], neuro-
dynamic programming approach [31], [40], and online adap-
tive control method [41] for constrained input systems, and
Galerkin approximation method for discrete-time systems [39].
Obviously, the iteration (6)–(8) will generate two iterative
loops since the control and disturbance policies are updated
at the different iterative steps, i.e., the inner loop for updat-
ing disturbance policy w with index j, and the outer iterative
loop for updating control policy u with index i. The outer
loop will not be activated until the inner loop is convergent,
which results in low efficiency. Therefore, Luo and Wu [44]
SPUA, where the control and disturbance policies are updated
at the same iterative step, and thus only one iterative loop is
required. It worth noting that the word “simultaneous” in [44]
and the word “synchronous/simultaneous” in [32] and [41]
represent different meanings. The former emphasizes the same
“iterative step,” while the latter emphasizes the same “time
instant.” In other words, the SPUA in [44] updates control
and disturbance policies at the “same” iterative step, while
the algorithms in [32] and [41] update control and disturbance
policies at the “different” iterative steps.

The procedure of model-based SPUA is given in
Algorithm 1.

It is worth noting that Algorithm 1 is an infinite iterative
procedure, which is used for theoretical analysis rather than
for implementation purpose. That is to say, Algorithm 1 will
converge to the solution of the HJI equation (4) when the iter-
ation goes to infinity. By constructing a fixed point equation,
the convergence [44] of Algorithm 1 is established by proving
that it is essentially a Newton’s iteration method for finding
the fixed point. With the increase of index i, the sequence
V(i) obtained by the SPUA with (9)–(11) can converge to the
solution of HJI equation (4), i.e., lim

i→∞
V(i) = V∗.

Remark 2: It is necessary to explain the rationale of using
(9) and (10) for control and disturbance policies update. The
H∞ control problem (1)–(3) can be viewed as a two-players
zero-sum differential game problem [26], [32]–[34], [40], [41],

Algorithm 1 Model-Based SPUA

# Step 1: Give an initial function V(0) ∈ V0 (V0 ⊂ V is
determined by [44, Lemma 5]. Let i = 0;

# Step 2: Update the control and disturbance policies with

u(i) ! −1
2

R−1gT∇V(i) (9)

w(i) ! 1
2
γ −2kT∇V(i) (10)

# Step 3: Solve the following linear PDE for V(i+1)(x) :

[∇V(i+1)]T(f + gu(i) + kw(i)) + hTh + ∥u(i)∥2
R

− γ 2∥w(i)∥2 = 0; (11)

where V(i+1)(x) ∈ C1(X ), V(i+1)(x) " 0 and
V(i+1)(0) = 0.

# Step 4: Let i = i + 1, go back to Step 2 and continue.

[47]. The game problem is a minimax problem, where the
control policy u acts as the minimizing player and the distur-
bance policy w is the maximizing player. The game problem
aims at finding the saddle point (u∗, w∗), where u∗ is given by
expression (5) and w∗ is given by w∗(x) ! 1

2γ −2kT(x)∇V∗(x).
Correspondingly, for the H∞ control problem (1)–(3), u∗ and
w∗ are the associated H∞ control policy and the worst dis-
turbance signal [26], [31], [32], [34], [40], [47], respectively.
Thus, it is reasonable using expressions (9) and (10) (that are
consistent with u∗ and w∗ in form) for control and disturbance
policies update. Similar control and disturbance policy update
method could be found in [27], [30], [31], [34], [40], and [41].

Observe that both iterative equations (6) and (11) require
the full system model. For the H∞ control problem that the
internal system dynamic f (x) is unknown, data-based meth-
ods [47], [48] were suggested to solve the HJI equation online.
However, most of related existing online methods are on-
policy learning approaches [32], [41], [47]–[49]. From the
definition of on-policy learning [2], the cost function should
be evaluated with the data generated from the evaluating poli-
cies. For example, V(i,j+1) in (6) is the cost function of the
policies w(i,j) and u(i), which means that V(i,j+1) should be
evaluated with system data by using evaluating policies w(i,j)

and u(i). It is observed that these on-policy learning approaches
for solving the H∞ control problem have several drawbacks.

1) For real implementation of on-policy learning meth-
ods [32], [41], [48], [49], the approximate evaluating
control and disturbance policies (rather than the actual
policies) are used to generate data for learning their
cost function. In other words, the on-policy learning
methods using the “inaccurate” data to learn their cost
function, which will increase the accumulated error.
For example, to learn the cost function V(i,j+1) in (6),
some approximate policies ŵ (i,j) and û (i) (rather than its
actual policies w(i,j) and u(i), which are usually unknown
because of estimate error) are employed to generate data.

2) The evaluating control and disturbance policies are
required to generate data for on-policy learning, thus
disturbance signal should be adjustable, which is usually
impractical for most of real systems.
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3) It is known [2], [50] that the issue of “exploration”
is extremely important in RL for learning the optimal
control policy, and the lack of exploration during the
learning process may lead to divergency. Nevertheless,
for on-policy learning, exploration is restricted because
only the evaluating policies can be used to generate data.
From the literature investigation, it is found that the
“exploration” issue is rarely discussed in existing work
that using RL techniques for control design.

4) The implementation structure is complicated, such as
in [32] and [41], three NNs are required for approxi-
mating cost function, control, and disturbance policies,
respectively.

5) Most of existing approaches [32], [41], [47]–[49] are
implemented online, thus they are difficult for real-
time control because the learning process is often
time-consuming. Furthermore, online control design
approaches just use current data while discard past data,
which implies that the measured system data is used
only once and thus results in low utilization efficiency.

To overcome the drawbacks mentioned above, we propose an
off-policy RL approach to solve the H∞ control problem with
unknown internal system dynamic f (x).

IV. OFF-POLICY REINFORCEMENT LEARNING FOR

H∞ CONTROL

In this section, an off-policy RL method for H∞ control design
is derived and its convergence is proved. Then, a NN-based
critic-actor structure is developed for implementation purpose.

A. Off-Policy Reinforcement Learning

To derive the off-policy RL method, we rewrite the system
(1) as

ẋ = f + gu(i) + kw(i) + g
[
u − u(i)

]
+ k

[
w − w(i)

]
(12)

for ∀u ∈ U , w ∈ W . Let V(i+1)(x) be the solution of the linear
PDE (11), then taking derivative along the state of system (12)
yields

dV(i+1)(x)
dt

=
[
∇V(i+1)

]T (
f + gu(i) + kw(i)

)

+
[
∇V(i+1)

]T
g
[
u − u(i)

]
+
[
∇V(i+1)

]T
k
[
w − w(i)

]
. (13)

With the linear PDE (11), conducting integral on both sides
of (13) in time interval [t, t +#t] and rearranging terms yield
∫ t+#t

t

[
∇V(i+1)(x(τ ))

]T
g(x(τ ))

[
u(τ ) − u(i)(x(τ ))

]
dτ

+
∫ t+#t

t

[
∇V(i+1)(x(τ ))

]T
k(x(τ ))

[
w(τ ) − w(i)(x(τ ))

]
dτ

+ V(i+1)(x(t)) − V(i+1)(x(t + #t))

=
∫ t+#t

t

(
hT(x(τ ))h(x(τ )) + ∥u(i)(x(τ ))∥2

R

− γ 2∥w(i)(x(τ ))∥2
)

dτ. (14)

It is observed from the equation (14) that the cost function V(i+1)

can be learned by using arbitrary input signals u and w, rather

than the evaluating policies u(i) and w(i). Then, replacing linear
PDE (11) in Algorithm 1 with (14) results in the off-policy
RL method. To show its convergence, Theorem 1 establishes
the equivalence between iterative equations (11) and (14).

Theorem 1: Let V(i+1)(x) ∈ C1(X ), V(i+1)(x) " 0 and
V(i+1)(0) = 0. V(i+1)(x) is the solution of (14) iff (if and
only if ) it is the solution of the linear PDE (11), i.e., (14) is
equivalent to the linear PDE (11).

Proof: From the derivation of (14), it is concluded that if
V(i+1)(x) is the solution of the linear PDE (11), then V(i+1)(x)
also satisfies (14). To complete the proof, we have to show
that V(i+1)(x) is the unique solution of (14). The proof is by
contradiction.

Before starting the contradiction proof, we derive a simple
fact. Consider

lim
#t→0

1
#t

∫ t+#t

t
!(τ )dτ

= lim
#t→0

1
#t

(∫ t+#t

0
!(τ )dτ −

∫ t

0
!(τ )dτ

)

= d
dt

∫ t

0
!(τ )dτ

= !(t). (15)

From (14), we have

dV(i+1)(x)
dt

= lim
#t→0

1
#t

[
V(i+1)(x(t + #t)) − V(i+1)(x(t))

]

= lim
#t→0

1
#t

∫ t+#t

t

[
∇V(i+1)(x(τ ))

]T
g(x(τ ))

[
u(τ ) − u(i)(x(τ ))

]
dτ

+ lim
#t→0

1
#t

∫ t+#t

t

[
∇V(i+1)(x(τ ))

]T
k(x(τ ))

[
w(τ ) − w(i)(x(τ ))

]
dτ

− lim
#t→0

1
#t

∫ t+#t

t

[
hT(x(τ ))h(x(τ )) + ∥u(i)(x(τ ))∥2

R

−γ 2∥w(i)(x(τ ))∥2
]

dτ. (16)

By using the fact (15), (16) is rewritten as

dV(i+1)(x)
dt

=
[
∇V(i+1)(x(t))

]T
g(x(t))

[
u(t) − u(i)(x(t))

]

+
[
∇V(i+1)(x(t))

]T
k(x(t))

[
w(t) − w(i)(x(t))

]

−
[
hT(x(t))h(x(t)) + ∥u(i)(x(t))∥2

R − γ 2∥w(i)(x(t))∥2
]
.

(17)

Suppose that W(x) ∈ C1(X ) is another solution of (14) with
boundary condition W(0) = 0. Thus, W(x) also satisfies (17),
i.e.,

dW(x)
dt

= [∇W(x(t))]T g(x(t))
[
u(t) − u(i)(x(t))

]

+ [∇W(x(t))]T k(x(t))
[
w(t) − w(i)(x(t))

]

−
[
hT(x(t))h(x(t)) + ∥u(i)(x(t))∥2

R − γ 2∥w(i)(x(t))∥2
]
.

(18)
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Substituting (18) from (17) yields

d
dt

(
V(i+1)(x) − W(x)

)

=
[
∇
(

V(i+1)(x) − W(x)
)]T

g(x)
[
u − u(i)(x)

]

+
[
∇
(

V(i+1)(x) − W(x)
)]T

k(x)
[
w − w(i)(x)

]
. (19)

This means that (19) holds for ∀u ∈ U , w ∈ W . If letting
u = u(i), w = w(i), we have

d
dt

[
V(i+1)(x) − W(x)

]
= 0. (20)

Then, V(i+1)(x) − W(x) = c for ∀x ∈ X , where c is a real
constant, and c = V(i+1)(0) − W(0) = 0 . Thus, V(i+1)(x) −
W(x) = 0, i.e., W(x) = V(i+1)(x) for ∀x ∈ X . This completes
the proof.

Remark 3: It follows from Theorem 1 that the solution of
(14) is equivalent to (11), and thus the convergence of the
off-policy RL is guaranteed, i.e., the solution of the iterative
equation (14) will converge to the solution of HJI equation (4)
as iteration step i increases. Different from the equation (11)
in Algorithm 1, the off-policy RL with (14) uses system data
instead of the internal system dynamic f (x). Hence, the off-
policy RL can be regarded as a direct learning method for
H∞ control design, which avoids the identification of f (x). In
fact, the information of f (x) is embedded in the measurement
of system data. That is to say, the lack of knowledge about
f (x) does not have any impact on the off-policy RL to obtain
the solution of HJI equation (4) and the H∞ control policy. It
worth pointing out that the equation (14) is similar with the
form of the IRL [8], [9], which is an important framework
for control design of continuous-time systems. The IRL in [8]
and [9] is an online optimal control learning algorithm for
partially unknown systems.

B. Implementation Based on Neural Network

To solve (14) for the unknown function V(i+1)(x) based on
system data, we develop a NN-based actor-critic structure.
From the well-known high-order Weierstrass approximation
theorem [51], a continuous function can be represented by
an infinite-dimensional linearly independent basis function
set. For real practical application, it is usually required to
approximate the function in a compact set with a finite-
dimensional function set. We consider the critic NN for
approximating the cost function on a compact set X . Let
ϕ(x) ! [ϕ1(x) ... ϕL(x)]T be the vector of linearly independent
activation functions for critic NN, where ϕl(x):X 1→ R, l =
1, . . . , L, L is the number of critic NN hidden layer neurons.
Then, the output of critic NN is given by

V̂ (i)(x) =
L∑

l=1

θ
(i)
l ϕl(x) = ϕT(x)θ (i) (21)

for ∀i = 0, 1, 2, ..., where θ (i) ! [θ (i)
1 ... θ

(i)
L ]T is the critic

NN weight vector. It follows from (9), (10), and (21) that the
disturbance and control policies are given by:

û (i)(x) = −1
2

R−1gT(x)∇ϕT(x)θ (i) (22)

ŵ (i)(x) = 1
2
γ −2kT(x)∇ϕT(x)θ (i) (23)

for ∀i = 0, 1, 2, ..., and ∇ϕ(x) ! [∂ϕ1/∂x ... ∂ϕL/∂x]T is the
Jacobianofϕ(x).Expressions(22)and(23)canbeviewedasactor
NNs for the disturbance and control policies respectively, where
− 1

2 R−1gT(x)∇ϕT(x) and 1
2γ −2kT(x)∇ϕT(x) are the activation

function vectors and θ (i) is the actor NN weight vector.
Due to estimation errors of the critic and actor NNs (21)-

(23), the replacement of V(i+1), w(i) and u(i) in the iterative
equation (14) with V̂(i+1)

, ŵ (i) and û (i) respectively, yields
the following residual error:

σ (i)(x(t), u(t), w(t))

!
∫ t+#t

t

[
u(τ ) − û (i)(x(τ ))

]T
gT(x(τ ))∇ϕT(x(τ ))θ (i+1)dτ

+
∫ t+#t

t

[
w(τ ) − ŵ (i)(x(τ ))

]T
kT(x(τ ))∇ϕT(x(τ ))θ (i+1)dτ

+ [ϕ(x(t)) − ϕ(x(t + #t))]T θ (i+1)

−
∫ t+#t

t

[
hT(x(τ ))h(x(τ )) + ∥̂u (i)(x(τ ))∥2

R

−γ 2∥ŵ (i)(x(τ ))∥2
]

dτ

=
∫ t+#t

t
uT(τ )gT(x(τ ))∇ϕT(x(τ ))θ (i+1)dτ

+1
2

∫ t+#t

t

(
θ (i)
)T

∇ϕ(x(τ ))g(x(τ ))R−1gT(x(τ ))

∇ϕT(x(τ ))θ (i+1)dτ

+
∫ t+#t

t
wT(τ )kT(x(τ ))∇ϕT(x(τ ))θ (i+1)dτ

−1
2
γ −2

∫ t+#t

t

(
θ (i)
)T

∇ϕ(x(τ ))k(x(τ ))kT(x(τ ))

∇ϕT(x(τ ))θ (i+1)dτ + [ϕ(x(t)) − ϕ(x(t + #t))]Tθ (i+1)

−1
4

∫ t+#t

t

(
θ (i)
)T

∇ϕ(x(τ ))g(x(τ ))R−1gT(x(τ ))

∇ϕT(x(τ ))θ (i)dτ

+1
4
γ −2

∫ t+#t

t

(
θ (i)
)T

∇ϕ(x(τ ))k(x(τ ))kT(x(τ ))

∇ϕT(x(τ ))θ (i)dτ −
∫ t+#t

t
hT(x(τ ))h(x(τ ))dτ. (24)

For notation simplicity, define

ρ#ϕ(x(t)) ! [ϕ(x(t)) − ϕ(x(t + #t))]T

ρgϕ(x(t)) !
∫ t+#t

t
∇ϕ(x(τ ))g(x(τ ))R−1gT(x(τ ))

∇ϕT(x(τ ))dτ

ρkϕ(x(t)) !
∫ t+#t

t
∇ϕ(x(τ ))k(x(τ ))kT(x(τ ))

∇ϕT(x(τ ))dτ

ρuϕ(x(t), u(t)) !
∫ t+#t

t
uT(τ )gT(x(τ ))∇ϕT(x(τ ))dτ

ρwϕ(x(t), w(t)) !
∫ t+#t

t
wT(τ )kT(x(τ ))∇ϕT(x(τ ))dτ

ρh(x(t)) !
∫ t+#t

t
hT(x(τ ))h(x(τ ))dτ
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then, expression (24) is rewritten as

σ (i)(x(t), u(t), w(t))

= ρuϕ(x(t), u(t))θ (i+1) + 1
2

(
θ (i)
)T

ρgϕ(x(t))θ (i+1)

+ ρwϕ(x(t), w(t))θ (i+1) − 1
2
γ −2

(
θ (i)
)T

ρkϕ(x(t))θ (i+1)

+ ρ#ϕθ (i+1) − 1
4

(
θ (i)
)T

ρgϕ(x(t))θ (i)

+ 1
4
γ −2

(
θ (i)
)T

ρkϕ(x(t))θ (i) − ρh(x(t)). (25)

For description convenience, expression (25) is represented as
a compact form

σ (i)(x(t), u(t), w(t)) = ρ(i)(x(t), u(t), w(t))θ (i+1)

−π (i)(x(t)) (26)

where

ρ(i)(x(t), u(t), w(t)) ! ρuϕ(x(t), u(t)) + 1
2

(
θ (i)
)T

ρgϕ(x(t))

+ρwϕ(x(t), w(t)) − 1
2
γ −2

(
θ (i)
)T

ρkϕ(x(t)) + ρ#ϕ

π (i)(x(t)) ! 1
4

(
θ (i)
)T

ρgϕ(x(t))θ (i)

−1
4
γ −2

(
θ (i)
)T

ρkϕ(x(t))θ (i) + ρh(x(t)).

For description simplicity, denote ρ(i) = [ρ(i)
1 ... ρ

(i)
L ]T .

Based on the method of weighted residuals [52], the unknown
critic NN weight vector θ (i+1) can be computed in such a
way that the residual error σ (i)(x, u, w) (for ∀t " 0) of (26) is
forced to be zero in some average sense. Thus, projecting the
residual error σ (i)(x, u, w) onto dσ (i)/dθ (i+1) and setting the
result to zero on domain D using the inner product, ⟨·, ·⟩D

〈
dσ (i)/dθ (i+1), σ (i)(x, u, w)

〉

D
= 0. (27)

Then, the substitution of (26) into (27) yields
〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉

D
θ (i+1)

−
〈
ρ(i)(x, u, w),π (i)(x)

〉

D
= 0

where the notations
〈
ρ(i), ρ(i)〉

D and
〈
ρ(i),π (i)〉

D are given by

〈
ρ(i), ρ(i)

〉

D
!

⎡

⎢⎢⎢⎣

〈
ρ

(i)
1 , ρ

(i)
1

〉

D
· · ·

〈
ρ

(i)
1 , ρ

(i)
L

〉

D
... · · · ...〈

ρ
(i)
L , ρ

(i)
1

〉

D
· · ·

〈
ρ

(i)
L , ρ

(i)
L

〉

D

⎤

⎥⎥⎥⎦
and

〈
ρ(i),π (i)

〉
D !

[ 〈
ρ

(i)
1 ,π (i)

〉

D
· · ·

〈
ρ

(i)
L ,π (i)

〉

D

]T
.

Thus, θ (i+1) can be obtained with

θ (i+1) =
〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉−1

D〈
ρ(i)(x, u, w),π (i)(x)

〉

D
. (28)

The computation of inner products〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉
D and

〈
ρ(i)(x, u, w),π (i)(x)

〉
D

involve many numerical integrals on domain D, which

are computationally expensive. Thus, the Monte Carlo
integration method [53] is introduced, which is espe-
cially competitive on multidimensional domain. We now
illustrate the Monte Carlo integration for computing〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉
D. Let ID !

∫
D d(x, u, w), and

SM ! {(xm, um, wm)|(xm, um, wm) ∈ D, m = 1, 2, . . . , M} be
the set that sampled on domain D, where M is size of sample
set SM . Then,

〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉
D is approximately

computed with
〈
ρ(i)(x, u, w), ρ(i)(x, u, w)

〉

D

=
∫

D

(
ρ(i)(x, u, w)

)T
ρ(i)(x, u, w)d(x, u, w)

= ID
M

M∑

m=1

(
ρ(i)(xm, um, wm)

)T
ρ(i)(xm, um, wm)

= ID
M

(
Z(i)

)T
Z(i) (29)

where Z(i) !
[(

ρ(i)(x1, u1, w1)
)T

...
(
ρ(i)(xM, uM, wM)

)T]T
.

Similarly,
〈
ρ(i)(x, u, w),π (i)(x)

〉

D

= ID
M

M∑

m=1

(
ρ(i)(xm, um, wm)

)T
π (i)(xm)

= ID
M

(
Z(i)

)T
η(i) (30)

where η(i) !
[
π (i)(x1) ... π (i)(xM)

]T
. Then, the substitution of

(29) and (30) into (28) yields

θ (i+1) =
[(

Z(i)
)T

Z(i)
]−1 (

Z(i)
)T

η(i). (31)

It is noted that the critic NN weight update rule (31) is a
least-square scheme. Based on the update rule (31), the pro-
cedure for H∞ control design with NN-based off-policy RL
is presented in Algorithm 2.

Remark 4: In the least-square scheme (31), it is required
to compute the inverse of matrix

(
Z(i)

)T
Z(i). This means that

the matrix Z(i) should be full column rank, which depends
on the richness of the sampling data set SM and its size M.
To attain this goal in real implementation, it would be useful
by increasing the size M, starting from different initial states,
and using rich input signals, such as random noises, sinusoidal
function noises with enough frequencies. Of course, it would
be nice, if possible but is not a necessity, to use the persistent
exciting input signals, while it is still a difficult issue [54],
[55] that requires further investigation. In a word, the choices
of rich input signals and the size M are generally experience-
based.

Note that Algorithm 2 has two parts: the first part is Step 1
for data processing, i.e., measure system data (x, u, w) for
computing ρ#ϕ, ρgϕ, ρkϕ, ρuϕ, ρwϕ and ρh; the second part
is Steps 2–4 for offline iterative learning the solution of the
HJI equation (4).

Remark 5: From Theorem 1, the proposed off-policy RL
is mathematically equivalent to the model-based SPUA
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Algorithm 2 NN-Based Off-Policy RL for H∞ Control Design
# Step 1: Collect real system data (xm, um, wm) for sample

set SM , and then compute ρ#ϕ(xm), ρgϕ(xm), ρkϕ(xm),

ρuϕ(xm, um), ρwϕ(xm, wm) and ρh(xm);
# Step 2: Select initial critic NN weight vector θ (0) such

that V̂ (0) ∈ V0. Let i = 0;
# Step 3: Compute Z(i) and η(i), and update θ (i+1) with

(31);
# Step 4: Let i = i+1. If ∥θ (i) −θ (i−1)∥ ≤ ξ (ξ is a small

positive number), stop iteration and θ (i) is employed to
obtain the H∞ control policy with (22), else go back
to Step 3 and continue.

(i.e., Algorithm 2), which is proved to be a Newton’s
method [44]. Hence, the off-policy RL have the same advan-
tages and disadvantages as the Newton’s method. That is to
say, the off-policy RL is a local optimization method, and
thus there exists a problem that an initial critic NN weight
vector θ (0) should be given such that the initial solution V̂ (0)

locates in a neighborhood V0 of the HJI equation (4). In fact,
this problem also widely arises in many existing works for
solving optimal and H∞ control problems of either linear
or nonlinear systems through the observations from computer
simulation, such as [5], [8], [9], [27], [30], [31], [36], [40],
[42], and [56]–[59]. Till present, it is still a difficult issue for
finding proper initializations or developing global approaches.
There is no exception for the proposed off-policy RL algo-
rithm, where the selection of initial weight vector θ (i) is still
experience-based and requires further investigation.

Algorithm 2 can be viewed as an off-policy learning
method according to [2], [60], and [61], which overcomes the
drawbacks mentioned in Section III.

1) In the off-policy RL algorithm (i.e., Algorithm 2), the
control u and disturbance w can be arbitrarily on U and
W , where no error occurs during the process of gen-
erating data, and thus the accumulated error (exists in
the on-policy learning methods mentioned in Section III)
can be reduced.

2) In the Algorithm 2, the control u and disturbance w can
be arbitrarily on U and W , and thus disturbance w does
not required to be adjustable.

3) In the Algorithm 2, the cost function V(i+1) of control
and disturbance policies (u(i), w(i)) can be evaluated by
using system data generated with other different control
and disturbance signals (u, w). Thus, the obvious advan-
tage of the developed off-policy RL method is that it can
learn the cost function and control policy from system
data that are generated according to a more exploratory
or even random policies.

4) The implementation of Algorithm 2 is very simple, in fact
only one NN is required, i.e., critic NN. This means that
once the critic NN weight vector θ (i+1) is computed via
(31), the action NNs for control and disturbance policies
can be obtained based on (22) and (23) accordingly.

5) The developed off-policy RL method learns the
H∞ control policy offline, which is then used for

real-time control. Thus, it is much more practical than
online control design methods since less computa-
tional load will generate during real-time application.
Meanwhile, note that in Algorithm 2, once the terms
ρ#ϕ, ρgϕ, ρkϕ, ρuϕ, ρwϕ and ρh are computed with sam-
ple set SM (i.e., Step 1 is finished), no extra data
is required for learning the H∞ control policy (in
Steps 2–4). This means that the collected data set can
be utilized repeatedly, and thus the utilization efficiency
is improved compared to the online control design
methods.

Remark 6: Observe that the experience replay based IRL
method [21] can be viewed as an off-policy method based on
its definition [2]. There are three obvious differences between
the method and the work of this paper. Firstly, the method
in [21] is for solving the optimal control problem without
external disturbance, while the off-policy RL algorithm in this
paper is for solving the H∞ control problem with external
disturbance. Secondly, the method in [21] is online adaptive
control approach. The off-policy RL algorithm in this paper
uses real system information, and learns the H∞ control pol-
icy by using an offline process. After the learning process is
finished, the convergent control policy is employed for real
system control. Thirdly, the method in [21] involves two NNs
(i.e., one critic NN and one actor NN) for adaptive optimal
control realization, while only one NN (i.e., critic NN) is
required in the algorithm of this paper.

C. Convergence Analysis for NN-Based Off-Policy RL

It is necessary to analyze the convergence of the NN-based
off-policy RL algorithm. From Theorem 1, (14) in the off-
policy RL is equivalent to the linear PDE (11), which means
that the derived least-square scheme (31) is essentially for
solving the linear PDE (11). In [57], a similar least-square
method was suggested to solve the first order linear PDE
directly, wherein some theoretical results are useful for ana-
lyzing the convergence of the proposed NN-based off-policy
RL algorithm. The following Theorem 2 is given to show the
convergence of critic NN and actor NNs.

Theorem 2: For i = 0, 1, 2, ..., assume that V(i+1) ∈
H1,2(X ) is the solution of (14), the critic NN activation
functions ϕl(x) ∈ H1,2(X ), l = 1, 2, ...L are selected such
that they are complete when L → ∞, V(i+1) and ∇V(i+1)

can be uniformly approximated, and the set {ϖl(x1, x2) !
ϕl(x1) − ϕl(x2)}L

l=1 is linearly independent and complete for
∀x1, x2 ∈ X , x1 ̸= x2. Then

sup
x∈X

∣∣∣V̂ (i+1)(x) − V(i+1)(x)
∣∣∣ → 0 (32)

sup
x∈X

∣∣∣∇V̂ (i+1)(x) − ∇V(i+1)(x)
∣∣∣ → 0 (33)

sup
x∈X

∣∣∣̂u (i+1)(x) − u(i+1)(x)
∣∣∣ → 0 (34)

sup
x∈X

∣∣∣ŵ (i+1)(x) − w(i+1)(x)
∣∣∣ → 0. (35)

Proof: The proof procedure of the above results is very
similar with that in [57], and thus some similar proof steps will
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be omitted for avoidance of repetition. To use the theoretical
results in [57], we firstly prove the {∇ϕl(f + gu(i) + kw(i))}L

l=1
is linear independent by contradiction. Assume this is not true,
then there exists a vector θ ! [θ1 ... θL]T ̸= 0 such that

L∑

l=1

θl∇ϕl

(
f + gu(i) + kw(i)

)
= 0

which means that for ∀x ∈ X
∫ t+#t

t

L∑

l=1

θl∇ϕl

(
f + gu(i) + kw(i)

)
dτ

=
∫ t+#t

t
θl

dϕl

dτ
dτ

=
L∑

l=1

θl [ϕl(x(t + #t)) − ϕl(x(t))]

=
L∑

l=1

θlϖl(x(t + #t), x(t))

= 0.

This contradicts the fact that the set {ϖl}L
l=1 is linearly inde-

pendent, which implies that the set {∇ϕl(f + gu(i) + kw(i))}L
l=1

is linear independent.
From Theorem 1, V(i+1) is the solution of the linear PDE

(11). Then, with the same procedure used in Theorem 2 and
[57, Corollary 2], the results (32)–(34) can be proven. And the
result (35) can be proven in a similar way for (34).

The results (33)–(35) in Theorem 2 imply that the critic NN
and actor NNs are convergent. In the following Theorem 3,
we prove that the NN-based off-policy RL algorithm converges
uniformly to the solution of the HJI equation (4) and the H∞
control policy (5).

Theorem 3: If the conditions in Theorem 2 hold, then, for
∀ϵ > 0, ∃i0, L0, when i " i0 and L " L0, we have

sup
x∈X

∣∣∣V̂ (i)(x) − V∗(x)
∣∣∣ < ϵ (36)

sup
x∈X

∣∣∣̂u (i)(x) − u∗(x)
∣∣∣ < ϵ (37)

sup
x∈X

∣∣∣ŵ (i)(x) − w∗(x)
∣∣∣ < ϵ. (38)

Proof: By following the same proof procedures in [57, Ths.
3 and 4], the results (36)–(38) can be proven directly. Similar
to (37), the result (38) can also be proven.

Remark 7: The proposed off-policy RL method is to learn
the solution of the HJI equation (4) and the H∞ control pol-
icy (5). It follows from Theorem 3 that the control policy
û (i) designed by the off-policy RL will uniformly converge
to the H∞ control policy u∗. With the H∞ control policy, it
is noted from Lemma 1 that the closed-loop system (1) with
w(t) ≡ 0 is locally asymptotically stable. Furthermore, it is
observed from (3) that for the closed-loop system with dis-
turbance w(t) ∈ L2[0,∞), the output z(t) is in L2[0,∞) [62],
i.e., the closed-loop system is (bounded-input bounded-output)
stable.

V. OFF-POLICY REINFORCEMENT LEARNING FOR LINEAR

H∞ CONTROL

In this section, the developed NN-based off-policy RL
method (i.e., Algorithm 2) is simplified for linear H∞ control
design. Consider the linear system

ẋ(t) = Ax(t) + B2u(t) + B1w(t) (39)

z(t) = Cx (40)

where A ∈ Rn×n, B1 ∈ Rn×q, B2 ∈ Rn×m and C ∈ Rp×n.
Then, the HJI equation (4) of the linear system (39) and (40)
results in an algebraic Riccati equation (ARE) [46], [62]

ATP + PA + Q + γ −2PB1BT
1 P − PB2R−1BT

2 P = 0 (41)

where Q = CTC. If ARE (41) has a stabilizing solution P " 0,
the solution of the HJI equation (4) of the linear system (39)
and (40) is V∗(x) = xTPx, and then the linear H∞ control
policy (5) is accordingly given by

u∗(x) = −R−1BT
2 Px. (42)

Consequently, V(i)(x) = xTP(i)x, then the iterative equations
(9)–(11) in Algorithm 1 are respectively represented with

u(i) = −R−1BT
2 P(i)x (43)

w(i) = γ −2BT
1 P(i)x (44)

A
T
i P(i+1) + P(i+1)Ai + Q

(i) = 0 (45)

where Ai ! A + γ −2B1BT
1 P(i) − B2R−1BT

2 P(i) and Q
(i) ! Q −

γ −2P(i)B1BT
1 P(i) +P(i)B2R−1 BT

2 P(i).
Similar to the derivation of the off-policy RL method for

nonlinear H∞ control design in Section IV, rewrite the linear
system (39) as

ẋ = Ax + B2u(i) + B1w(i) + B2

[
u − u(i)

]
+ B1

[
w − w(i)

]
. (46)

Based on equations (43)–(46), (14) is given by
∫ t+#t

t
xT(τ )P(i+1)B2

[
u(τ ) + R−1BT

2 P(i)x(τ )
]

dτ

+
∫ t+#t

t
xT(τ )P(i+1)B1

[
w(τ ) − γ −2BT

1 P(i)x(τ )
]

dτ

+ [x(t) − x(t + #t)]T P(i+1) [x(t) − x(t + #t)]

=
∫ t+#t

t
xT(τ )Q

(i)
x(τ )dτ (47)

where P(i+1) is a n × n unknown matrix to be learned. For
notation simplicity, define

ρ#x(x(t)) ! x(t) − x(t + #t)

ρxx(x(t)) !
∫ t+#t

t
x(τ ) ⊗ x(τ )dτ

ρux(x(t), u(t)) !
∫ t+#t

t
u(τ ) ⊗ x(τ )dτ

ρwx(x(t), w(t)) !
∫ t+#t

t
w(τ ) ⊗ x(τ )dτ

where ⊗ denotes Kronecker product. Each term of (47) can
be written as
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Fig. 1. For the linear F16 aircraft plant, the critic NN weights θ
(i)
1 ∼ θ

(i)
3

at each iteration.

∫ t+#t

t
xT(τ )P(i+1)B2u(τ )dτ

= ρT
ux(x(t), u(t))(BT

2 ⊗ I)vec
(

P(i+1)
)

∫ t+#t

t
xT(τ )P(i+1)B2R−1BT

2 P(i)x(τ )dτ

= ρT
xx(x(t))(P

(i)B2R−1BT
2 ⊗ I)vec

(
P(i+1)

)

∫ t+#t

t
xT(τ )P(i+1)B1w(τ )dτ

= ρT
wx(x(t), w(t))(BT

1 ⊗ I)vec
(

P(i+1)
)

γ −2
∫ t+#t

t
xT(τ )P(i+1)B1BT

1 P(i)x(τ )dτ

= γ −2ρT
xx(x(t))(P

(i)B1BT
1 ⊗ I)vec

(
P(i+1)

)

[x(t) − x(t + #t)]TP(i+1) [x(t) − x(t + #t)]

= ρT
#x(x(t))vec

(
P(i+1)

)

∫ t+#t

t
xT(τ )Q

(i)
x(τ )dτ = ρT

xx(x(t))vec
(

Q
(i)
)

where vec(P) denotes the vectorization of the matrix P formed
by stacking the columns of P into a single column vector.
Then, (47) can be rewritten as

ρ(i)(x(t), u(t), w(t))vec(P(i+1)) = π (i)(x(t)) (48)

with

ρ(i)(x(t), u(t), w(t)) = ρT
ux(x(t), u(t))

(
BT

2 ⊗ I
)

+ ρT
wx(x(t), w(t))

(
BT

1 ⊗ I
)
+ ρT

#x(x(t))

− γ −2
(

P(i)B1BT
1 ⊗ I

)]

π (i)(x(t)) = ρT
xx(x(t))vec

(
Q

(i)
)

.

It is noted that (48) is equivalent to the equation (26) with
residual error σ (i) = 0. This is because no cost function
approximation is required for linear systems. Then, by col-
lecting sample set SM for computing ρux, ρwx, ρxx, and ρ#x,
a more simpler least-square scheme (31) can be derived to
obtain the unknown parameter vector vec(P(i+1)) accordingly.

VI. SIMULATION STUDIES

In this section, the efficiency of the developed NN-based
off-policy RL method is tested on a F16 aircraft plant. Then,
it is applied to the rotational/translational actuator (RTAC)
nonlinear benchmark problem.

Fig. 2. For the linear F16 aircraft plant, the critic NN weights θ
(i)
4 ∼ θ

(i)
6

at each iteration.

A. Efficiency Test on Linear F16 Aircraft Plant

Consider a F16 aircraft plant that used in [32], [46], [48],
and [63], where the system dynamics is described by a linear
continuous-time model

ẋ =

⎡

⎣
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

⎤

⎦ x

+

⎡

⎣
0
0
1

⎤

⎦ u +

⎡

⎣
1
0
0

⎤

⎦w (49)

z = x (50)

where the system state vector is x = [α q δe]T , α denotes
the angle of attack, q is the pitch rate and δe is the elevator
deflection angle. The control input u is the elevator actuator
voltage and the disturbance w is wind gusts on angle of attack.
Select R = 1 and γ = 5 for the L2-gain performance (3). Then,
solve the associated ARE (41) with the MATLAB command
CARE, we obtain

P =

⎡

⎣
1.6573 1.3954 −0.1661
1.3954 1.6573 −0.1804

−0.1661 −0.1804 0.4371

⎤

⎦ .

For linear systems, the solution of the HJI equation is
V∗(x) = xTPx, thus the complete activation function vec-
tor for critic NN is ϕ(x) =

[
x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

]T
of

size L = 6. Then, the idea critic NN weight vector is
θ∗ = [p11 2p12 2p13 p22 2p23 p33]T = [1.6573 2.7908
−0.3322 1.6573 − 0.3608 0.4371]T . Letting initial critic
NN weight θ

(0)
l = 0(l = 1, . . . , 6), iterative stop criterion

ξ = 10−7 and integral time interval #t = 0.1s, Algorithm 2 is
applied to learn the solution of the ARE. To generate sample
set SM , let sample size M = 100 and generate random noise
in interval [0, 0.1] as input signals. Figs. 1 and 2 give the
critic NN weight θ (i) at each iteration, in which the dash lines
represent idea values of θ∗. It is observed from the figures
that the critic NN weight vector converges to the idea values
of θ∗ at i = 5 iteration. Then, the efficiency of the developed
off-policy RL method is verified.

In addition, to test the influence of the parameter #t to
Algorithm 2, we reconduct simulation with different param-
eter cases: #t = 0.2, 0.3, 0.4, 0.5s, and the results show that
the critic NN weight vector θ (i) still converges to the idea val-
ues of θ∗ at i = 5 iteration for all cases. This implies that
the developed off-policy RL algorithm 2 is insensitive to the
parameter #t.
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Fig. 3. For the RTAC system, the critic NN θ
(i)
1 ∼ θ

(i)
5 weights at each

iteration.

Fig. 4. For the RTAC system, the critic NN θ
(i)
6 ∼ θ

(i)
10 weights at each

iteration.

B. Application to the Rotational/Translational Actuator
Nonlinear Benchmark Problem

The RTAC nonlinear benchmark problem [40], [44], [64]
has been widely used to test the abilities of control methods.
The dynamics of this nonlinear plant poses challenges because
the rotational and translation motions are coupled. The RTAC
system is given as follows:

ẋ =

⎡

⎢⎢⎢⎢⎢⎢⎣

x2
−x1 + ζx2

4 sin x3

1 − ζ 2 cos2 x3
x4

ζ cos x3(x1 − ζx2
4 sin x3)

1 − ζ 2 cos2 x3

⎤

⎥⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0
−ζ cos x3

1 − ζ 2 cos2 x3
0
1

1 − ζ 2 cos2 x3

⎤

⎥⎥⎥⎥⎥⎦
u

+

⎡

⎢⎢⎢⎢⎢⎣

0
1

1 − ζ 2 cos2 x3
0

−ζ cos x3

1 − ζ 2 cos2 x3

⎤

⎥⎥⎥⎥⎥⎦
w (51)

z =
√

0.1Ix (52)

where ζ = 0.2. For the L2-gain performance (3), let R = 1
and γ = 6. Then, the developed off-policy RL method is used
to solve the nonlinear H∞ control problem of system (51) and
(52). Select the critic NN activation function vector as

ϕ(x) =
[
x2

1 x1x2 x1x3 x1x4 x2
2 x2x3 x2x4 x2

3 x3x4

x2
4 x3

1x2 x3
1x3 x3

1x4 x2
1x2

2 x2
1x2x3 x2

1x2x4

x2
1x2

3 x2
1x3x4 x2

1x2
4 x1x3

2

]T

of size L = 20. With the initial critic NN weight θ
(0)
l = 0(l =

1, . . . , 20), iterative stop criterion ξ = 10−7 and integral time
interval #t = 0.033s, Algorithm 2 is applied to learn the
solution of the HJI equation. To generate sample set SM , let

Fig. 5. State trajectories x1(t), x2(t) of the closed-loop RTAC system.

Fig. 6. State trajectories x3(t), x4(t) of the closed-loop RTAC system.

Fig. 7. Control trajectory u(t) of the closed-loop RTAC system.

sample size M = 300 and generate random noise in interval
[0, 0.5] as input signals. It is found that the critic NN weight
vector converges fast to

θ (3) = [0.3285 1.5877 0.2288 − 0.7028 0.4101 − 1.2514

−0.5448 − 0.4595 0.4852 0.2078 − 1.3857 1.7518

1.1000 0.5820 0.1950 − 0.0978 − 1.0295 − 0.2773

−0.2169 0.2463]T

at i = 3 iteration. Figs. 3 and 4 show first 10 critic NN
weights (i.e., θ

(i)
1 ∼ θ

(i)
10 ) at each iteration. With the con-

vergent critic NN weight vector θ (3), the H∞ control policy
can be computed with (22). Under the disturbance signal
w(t) = 0.2r1(t)e−0.2tcos(t), (r1(t) ∈ [0, 1] is a random num-
ber), closed-loop simulation is conducted with the H∞ control
policy. Figs. 5–7 give the trajectories of state and control pol-
icy. To show the relationship between L2-gain and time, define
the following ratio of disturbance attenuation as:

rd(t) =
(∫ t

0

(
∥z(τ )∥2 + ∥u(τ )∥2

R

)
dτ

∫ t
0 ∥w(τ )∥2dτ

) 1
2

.

Fig. 8 shows the curve of rd(t), where it converges to 3.7024(<

γ = 6) as time increases, which implies that the designed H∞
control law can achieve a prescribed L2-gain performance level
γ for the closed-loop system.
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Fig. 8. Curve rd(t) of the closed-loop RTAC system.

VII. CONCLUSION

A NN-based off-policy RL method has been developed to
solve the H∞ control problem of continuous-time systems with
unknown internal system model. Based on the model-based
SPUA, an off-policy RL method is derived, which can learn
the solution of HJI equation from the system data generated
by arbitrary control and disturbance signals. The implementa-
tion of the off-policy RL method is based on an actor-critic
structure, where only one NN is required for approximating
the cost function, and then a least-square scheme is derived
for NN weights update. The effectiveness of the proposed NN-
based off-policy RL method is tested on a linear F16 aircraft
plant and a nonlinear RTAC problem.
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