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a  b  s  t  r  a  c  t

For  many  practical  industrial  spatially  distributed  processes  (SDPs),  their  dynamics  are  usually  described
by highly  dissipative  nonlinear  partial  differential  equations  (PDEs).  In  this  paper,  we  address  the  L2

disturbance  attenuation  problem  of nonlinear  SDPs  using  the Hamilton–Jacobi–Isaacs  (HJI) approach.
Firstly,  by  collecting  an  ensemble  of PDE  states,  Karhunen–Loève  decomposition  (KLD)  is  employed  to
compute  empirical  eigenfunctions  (EEFs)  of  the SDP  based  on  the method  of  snapshots.  Subsequently,
these  EEFs  together  with  singular  perturbation  (SP)  technique  are  used  to obtain  a  finite-dimensional
slow  subsystem  of  ordinary  differential  equation  (ODE)  that  accurately  describes  the  dominant  dynamics
of the  PDE  system.  Secondly,  based  on  the slow  subsystem,  the L2 disturbance  attenuation  problem  is
reformulated  and  a finite-dimensional  H∞ controller  is  synthesized  in  terms  of  the  HJI equation.  Moreover,
the  stability  and  L2-gain  performance  of  the  closed-loop  PDE  system  are  analyzed.  Thirdly,  since  the  HJI
equation  is  a nonlinear  PDE  that  has  proven  to  be  impossible  to solve  analytically,  we  combine  the  method
of  weighted  residuals  (MWR)  and  simultaneous  policy  update  algorithm  (SPUA)  to  obtain  its approximate
solution.  Finally,  the  simulation  studies  are  conducted  on  a nonlinear  diffusion-reaction  process  and
a  temperature  cooling  fin of high-speed  aerospace  vehicle,  and  the  achieved  results  demonstrate  the
effectiveness  of the  developed  control  method.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

It is ubiquitous that many industrial processes exhibit significant spatial variations owing to the underlying physical phenomena, such
as diffusion, convection, phase-dispersion, vibration, flow, etc. Typical examples include the catalytic packed-bed reactors [1,2] used to
convert methanol to formaldehyde, the Czochralski crystallization [3] of high-purity crystals, the chemical vapor deposition [4,5] of thin
films for microelectronics manufacturing, the aerosol-based production of nanoparticles [6] used in medical applications, Tokamak device
[7] for nuclear fusion, an intangible doughnut-shaped bottle created by magnetic lines is used to confine the high-temperature plasma, as
well as air traffic flow in the National Airspace System [8], steam-jacket tubular heat exchanger [4,9,10], etc. These spatially distributed
processes (SDPs) are naturally described by a set of nonlinear partial differential equations (PDEs) with homogeneous or mixed boundary
conditions. Moreover, there inevitably exist some kinds of external disturbances impinging on the processes. Therefore, studying the
disturbance attenuation control problem of nonlinear PDE systems is of theoretical and practical importance.

For nonlinear systems described by ordinary differential equations (ODEs), an effective solution is to address the problem of disturbance
attenuation in the L2-gain (H∞ norm) setting [11–13], that is, to design a controller such that the ratio of the objective output energy to the
disturbance energy is less than a prescribed level. Over the past few decades, a large number of theoretical results on nonlinear H∞ control
have been reported [14–17], where the H∞ controller depends on the solution of the so-called Hamilton–Jacobi–Isaacs (HJI) equation.
The HJI equation is a first order nonlinear PDE, which is difficult or impossible to solve, and may  not have global analytic solutions even
in simple cases. Thus, some works have been done in recent years to approximately obtain the solution of the HJI equation [14,18–20].
In [14], it was shown that there exists a sequence of policy iterations on the control input to pursue the smooth solution of the HJI
equation, where a sequence of Hamilton-Jacobi-Bellman (HJB)-like equations were used to successively approximate the HJI equation. In
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this way, the methods for solving HJB equation can be extended for the solution of HJI equation. In [21], the HJB equation was successively
approximated by a sequence of linear PDEs, which were solved with Galerkin’s approximation in [22,23]. Inspired by [14,21,22], Beard and
Mclain [19] further successively approximated each HJB-like equation in [14] with a sequence of linear PDEs, and then solved by Galerkin’s
approximation. This results in two iterative loops, i.e., the inner loop solves a HJB-like equation by iteratively solving a sequence of linear
PDEs, and the outer loop solves the HJI equation by iteratively solving a sequence of HJB-like equations. Thus, Luo and Wu  [20] proposed a
more efficient simultaneous policy update algorithm (SPUA), in which the HJI equation is solved by iteratively solving a sequence of linear
PDEs, and then only one iterative loop is required.

Due to the infinite-dimensional nature of the PDE systems, it is very difficult to directly use the control design methods of ODE  systems
for the SDPs. To achieve the disturbance attenuation, some control design approaches for SDPs with external disturbances have been
proposed, such as, infinite-dimensional H∞ control method [24], H∞ fuzzy control methods [25–28] and neural network based L∞-gain
control method [29]. The infinite-dimensional H∞ control method in [24] analyzes the PDE systems in an infinite-dimensional abstract
space and leads to an infinite-dimensional controller that is difficult to implement in practice; Furthermore, this method is mainly limited to
linear systems, and not suitable for nonlinear PDE systems. The methods in [26–29] were developed for nonlinear PDE systems with linear
spatial differential operator, which are not applied to PDE systems with nonlinear spatial differential operator; moreover, the linear matrix
inequality (LMI) techniques are employed in [25–29], which often bring conservatisms. However, to the best of the authors’ knowledge,
the L2 disturbance attenuation problem of a general class of highly dissipative SDPs is rarely studied in the framework of HJI equations.

In this work, we develop a SPUA based HJI approach to solve the L2 disturbance attenuation problem of a general class of highly
dissipative nonlinear PDE systems. Initially, we  use the Karhunen-Loève decomposition (KLD) to compute EEFs for the SDP with the
method of snapshots. These empirical eigenfunctions (EEFs) together with singular perturbation (SP) technique are subsequently used to
obtain a finite-dimensional slow subsystem that accurately describes the dominant dynamics of the PDE system. Then, based on the slow
subsystem, the L2 disturbance attenuation problem is reformulated, and solved in terms of the HJI equation. Moreover, the stability and
L2-gain performance of the closed-loop PDE system are analyzed. Furthermore, we introduce the SPUA to solve the HJI equation, which is
successively approximated by a sequence of linear PDEs and solved with the method of weighted residuals (MWR). Finally, the simulation
studies on a nonlinear diffusion-reaction process and a temperature cooling fin of high-speed aerospace vehicle are given to show the
effectiveness of the proposed design method.

The rest of this paper is arranged as follows. The problem description is given in Section 2 and the L2 disturbance attenuation problem
is reformulated using the EEFs and the SP technique in Section 3. Section 4 presents the HJI approach for designing the H∞ control law and
Section 5 shows the simulation results. Finally, a brief conclusion is drawn in Section 6.

Notations: R, R
n and R

n×m are the set of real numbers, the n-dimensional Euclidean space and the set of all real n × m matrices, respec-
tively. | · |, || · ||, and 〈·, ·〉Rn stand for the absolute value for scalars, Euclidean norm and inner product for vectors, respectively. Let R

∞

be the vector space of infinite sequences  ̨ � [˛1· · ·˛∞]T of real numbers equipped with the norm ||˛||R∞ �
√∑∞

i=1˛
2
i
, which is a natural

generalization of R
n. Identity matrix, of appropriate dimensions, is denoted by I. The superscript ‘T’ is used for the transpose of a vector or

a matrix. �̄(·), �- (·) and �̄ denote the maximum singular value, the minimum singular value and the maximum eigenvalue of a matrix. For
a symmetric matrix M,  M > (≥, <,  ≤)0 means that it is positive definite (positive semi-definite, negative definite, negative semi-definite,
respectively). The space-varying symmetric matrix function M(z), z ∈ [z-, z̄] is positive definite (positive semi-definite, negative definite,
negative semi-definite, respectively), if M(z) > (≥, <,  ≤)0 for each z ∈ [z-, z̄]. For column vector functions s1(x) and s2(x), define inner prod-
uct 〈s1(·), s2(·)〉˝ �

∫
˝
sT1(x)s2(x)dx, x ∈  ̋ ⊂ R

n. L2([z-, z̄]; R
n) is an infinite-dimensional Hilbert space of n-dimensional square integrable

vector functions ω(z) ∈ L2([z-, z̄]; R
n), z ∈ [z-, z̄] ⊂ R  equipped with the inner product and norm: 〈ω1(·), ω2(·)〉 =

∫ z̄
z-

〈ω1(z), ω2(z)〉Rndz and

||ω1(·)||2 = 〈ω1(·), ω1(·)〉1/2 where ω1(·) and ω2(·) are any two  elements of L2([z-, z̄], R
n).

2. Problem description

We consider a general class of continuous-time SDPs which are described by highly dissipative nonlinear PDEs with the following
state-space representation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂y

∂t
= L

(
y,
∂y

∂z
,
∂2y

∂z2
, ...,

∂n0y

∂zn0

)
+ B̄1(z)w(t) + B̄2(z)u(t)

yh(t) =
∫ z̄

z-

H(z)y(z, t)dz

(1)

subject to the mixed-type boundary conditions

q

(
y,
∂y

∂z
,
∂2y

∂z2
, · · ·, ∂

n0−1y

∂zn0−1

)∣∣∣∣
z=z- or z̄

= 0 (2)

and the initial condition

y(z, 0) = y0(z) (3)

where z ∈ [z-, z̄]  ⊂ R  is the spatial coordinate, t ∈ [0,  ∞)  is the temporal coordinate, y(z, t) = [y1(z, t)· · ·yn(z, t)]T ∈ R
n is the state, u(t) ∈ R

p

is the manipulated input, yh(t) =
[
yh,1(t) · · · yh,m(t)

]T ∈ R
m is the objective output, w(t) ∈ R

q is the exogenous disturbance and
w(t) ∈ L2([0,  ∞), R

q). L ∈ R
n is a sufficiently smooth nonlinear vector function that involves a highly dissipative, possibly nonlinear, spatial

differential operator of order n0 (an even number). q is a sufficiently smooth nonlinear vector function. B̄1(z) and B̄2(z) are sufficiently
smooth matrix functions of appropriate dimensions which describe how disturbance and control actions are distributed in spatial domains
respectively, H(z) is a selected sufficiently smooth matrix function of appropriate dimension, and y0(z) is a smooth vector function
representing the initial state profile.
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Remark 1. The highly dissipative nonlinear PDE system (1)–(3) represents a large number of nonlinear industrial SDPs. Representa-
tive examples include transport-reaction processes with significant diffusive and dispersive mechanisms that are naturally described by
nonlinear parabolic PDEs (such as chemical reactors [4,30,31], catalytic rod [1,2,4,29], heat transfer [32], chemical vapor deposition [4,5],
crystal growth processes [3], FitzHugh–Nagumo equation [33], etc.), and several fluid dynamic systems (such as Burgers’s equation [34]
for gas dynamics and traffic flow, Kuramoto–Sivashinsky equation (KSE) [1,33,35], Navier–Stokes equations [35], etc.).

The L2 disturbance attenuation problem under consideration is to find a state feedback control law such that the system (1)–(3) has
L2-gain less than or equal to �, that is,∫ +∞

0

(||yh(t)||2 + uT (t)Ru(t))dt ≤ �2

∫ +∞

0

||w(t)||2dt (4)

for all w(t) ∈ L2([0,  ∞), R
q), (i.e.,

∫ +∞
0

||w(t)||2 dt < ∞),  where R≥0 is the given weighting matrix and � > 0 is some prescribed level of
disturbance attenuation.

3. Finite-dimensional L2 disturbance attenuation problem formulation

It is known that the main feature of highly dissipative PDE systems is that they involve spatial differential operators whose eigenspectrum
can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. This means that their dominant
dynamic behavior can be accurately described by finite-dimensional systems. However, for many real industrial SDPs with nonlinear spatial
differential operators [1,5,36–39], it is impossible to compute their analytic expressions of the eigenvalues and eigenfunctions, and thus,
the direct use of basis functions are prohibited to derive finite-dimensional approximations of the PDE system. To overcome this difficulty,
we initially compute a set of EEFs (dominant spatial patterns) of the PDE system by using KLD based on the method of snapshots. These EEFs
together with the SP technique will be subsequently applied to obtain a slow subsystem that accurately describes the dominant dynamics
of the PDE system. Then, the L2 disturbance attenuation problem is reformulated on the basis of the slow subsystem, which is prepared for
synthesizing a finite-dimensional H∞ controller.

3.1. Computation of EEFs with KLD

KLD is a popular statistical pattern analysis method for seeking the dominant structures in an ensemble of a high-dimensional process,
and obtaining low-dimensional approximate descriptions in many engineering fields. Given an ensemble of data, KLD yields a set of
orthogonal EEFs for the representation of the ensemble, as well as a measure of the relative contribution of each EEF to the total “energy”
(mean square fluctuation) of the ensemble. In this sense, the EEFs provide an optimal basis for the truncated series representation, which
has a smaller mean square error than a representation by any other basis of the same dimension. In other words, the projection onto the
first few EEFs captures most of the energy than any other projection. These properties make the EEFs a natural one to be considered when
performing model reduction.

For completeness sake, we briefly review the procedure of KLD for computing EEFs with the method of snapshots in the context of the
PDE system (1)–(3). By using different initial conditions, control inputs and disturbances, conduct simulations on the SDP and online collect
a representative ensemble {yi(z)}. The ensemble is a set with the size M that is sufficiently large, and yi(z) is typically called “snapshot” of
the solution of the PDE system. Introduce the two-point spatial correlation function as

S(z, �) = 1
M

M∑
i=1

yi(z)y
T
i (�) (6)

According to the Mercer theorem [40], S(z, �) has a property that

S(z, �) =
∞∑
j=1

�j�j(z)�
T
j (�) (7)

where {�j} is the set of non-zero eigenvalues and {�j(z)} is the corresponding set of orthogonal eigenfunctions of S(z, �).By using Eq. (6),
we have∫ z̄

z-

S(z, �)�i(�)d� =
∫ z̄

z-

1
M

M∑
j=1

yj(z)y
T
j (�)�i(�)d�

=
M∑
j=1

yj(z)

[
1
M

∫ z̄

z-

yTj (�)�i(�)d�

]
=

M∑
j=1

ϑjyj(z)

(8)

where ϑj = 1
M

∫ z̄
z-
yT
j
(�)�i(�)d�. Similarly, by using (7), we get∫ z̄

z-

S(z, �)�i(�)d� =
∫ z̄

z-

∞∑
j=1

�j�j(z)�
T
j (�)�i(�)d�

=
∞∑
j=1

�j�j(z)

∫ z̄

z-

�Tj (�)�i(�)d� = �i�i(z)

(9)
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It follows from (8) and (9) that

�i(z) =
M∑
j=1

˛jiyj(z) (10)

where ˛ji � �−1
i
ϑj . This means that the EEFs {�i(z)} are linear combinations of snapshots {yi(z)}. Then, the essence of computing EEFs is

reduced to compute the coefficient vectors ˛i = [˛1i· · ·˛Mi]T .
The substitution of expressions (6) and (10) into (9) yields∫ z̄

z-

1
M

M∑
k=1

yk(z)y
T
k (�)

M∑
j=1

˛jiyj(�)d� = �i

M∑
j=1

˛jiyj(z)

i.e.,

M∑
k=1

yk(z)
M∑
j=1

˛ji

[
1
M

∫ z̄

z-

yTk (�)yj(�)d�

]
= �i

M∑
j=1

˛jiyj(z)

then, we get

Y (z)(C˛i) = Y (z)(�i˛i) (11)

where C = (ckj)M×M ∈ R
M×M and Y (z) = [y1(z)· · ·yM(z)] ∈ R

n×M with

ckj = 1
M

∫ z̄

z-

yTk (�)yj(�)d�

Assuming that {yi(z)} are linearly independent, all eigenvectors {˛i} and corresponding eigenvalues {�i} can be computed by the standard
method of eigenvalue decomposition for the following eigenvalue problem:

C˛i = �i˛i.

EEFs can be mutually orthogonal by normalizing the eigenvector ˛i to satisfy

〈˛i, ˛i〉Rn = 1
M�i

Then, all EEFs {�i(z)} are directly computed by (10).

3.2. Problem formulation of finite-dimensional L2 disturbance attenuation

For convenience, we denote y(·, t) � y(z, t), z ∈ [z-, z̄] and M(·) � M(z), z ∈ [z-, z̄] for some space-varying matrix function M(z). To simplify
the notation, we consider the PDE system (1)–(3) with n = 1 without loss of generality. Assume that the PDE state y(z, t) can be represented
as an infinite weighted sum of a complete set of orthogonal basis functions {�i(z)}, i.e.,

y(z, t) =
∞∑
i=1

xi(t)�i(z) (12)

where xi(t) is a time-varying coefficient named the mode of the PDE system. By taking inner product with �i(z) (i = 1, . . .)  on both sides of
PDE system (1)–(3), we obtain the following infinite-dimensional ODE system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ(t) = f s(x(t), xf (t)) + B1w(t) + B2u(t)

ẋf (t) = Lf (x(t), xf (t)) + B1fw(t) + B2f u(t)

yh(t) = Hsx(t) + H f xf (t)

x(0) = x0, xf (0) = xf 0

(13)

where

x(t) =
〈
y(·, t), ˚s(·)

〉
� [x1(t)· · ·xN(t)]T (14)

and

xf (t) = 〈y(·, t), ˚f (·)〉 � [xN+1(t)· · ·x∞(t)]T ∈ R
∞

f s(x, xf ) � 〈L, ˚s(·)〉, Lf (x, xf ) � 〈L, ˚f (·)〉
B1 � 〈B̄1(·), ˚s(·)〉, B1f � 〈B̄1(·), ˚f (·)〉, B2 � 〈B̄2(·), ˚s(·)〉, B2f � 〈B̄2(·), ˚f (·)〉

Hs �
∫ z̄

z-

H(z)˚Ts (z)dz, H f �
∫ z̄

z-

H(z)˚Tf (z)dz

x0 � 〈y0(·), ˚s(·)〉, xf 0 � 〈y0(·), ˚f (·)〉
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with ˚s(z) � [�1(z)· · ·�N(z)]T and ˚f (z) � [�N+1(z)· · ·�∞(z)]TSimilarly, the L2 disturbance attenuation criterion (4) is rewritten as∫ +∞

0

(xT (t)Q sx(t) + uT (t)Ru(t))dt + 
(x, xf ) ≤ �2

∫ +∞

0

||w(t)||2 dt (15)

where 
(x, xf ) �
∫ +∞

0
(2xT (t)Q sf xf (t) + xT

f
(t)Q f xf (t))dt, Q s � HTsHs, Q sf � HTsH f and Q f � HTf H f

Assumption 1. There exist constants ˛1, �f > 0 such that the following inequality holds


(x, xf ) ≤ ˛1

∫ +∞

0

(xT (t)Q sx(t) + uT (t)Ru(t))dt + �2
f

∫ +∞

0

||w(t)||2 dt (16)

Owing to the highly dissipative nature of the PDE system (1)–(3), it is reasonable to assume that

Lf (x, xf ) = 1
ε
Afεxf + f f (x, xf ) (17)

where ε is a small positive parameter quantifying the separation between the slow (dominant) and fast (negligible) modes, Afε is a matrix
that is stable (in the sense that the state of the system ẋf = Afεxf tends exponentially to zero), and f f (x, xf ) satisfies

||f f (x, xf )|| ≤ k1||x|| + k2||xf || (18)

for ||x|| ≤ ˇ1 and ||xf || ≤ ˇ2 with k1, k2 > 0. Then, system (13) can be rewritten as the following standard singularly perturbed form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = f s(x(t), xf (t)) + B1w(t) + B2u(t)

εẋf (t) = Afεxf (t) + εf f (x(t), xf (t)) + εB1fw(t) + εB2f u(t)

yh(t) = Hsx(t) + H f xf (t)

x(0) = x0, xf (0) = xf 0

(19)

Introducing the fast time-scale 
 = t/ε and setting ε = 0, we  obtain the following infinite-dimensional fast subsystem from (19):

dxf
d


= Afεxf (20)

which is exponentially stable [37,41]. Then, setting ε = 0 in the system (19), we have xf = 0, and thus the following slow subsystem is
obtained:{

ẋ(t) = f s(x(t), 0) + B1w(t) + B2u(t), x(0) = x0

yhs(t) = Hsx(t)
(21)

The basis function �i(z) used in this paper is the EEF computed with KLD, and the dimension of ˚s (i.e., N) is chosen such that it satisfies

N∑
i=1

�i/

M∑
i=1

�i≥1 − � (22)

for a small positive real number �.
In this study, the slow subsystem (21) will be used as the basis for synthesizing a finite-dimensional H∞ controller for PDE system

(1)–(3) such that the following L2 disturbance attenuation criterion is satisfied:∫ +∞

0

(xT (t)Q sx(t) + uT (t)Ru(t))dt ≤ �2
s

∫ +∞

0

||w(t)||2 dt (23)

where �s is a given positive constant satisfying 0 < �s < � .

Remark 2. Compared with analytical eigenfunctions, the use of EEFs for model reduction of nonlinear PDE systems has two merits.
The first is that analytical eigenfunctions are only suitable to set up a finite dimensional ODE system for PDE systems with a known linear
spatial differential operator. However, EEFs are suitable for the model reduction of PDE systems with nonlinear spatial differential operator.
Another important merit of EEFs is that they can be computed online on the basis of data collection of system states by using KLD, which
does not require a mathematical system model. Thus, the highly-complexity and unavailability of internal system dynamic L have no
effects on the computation of EEFs.

4. HJI approach for finite-dimensional H∞ control design

To synthesize a finite-dimensional H∞ controller for the PDE system (1)–(3), it is well known that, the L2 disturbance attenuation
problem for the finite-dimensional nonlinear ODE system (21) with the L2-gain performance (23), can be converted to solve a HJI equation
[12,13]. However, HJI equation is notoriously difficult to solve both numerically and analytically. To overcome this difficulty, we combine
the SPUA and MWR  to approximately solve the HJI equation.
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4.1. HJI approach and stability analysis

The following Lemma  1 shows that the L2 disturbance attenuation problem of ODE system (21) with the L2-gain performance (23) is
translated to solve a HJI equation for value function.

Lemma  1. Consider the slow system (21) and the L2-gain performance (23). Assume that the system is zero-state observable. If there
exists a smooth solution V∗(x)≥0 to the HJI equation

(∇V∗(x))T f s(x, 0) + xTQ sx − 1
4

(∇V∗(x))TB2R
−1BT2∇V∗(x) + 1

4�2
s

(∇V∗(x))TB1 B
T
1∇V∗(x) = 0 (24)

where ∇ � ∂/∂x is a gradient operator notation, then, the closed-loop system with the state feedback control

u(t) = u∗(x) = −1
2
R−1BT2∇V∗(x) (25)

has L2-gain less than or equal to �s (i.e., (23) holds), and is locally asymptotically stable (when w(t) ≡ 0).

Proof. See Theorem 16 and Corollary 17 in [14].

Notice that the modal feedback control policy (25) in Lemma 1 only shows the stability and the L2-gain performance of the closed-loop
slow system; nothing about the original closed-loop PDE system is analyzed. Next, we  will prove that under the control policy (25), the
closed-loop PDE system of (1)–(3) is also locally asymptotically stable (when w(t) ≡ 0) and satisfies the original L2-gain criterion (4).

Theorem 1. Consider the PDE system (1)–(3) and the L2 disturbance attenuation criterion (4), for which Assumption 1 holds with constants
˛1, �f > 0, the conditions of Lemma  1 hold, and give constant �s. Then, with the modal feedback control policy (25), there exist positive
real constants �, ı1, ı2 and ε∗, such that if ||x0|| ≤ ı1, ||xf 0||R∞ ≤ ı2 and ε ∈ (0,  ε∗),

(1) the closed-loop PDE system (1)–(3) has L2-gain less than or equal to � (i.e., (4) holds) for all w(t) ∈ L2([0, ∞), R
q), where

�≥
√

(1 + ˛1)�2
s + �2

f

(2) the disturbance-free closed-loop PDE system (1)–(3) (i.e., w(t) ≡ 0) is locally asymptotically stable in L2-norm.

Proof. Under the modal feedback control policy (25), it follows from Lemma  1 and Assumption 1 that inequalities (16) and (23) hold.
Then, by using (16) and (23), we get∫ +∞

0

(xT (t)Q sx(t) + u∗T (t)Ru∗(t))dt + 
(x, xf )

≤ �2
s

∫ +∞

0

||w(t)||2 dt + ˛1

(∫ +∞

0

(xT (t)Q sx(t) + u∗T (t)Ru∗(t))dt

)
+ �2

f

∫ +∞

0

||w(t)||2 dt

≤ (�2
s + �2

f
)

∫ +∞

0

||w(t)||2 dt + ˛1

(∫ +∞

0

(xT (t)Q sx(t) + u∗T (t)Ru∗(t))dt

)
≤ (�2

s + �2
f

)

∫ +∞

0

||w(t)||2 dt + ˛1�
2
s

∫ +∞

0

||w(t)||2 dt

= ((1 + ˛1)�2
s + �2

f
)

∫ +∞

0

||w(t)||2 dt

Since �≥
√

(1 + ˛1)�2
s + �2

f
, we have∫ +∞

0

(||yh(t)||2 + u∗T (t)Ru∗(t))dt =
∫ +∞

0

(
xT (t)Q sx(t) + u∗T (t)Ru∗(t)

)
dt + 
(x, xf )

≤ �2

∫ +∞

0

||w(t)||2 dt

This means that the closed-loop PDE system (1)–(3) with the control policy (25) satisfies the L2 disturbance attenuation criterion (4).
In addition, with the control policy (25), the disturbance-free closed-loop PDE system is given by

∂y

∂t
= L

(
y,
∂y

∂z
,
∂2y

∂z2
, · · ·, ∂

n0y

∂zn0

)
+ B̄2(z)u∗(t) (26)

Using the procedure given in Section 3.2, the system (26) is equivalently represented as{
ẋ = f s(x, 0) + B2u∗ + (f s(x, xf ) − f s(x, 0))

εẋf = Afεxf + εf f (x, xf ) + εB2f u
∗

(27)

Since L is a sufficiently smooth nonlinear vector function, it is obvious that there exists some constant k3 > 0 such that

||f s(x, xf ) − f s(x, 0)||  ≤ k3||xf ||R∞ (28)

for ||x|| ≤ ˇ1.
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According to the exponential stability property of the xf -subsystem (20), and the converse Lyapunov theorem [42], we have that there
exist a Lyapunov function candidate Vf (xf ) and positive real numbers l1, l2, l3 and l4, such that the following conditions hold:⎧⎪⎪⎨⎪⎪⎩

l1||xf ||2R∞ ≤ Vf (xf ) ≤ l2||xf ||2R∞

V̇f (xf ) = 1
ε
∇VTf Afεxf ≤ − l3

ε
||xf ||2R∞

||∇Vf ||R∞ ≤ l4||xf ||R∞

(29)

where ∇Vf � ∂Vf /∂xf .

It follows from the fact B̄2(z) = ˚Ts (z)B2 + ˚Tf (z)B2f that∫ z̄

z-

B̄
T
2(z)B̄2(z)dz = BT2B2 + BT2fB2f

Thus, we have∥∥BT2f∇Vf∥∥ =
(

(∇Vf )TB2fB
T
2f∇Vf

) 1
2 ≤ l5

∥∥∇Vf
∥∥
R∞ ≤ l4l5

∥∥xf∥∥
R∞ (30)

where l5 �
(
�̄
(∫ z̄

z-
B̄
T
2(z)B̄2(z)dz − BT2B2

))1/2

Now, choose the smooth function V(x, xf ) � V∗(x) + Vf (xf ) as the Lyapunov function candidate of the system (27), where V∗(x) is the
solution of the HJI equation (24). Differentiating V(xs, xf ) with respect to time along the trajectories of system (27) yields, V̇(x, xf ) =
V̇∗(x) + V̇f (xf )

=  (∇V∗)T ẋ + (∇Vf )T ẋf
= (∇V∗)T (f s(x, 0) + B2u∗ + (f s(x, xf ) − f s(x, 0)))

+(∇Vf )T
(

1
ε
Afεxf + f f (x, xf ) + B2f u

∗
)

(31)

Before deriving the condition for V̇(x, xf ) < 0, we compute each part of (31) as follows. According to the HJI equation (24) and control
law (25), we have

(∇V∗)T (f s(x, 0) + B2u
∗) = (∇V∗)T f s(x, 0) − 1

2
(∇V∗)TB2R

−1BT2∇V∗(x) = −xTQ sx − 1
4

(∇V∗)TB2R
−1BT2∇V∗ − 1

4�2
s

(∇V∗)TB1B
T
1∇V∗

≤ −�1||x||2 −
(

1
4
�2 + 1

4�2
s

�3

)
||∇V∗||2 (32)

where �1 � �- (Q s), �2 � �- (B2R
−1BT2) and �3 � �- (B1B

T
1). By (28), it is clear that

(∇V∗)T (f s(x, xf ) − f s(x, 0)) ≤ k3

∥∥xf∥∥
R∞
∥∥∇V∗∥∥ (33)

Using (18), (25), (29) and (30), we obtain

(∇Vf )T
(

1
ε
Afεxf + f f (x, xf ) + B2f u

∗
)

= 1
ε

(∇Vf )TAfεxf + (∇Vf )T f f (x, xf ) − 1
2

(∇Vf )TB2fR
−1BT2∇V∗(x)

≤ − l3
ε

||xf ||2R∞ + (k1||x|| + k2||xf ||R∞ )||∇Vf ||R∞ + 1
2
�4||(∇Vf )TB2f ||||∇V∗||

≤
(
k2l4 − l3

ε

)
||xf ||2R∞ + k1l4||x||||xf ||R∞ + 1

2
�4l4l5||xf ||R∞

∥∥∇V∗∥∥
(34)

where �4 � �̄(R−1BT2)
From (31)–(34), we have

V̇(x, xf ) ≤ −�1||x||2 +
(
k2l4 − l3

ε

)
||xf ||2 −

(
1
4
�2 + 1

4�2
s

�3

)
||∇V∗||2 + k1l4||x||||xf ||R∞ +

(
k3 + 1

2
�4l4l5

)
||xf ||R∞||∇V∗|| = −�T˙(ε)�
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where � �

[ ||x||
||xf ||R∞

||∇V∗||

]
and ˙(ε) �

⎡⎢⎢⎢⎣
�1 −1

2
k1l4 0

−1
2
k1l4

l3
ε

− k2l4 −1
2
k3 − 1

4
�4l4l5

0 −1
2
k3 − 1

4
�4l4l5

1
4
�2 + 1

4�2
s

�3

⎤⎥⎥⎥⎦Defining

ε1 � 4l3�1

k2
1l

2
4 + 4k2l4�1

ε2 � 4�2
s l3�1�2 + 4l3�1�3

4�2
s k

2
3�1 + �2

s l
2
4l

2
5�1�2

4 + 4�2
s k3l4l5�1�4 + �2

s k
2
1l

2
4�2 + k2

1l
2
4�3 + 4�2

s k2l4�1�2 + 4k2l4�1�3

and ε∗ � min{ε1, ε2}, we have that, if ε ∈ (0,  ε∗), then V̇(x, xf ) < 0. This means that the system (27) is locally asymptotically stable, i.e.,
lim
t→∞

||x(t)|| → 0 and lim
t→∞

||xf (t)||R∞ → 0. Considering ||y(·, t)||22 = ||x(t)||2 + ||xf (t)||2R∞ , then we  have that lim
t→∞

||y(·, t)||2 → 0. This means that

the disturbance-free closed-loop PDE system (1)–(3) with control law (25) is locally asymptotically stable in L2-norm. �

4.2. Combining the SPUA and MWR  for solving the HJI equation

For notation simplicity, define f (x) � f s(x, 0) in the rest of the paper. It is noted from Lemma  1 and Theorem 1 that the H∞ control law
(25) hinges on the solution of the HJI equation (24) for the value function V∗(x). In [20], Luo and Wu proposed an efficient SPUA, where the
HJI equation was successively approximated by a sequence of linear PDEs. The procedure of the SPUA is given as follows:

Algorithm 1.
Step 1: Give an initial function V (0) ∈ V0 (V0 ⊂ V  is determined by Lemma  5 in [20]), and let i = 0.
Step 2: Update the control and disturbance policies with

u(i) = −1
2
R−1BT2∇V (i) (35)

w(i) = 1
2
�−2
s B

T
1∇V (i) (36)

Step 3: Solve the following linear PDE for the cost function V (i+1):

(∇V (i+1))
T
(f + B2u

(i) + B1w
(i)) + xTQ sx + (u(i))

T
Ru(i) − �2

s (w(i))
T
w(i) = 0 (37)

Step 4: Set i = i + 1, go back to Step 2 and continue.

Note that in Algorithm 1, we need to solve linear PDE (37) at each iterative step. Thus, we develop the MWR  on a set  ̋ such that x ∈ ˝. From
the well known high-order Weierstrtrass approximation theorem [43], it follows that a continuous function can be uniformly approximated
to any degree of accuracy by a set of linearly independent basis functions. We  assume that there exists a complete set of linearly independent
basis functions  (x) =

{
 k(x)

}∞
k=1

such that  k(0) = 0, ∀k. Then the solution of Eq. (37) can be expressed as a linear combination of basis
functions  (x), i.e.,

V (i+1)(x) =
∞∑
l=1

c(i+1)
l

 l(x) (38)

where the sum is assumed to converge pointwise on the set ˝.  A trial solution can be taken by truncating the series to

V̂ (i+1)(x) �
L∑
l=1

c(i+1)
l

 l(x) = (c(i+1))
T
 L(x) =  TL (x)c(i+1) (39)

where c(i+1) = [c(i+1)
1 · · ·c(i+1)

L ]
T

and  L(x) = [ 1(x)· · · L(x)]T . The partial derivative of V̂ (i+1)(x) is given by

∇V̂ (i+1)(x) =
L∑
l=1

c(i+1)
l

∇ l(x) = ∇ TL (x)c(i+1) (40)

where ∇ L(x) � [∇ 1(x)· · ·∇ L(x)]T is the Jacobian of  L . Then according to (35) and (36) in Algorithm 1, the updates of disturbance and
control policies are respectively given as

ŵ
(i) = 1

2
�−2
s B

T
1∇ TL (x)c(i) (41)

û
(i) = −1

2
R−1BT2∇ TL (x)c(i) (42)

Substituting Eqs. (40)–(42) into Eq. (37) results in the following residual error

ı(x) � (∇V̂ (i+1))
T
(f + B2û

(i) + B1ŵ
(i)) + xTQ sx + (û(i))

T
Rû

(i) − �2
s (ŵ(i))

T
ŵ

(i) (43)
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If the trial function (39) is the exact solution, the above residual would be zero. In the MWR,  the constant vector c(i+1) is computed in such
a way that residual (43) is forced to be zero in some weighted average sense as follows:

e(c(i+1)) � 〈ı(x), ωL(x)〉˝ = 0 (44)

where ωL(x) = [ω1(x)· · ·ωL(x)]T is called the weighted function vector. Substituting (43) into (44) gives

e(c(i+1)) = 〈(∇V̂ (i+1))
T
f , ωL〉˝ + 〈(∇V̂ (i+1))

T
B2û

(i)
, ωL〉˝ + 〈(∇V̂ (i+1))

T
B1ŵ

(i)
, ωL〉˝

+ 〈xTQ sx, ωL〉˝ + 〈(û(i))
T
Rû

(i)
, ωL〉˝ − �2

s 〈(ŵ(i))
T
ŵ

(i)
, ωL〉˝ (45)

By using (40)–(42), each term of (45) can be given as

〈(∇V̂ (i+1))
T
f , ωL〉˝ =

∫
˝

ωL(x)f T (x)∇V̂ (i+1)(x)dx =
(∫

˝

ωL(x)f T (x)∇�TL (x)dx

)
c(i+1)

〈
(∇V̂ (i+1))

T
B2û

(i)
, ωL

〉
˝

= −1
2

∫
˝

ωL(x)(û(i)(x))
T
BT2∇V̂ (i+1)(x)dx

= −1
2

⎛⎝∫
˝

ωL(x)

⎛⎝( L∑
l=1

c(i)
l

∇ l(x)

)T
B2R

−1BT2∇ TL (x)

⎞⎠dx
⎞⎠ c(i+1)

= −1
2

(
L∑
l=1

c(i)
l

∫
˝

ωL(x)∇ Tl (x)B2 R
−1BT2∇ TL (x)dx

)
c(i+1)

〈
(∇V̂ (i+1))

T
B1ŵ

(i)
, ωL

〉
˝

= 1
2
�−2
s

∫
˝

ωL(x)( ŵ(i)(x))
T
BT1∇V̂ (i+1)(x)dx

= 1
2
�−2
s

⎛⎝∫
˝

ωL(x)

⎛⎝( L∑
l=1

c(i)
l

∇ l(x)

)T
B1 B

T
1∇ TL (x)

⎞⎠dx
⎞⎠ c(i+1)

= 1
2
�−2
s

(
L∑
l=1

c(i)
l

∫
˝

ωL(x)∇ Tl (x)B1 B
T
1∇ TL (x)dx

)
c(i+1)

〈
xTQ sx, ωL

〉
˝

=
∫
˝

ωL(x)(xTQ sx)dx

〈
(û(i))

T
Rû

(i)
, ωL

〉
˝

= 1
4

(
L∑
l=1

c(i)
l

∫
˝

ωL(x)∇ Tl (x)B2 R
−1BT2∇ TL (x)dx

)
c(i)

〈
(ŵ(i))

T
ŵ

(i)
, ωL

〉
˝

= 1
4
�−4
s

(
L∑
l=1

c(i)
l

∫
˝

ωL(x)∇ Tl (x)B1 B
T
1∇ TL (x)dx

)
c(i)

Define

Zf �
∫
˝

ωL(x)f T (x)∇�TL (x)dx

Z lB2
�
∫
˝

ωL(x)∇ Tl (x)B2 R
−1BT2∇ TL (x)dx

Z lB1
�
∫
˝

ωL(x)∇ Tl (x)B1 B
T
1∇ TL (x)dx

ZQ s �
∫
˝

ωL(x)(xTQ sx)dx

Then, Eq. (44) can be rewritten as(
Zf − 1

2

L∑
l=1

c(i)
l
Z lB2

+ 1
2
�−2
s

L∑
l=1

c(i)
l
Z lB1

)
c(i+1) + ZQ c + 1

4

(
L∑
l=1

c(i)
l
Z lB2

)
c(i) − 1

4
�−2
s

(
L∑
l=1

c(i)
l
Z lB1

)
c(i) = 0 (46)

Hence, the unknown coefficient vector c(i+1) is computed with

c(i+1) =
(
Zf − 1

2

L∑
l=1

c(i)
l
Z lB2

+ 1
2
�−2
s

L∑
l=1

c(i)
l
Z lB1

)−1(
ZQ s + 1

4

(
L∑
l=1

c(i)
l
Z lB2

)
c(i) − 1

4
�−2
s

(
L∑
l=1

c(i)
l
Z lB1

)
c(i)

)
(47)

and then the solution of Eq. (37) is directly obtained via (39).
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With the basis function vector  L(x), the solution V∗(x) of the HJI equation (24) can be represented as

V∗(x) = (c∗)T L(x) + �(x) (48)

where c∗ = [c∗1· · ·c∗L ]
T is the unknown ideal constant weight vector, and �(x) is the approximation error. Here, we  assume that the size L of

 L is large enough such that �(x) can be ignored (i.e., �(x) → 0). Then, the H∞ control law (25) is given as

u∗(x) = −1
2
R−1BT2∇ TL (x)c∗ (49)

Based on the developed MWR  above, a specific implementation procedure of Algorithm 1 is formulated as follows:

Algorithm 2.

Step 1: Preparation: Select an independent basis function set  L , compute integrals Zf , ZQ s , Z lB1
, Z lB2

, and give constant � > 0.

Step 2: Give an initial coefficient vector c(0) such that V̂ (0)(x) =  TL (x)c(0) ∈ V0, and let i = 0.

Step 3: Update û(i) and ŵ(i) via (41) and (42).
Step 4: Compute coefficient vector c(i+1) with (47).
Step 5: Set i = i + 1. If ||c(i) − c(i−1)|| ≤ �, let c∗ = c(i) and stop iteration, else, go back to Step 3 and continue. Then, the solution of the HJI
equation (24) is obtained via V∗(x) = (c∗)T L(x), and the H∞ control policy is given with (49).

Remark 3. Note that the developed Algorithm 2 is to compute the parameter vector c∗ through recurrent iteration (47), and � is a
parameter for convergence accuracy. After parameter vector c∗ is convergent, the H∞ control policy (49) can be used for real control. That
is to say, Algorithm 2 is an offline control design method.

Remark 4. It is noted that the developed HJI approach requires the availability of modes, which further depends on the accuracy of the
slow subsystem (21). Thus, there are two ways to improve the efficiency of the HJI approach. The first is to increase the accuracy of the slow
subsystem, such as, computing highly accurate EEFs from representative huge ensemble, or increasing the order of the slow subsystem
(21). The second is to introduce an observer, which will require the solution of another HJI inequality (or equation) [15,16]. However, it is
still theoretically unclear whether the developed SPUA method can solve the L2 disturbance attenuation problem with an observer or not,
and this issue is left for our future investigation.

5. Simulation studies

In this section, the simulation studies on a nonlinear diffusion-reaction process and a temperature cooling fin of high-speed aerospace
vehicle are provided to demonstrate the effectiveness of the developed HJI approach.

5.1. Nonlinear diffusion-reaction process

Consider the following nonlinear diffusion-reaction process [1,35,43]:⎧⎪⎪⎨⎪⎪⎩
∂y(z, t)
∂t

= ∂

∂z

(
k(y)

∂y(z, t)
∂z

)
+ ˇT (z)(e−�/(1+y) − e−�) + ˇU(b2(z)u(t) − y) + b1(z)w(t)

yh(t) =
∫ �

0

√
10y(z, t)dz

(50)

subject to the Dirichlet boundary conditions

y(0,  t) = y(�, t) = 0 (51)

and the initial condition

y0(z) = 0.3 sin(3z)  (52)

where y is the PDE state, z ∈ [0,  �], k(y) is the diffusion coefficient that may  be constant or dependent on the state, ˇT (z) is the heat of
reaction which is spatially-varying, ˇU is the heat transfer coefficient, � is activation energy, b1(z) and b2(z) are disturbance and actuator
distribution function respectively. These parameters are given as follows:

k(y) = 0.5 + 0.7/(y + 1),  ˇT (z) = 16(cos(z) + 1),  ˇU = 1, � = 1,

b1(z) = [H(z − 0.2�) − H(z − 0.3�)] + [H(z − 0.7�) − H(z − 0.8�)],

where H(·) is the standard Heaviside function. For these values, the operating steady-state y(z, t) = 0 is an unstable one, and the system
converges to a stable non-uniform steady state (as can be seen in Fig. 1). The weighting matrix R in (4) is given as R = 0.5. The parameter
�s in (23) is given as �s = 2, then � > 2 for the L2-gain performance (4).

For convenience, we define the following ratio of disturbance attenuation as

rd(t) �

(∫ t
0

(
||yh(
)||2 + uT (
)Ru(
)

)
d
∫ t

0
||w(
)||2d


)1/2

(53)
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Fig. 1. State profile of open-loop PDE system.

which is used to show the relationship between L2-gain and time. The disturbance signal w(t) used in the simulation is shown in Fig. 2,
which is generated with

w(t) = 3r1(t)e−0.3t cos(r2(t)t) (54)

where r1(t) and r2(t) are time-varying random parameters in interval [0,  1].
By selecting different b2(z), we consider two cases of control method.

Case 1. distributed control with

b2(z) = 12[H(z − 0.2�) − H(z − 0.3�)] + 12[H(z − 0.7�) − H(z − 0.8�)].

Case 2. point control with

b2(z) = ı(z − 0.3�) + ı(z − 0.8�).

where ı(·) is the standard Dirac Delta function.

To compute EEFs with KLD, an ensemble of size 2000 (i.e., M = 2000) is collected from 20 simulations with the following initial conditions,
control inputs and disturbances:
y0(z) = 0.3r1 sin(n1z), u = 0.1r2 and w(t) = 0.1r3

where ri, i = 1, 2, 3 are random numbers in [0,  1], and n1 = 1, 2, 3, which are different for each simulations. Fig. 3 shows the first two EEFs,
where it is found that the first two EEFs account for more than 99.0% energy contained in the ensemble of snapshots (i.e., � = 0.01 in (22)).
Thus, the SDP (50)–(52) can be accurately represented by a 2-order model of ODE (i.e., N = 2). That is, the first two EEFs are employed to
compute the state of the slow subsystem.

Remark 5. EEFs are representative patterns of the ensemble that collected from PDE system with different initial conditions, control
inputs and disturbances. Thus, the ensemble is expected to contain representative snapshots that visit state space as much as possible. To
this end, different random signals are applied in the simulations since they contain enough frequencies. In fact, any other sufficiently rich
signals can also be used, such as the sum of sinusoidal signals with different frequencies. For specific PDE systems, two  ways are possible
to improve the quality of EEFs: increase the size of ensemble and enlarge the number of simulations with different sufficient rich signals.

Now, we use the developed HJI approach to solve the L2 disturbance attenuation problem of Cases 1 and 2. Select the following basis
function vector:

 8(x) = [ x2
1 x1x2 x2

2 x2
1x

2
2 x1x

3
2 x3

1x2 x4
1 x4

2 ]
T

(55)

Fig. 2. Disturbance signal.
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Fig. 3. The first two EEFs.

for approximating the value function of (39), the initial coefficient vector is chosen as

c(0) = [ 0.025 0 0 0 0 0 0 0 ]
T

for Case 1 and

c(0) = [ 0.55 0 0 0 0 0 0 0 ]
T

for Case 2. By applying the proposed Algorithm 2 to solve the HJI equation, we select the weighted function vector as ω8(x) =  8(x) in the
MWR.  Fig. 4 gives the norm of coefficient vector (i.e., ||c(i)||) at each iterative step. For Case 1, c(i) converges to

c∗ = c(12) = [ 0.2289 −1.4646 8.5036 0.0367 −0.2092 −0.0155 −0.0032 0.5990 ]
T

at the 12th iterative step (i.e., i = 12). For Case 2, c(i) converges to

c∗ = c(7) = [ 0.8120 −0.7382 9.2050 −0.0541 0.1548 0.0590 0.0109 −0.4560 ]
T

at the 7th iterative step (i.e., i = 11).
With the vector c∗, the control policy (denoted as u∗) is obtained via (49). Then, the closed-loop simulation is conducted under the

disturbance signal of Fig. 2. The control actions u∗, the state trajectories of the slow subsystem, and the state profile of closed-loop PDE
system are given in Figs. 5–7 respectively, from which it can be seen that all signals approach to the zero. Fig. 8 shows the curves of rd(t)
for Cases 1 and 2. It is found that rd(t) converges to 1.1402 (<2) for Case 1 and to 1.2202 (< 2) for Case 2 as time increases, which implies
that the designed H∞ control law can achieve an L2-gain performance level � larger than 2 for both Cases 1 and 2.

5.2. Temperature cooling fin of high-speed aerospace vehicle

In this subsection, the developed control method is applied to a complex temperature cooling fin of high-speed aerospace vehicle [32],
the system dynamics of which is described with the following parabolic PDE:

�C
∂T(l, t)
∂t

= k
∂2T

∂l2
− Ph

A
(T − T∞1) − Pε�

A
(T4 − T4

∞2) + b̂1(l)w(t) + B̂2(l)u(t) (56)

Fig. 4. The norm of coefficient vector ||c(i)|| at each iterative step.
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Fig. 5. The actual control action u∗ .

Fig. 6. Actual state trajectories of closed-loop slow subsystem.

Fig. 7. State profile of the closed-loop PDE system.
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Fig. 8. Curve of rd(t).

Table 1
System parameters and their values.

k = 19 W/(m◦C) Thermal conductivity
A = 1 m2 Cross sectional area
P  = 1.3716 m Perimeter
L = 1 m Length
h  = 20 W/(m◦C) Convective heat transfer coefficient
T∞1 = 100 ◦C Temperature of the medium in the immediate surrounding of the surface
T∞2 = −40 ◦C Temperature at a far away place in the direction normal to the surface.
ε  = 0.965 Emissivity of the material
�  = 5.669 × 10−8 W/m2K4 Boltzmann constant
�  = 7865 kg/m3 Density of the material
C  = 0.46 kJ/(kg◦C) Specific heat of the material

subject to the boundary conditions

∂T

∂l

∣∣∣∣
l=0

= 1,
∂T

∂l

∣∣∣∣
l=L

= 0 (57)

and the initial condition

T(l, 0) = T0(l). (58)

where T is the temperature, l ∈ [0,  L], u(t) = [ u1(t) u2(t) u3(t) ]T is the control input vector, w(t) is the exogenous disturbance, b̂1(l)

and B̂2(l) = [ b̂1
2(l) b̂2

2(l) b̂3
2(l) ]

T
describe how disturbance and control actions are distributed in spatial domain respectively. The control

objective is to reach a constant desired temperature Td = 700 ◦C, and achieve L2 disturbance attenuation. The system parameters and
their values are given in Table 1.

It is worthwhile to define the dimensionless temperature, desired temperature and spatial position variables as:

ȳ = T

T̄
, ȳd = Td

T̄
and z = l

L

where T̄ = 1000 can be a large number. Then, system (56)–(58) is rewritten as a dimensionless formulation:

∂ȳ(z, t)
∂t

= k

�CL2

∂2ȳ

∂z2
− Ph

�CA

(
ȳ− T∞1

T̄

)
− Pε�

�CAT̄
(T̄4ȳ4 − T4

∞2) + 1

�CT̄
b̂1(Lz)w(t) + 1

�CT̄
B̂2(Lz)u(t) (59)

subject to the boundary conditions

∂ȳ

∂z

∣∣∣∣
z=0

= L

T̄
,
∂ȳ

∂z

∣∣∣∣
z=1

= 0 (60)

and the initial condition

ȳ(z, t) = ȳ0(z). (61)

where ȳ0(z) = T0(Lz)/T̄ .
Define state error y = ȳ− ȳd, ˛1 = k

�CL2 , ˛2 = − Ph
�CA , ˛3 = − Pε�

�CAT̄
and ˛4 = 1

�CT̄
.

Then, under the consideration of external disturbance, the system (59)–(61) is briefly represented as
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Fig. 9. Temperature profile of open-loop temperature cooling fin system.

∂y(z, t)
∂t

= ˛1
∂2y

∂z2
+ ˛2y + ˛3T̄

4(y + ȳd)4 + ud + b̄1(z)w(t) + B̄2(z)u(t) (62)

subject to the boundary conditions

∂y

∂z

∣∣∣∣
z=0

= L

T̄
,
∂y

∂z

∣∣∣∣
z=1

= 0 (63)

and the initial condition

y(z, t) = y0(z) (64)

where y0(z) = ȳ0(z) − yd, w(z, t) is external disturbance, and ud = ˛2(ȳd − (T∞1/T̄)) − ˛3T4
∞2, b̄1(z) = ˛4b̂1(Lz), and B̄2(z) = ˛4B̂2(Lz).

For the L2 disturbance attenuation problem of system (62)–(64), let R be an unit matrix, �s = 10 (i.e., � > 10), and objective output
yh(t) =

∫ �
0
y(z, t)dz. Thus, the objective is to design control policy u such that y(z, t) approaches zero and the L2-gain is satisfied. b̄1(z) and

B̄2(z) are given by b̄1(z) = cos(�z) and B̄2(z) = [ cos(�z) cos(1.5�z) cos(2�z) ]T respectively. With the initial state y0(z) = 0.5 cos(�z),
i.e., T0(l) = 0.5T̄ cos(�l/L) + Td, The state profile of open-loop PDE system is given in Fig. 9.

To compute EEFs with KLD, an ensemble of size 2000 (i.e., M = 2000) is collected from 20 simulations with the following initial conditions,
control inputs and disturbances:
y0(z) = cos(5r1z + r2), u = [ r3 r4 r5 ]T and w(t) = r6

where ri, i = 1, . . .,  6 are random numbers in [0,1] which are different for each simulations. The first three EEFs are shown in Fig. 10, and
it is found that the first three EEFs account for more than 99.0% energy contained in the ensemble of snapshots (i.e., � = 0.01 in (22)). This
means that the SDP (56)–(58) can be accurately represented by a 3-order model of ODE (i.e., N = 3). Thus, the first three EEFs are employed
to compute the state of the slow subsystem.To design the H∞ control policy with the HJI approach developed in Section 4, we select the
following basis function vector:

 18(x) =
[
x2

1 x1x2 x1x3 x2
2 x2x3 x2

3 x2
1x

2
2 x2

1x
2
3 x2

2x
2
3

x1x
3
2 x1x

3
3 x2x

3
3 x3

1x2 x3
1x3 x3

2x3 x4
1 x4

2 x4
3

]T (65)

Fig. 10. The first three two  EEFs of temperature cooling fin system.
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Fig. 11. The norm of coefficient vector ||c(i)|| at each iterative step.

Fig. 12. Disturbance signal.

for approximating the value function of (39), and the elements of the initial coefficient vector are chosen as c(0)
1 = 2 and c(0)

j
= 0, i = 2, ..., 18.

By applying the proposed Algorithm 2 to solve the HJI equation, the weighted function vector in MWR  is chosen as ω18(x) =  18(x) of (65).
Fig. 11 gives the norm of coefficient vector (i.e.,

∥∥c(i)
∥∥) at each iterative step, where c(i) converges quickly to

c∗ = c(11)

= [ 0.2055 −0.0944 −0.4103 0.2652 0.5116 0.9059 −0.0046 −0.0152 0.0044 −0.0014 0.0171 −0.0109 0.0039 0.0139 0.0032 0.0001 0.0091 −0.0211 ]
T

at the 11th iterative step (i.e., i = 11). With the vector c∗, the control policy (denoted as u∗) is obtained via (49). Then, the closed-loop sim-
ulation is conducted under the disturbance signal (as shown in Fig. 12) that generated by w(t) = 0.3r1(t)e−0.5t , where r1(t) is time-varying
a random parameter in interval [0,1]. The control actions u∗ and the state trajectories of the slow subsystem are given in Figs. 13 and 14
respectively, from which it can be seen that all signals approach to the zero. Fig. 15 shows the curve of rd(t), where it converges to 6.2467

Fig. 13. The actual control actions u∗ .
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Fig. 14. Actual state trajectories of the closed-loop slow subsystem.

Fig. 15. Curve of rd(t).

Fig. 16. Temperature profile of the closed-loop temperature cooling fin system.

(<10) as time increases, which implies that the designed H∞ control law can achieve an L2-gain performance level � larger than 10 for
the closed-loop system. The temperature profile of the closed-loop system is given Fig. 16, where the T converges to desired temperature
Td = 700 ◦C.

6. Conclusion

In this paper, the L2 disturbance attenuation problem of a general class of highly dissipative nonlinear PDE systems has been addressed
via the HJI approach. The KLD is firstly used to compute EEFs, based on which the slow subsystem is derived via the SP technique. Then,
the HJI approach is proposed for synthesizing a finite-dimensional H∞ controller based on the slow subsystem. The resulting H∞ controller
can not only guarantee the asymptotic stability of the original closed-loop PDE system, but also satisfy a prescribed level of disturbance
attenuation. Subsequently, the SPUA and MWR  are combined to solve the HJI equation. Finally, we  apply the proposed H∞ control method to
a nonlinear diffusion-reaction process and a temperature cooling fin of high-speed aerospace vehicle, and the achieved results demonstrate
its effectiveness.
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