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a b s t r a c t

It is well known that the H1 state feedback control problem can be viewed as a two-player
zero-sum game and reduced to find a solution of the algebra Riccati equation (ARE). In this
paper, we propose a simultaneous policy update algorithm (SPUA) for solving the ARE, and
develop offline and online versions. The offline SPUA is a model-based approach, which
obtains the solution of the ARE by solving a sequence of Lyapunov equations (LEs). Its con-
vergence is established rigorously by constructing a Newton’s sequence for the fixed point
equation. The online SPUA is a partially model-free approach, which takes advantage of the
thought of reinforcement learning (RL) to learn the solution of the ARE online without
requiring the internal system dynamics, wherein both players update their action policies
simultaneously. The convergence of the online SPUA is proved by demonstrating that it is
mathematically equivalent to the offline SPUA. Finally, by conducting comparative simula-
tion studies on an F-16 aircraft plant and a power system, the results show that both the
offline SPUA and the online SPUA can find the solution of the ARE, and achieve much better
convergence than the existing methods.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decades, reinforcement learning (RL) and approximate dynamic programming (ADP) have appeared to be
promising methodologies for solving H2 optimal control problems and H1 control problems [17,28,31]. RL is a kind of ma-
chine learning method [12,13,22,28,32], which refers to an actor or agent that interacts with its environment and aims to
learn the optimal actions, or control policies, by observing their responses from the environment. ADP [18,31] uses RL
schemes for approximately solving the dynamic programming problem forward-in-time, thus, it affords a methodology
for learning the feedback control laws online in real time based on system performance without necessarily knowing the
system dynamics. This overcomes the curse of dimensionality [18] of dynamic programming, which is an offline technique
that requires a backward-in-time solution procedure.

In recent years, the bulk of researches on feedback control with ADP and RL are mainly focused on optimal control prob-
lems (e.g., see [17,31] and references therein). However, for practical systems, the control performance is often affected by
the presence of unknown disturbances. In this situation, an H1 controller can be designed to ensure that a ratio between the
energy of output and disturbance is less than a prespecified level. The synthesis of the H1 controller relies on solving the
Hamilton–Jacobi–Isaacs (HJI) equation for nonlinear systems and the algebraic Riccati equation (ARE) for linear systems
[27]. Compared with the H2 ARE (for optimal control) where the quadratic term is negative semidefinite, the H1 ARE is a
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nonlinear matrix equation with indefinite quadratic term [16]. Kleinman [15] developed a well known iterative method for
the solution of the H2 ARE by solving a sequence of linear Lyapunov equations (LEs), but it cannot be directly used for solving
the H1 ARE. In [16], the H1 ARE was successively approximated by a sequence of H2 AREs. Based on this work, Vrabie and
Lewis [29] used value iteration (VI) to solve each H2 ARE, and obtained the solution of the H1 ARE in an online fashion with-
out requiring complete knowledge of the system dynamics. The method in [16] was also extended to solve the AREs that
arise from linear quadratic (LQ) stochastic zero-game problems [10], the stochastic H1 control problems [7,8], and the peri-
odic H1 control problem [9]. It is worth mentioning that the method in [16] is similar with the iterative algorithm in [27]
where the HJI equation was successively approximated by a series of Hamilton–Jacobi–Bellman (HJB) equations. Thereafter
in [2], the works in [3,4,20] were extended to solve the HJB equations in [27], where each HJB equation was further succes-
sively approximated with a sequence of generalized HJB (GHJB) equations. This method was realized in [24] by employing
the so-called synchronous zero-sum game policy iteration, which is the extension of the method in [25] for optimal control.
In [1,33], by using neural networks as value function approximators, ADP techniques were also developed to find solution of
HJI equation subject to input constraints. Notice that the mentioned methods are in fact the extensions of Kleinman’s algo-
rithm [15] to two-player zero-sum games, where two iterative loops are needed, such as in [2], inner loop with iterations on
the control and outer loop on disturbance. This may lead to redundant iterations and thus waste of sources and result in low
efficiency.

To overcome this deficiency, we propose a simultaneous policy update algorithm (SPUA) for finding the solution of the H1
ARE, where two players update their policies simultaneously. Both offline and online algorithms based on the SPUA are
developed and their convergences are established rigorously. Unlike the solution procedure in [29], where the H1 ARE
was initially converted to a sequence of H2 AREs based on [16] and VI was then used to solve each H2 ARE online, the pro-
posed SPUA transforms directly the H1 ARE into a sequence of LEs, and thus avoids the solutions of H2 AREs.

The remainder of this paper is organized as follows. In Section 2, we give the problem description and briefly present the
existing methods. The SPUA is proposed for the solution of the H1 ARE and related issues are considered in Section 3. Com-
parative simulation studies on an F-16 aircraft and a power system with offline and online algorithms are provided in Sec-
tion 4. Finally, a brief conclusion is drawn in Section 5.

Notations: R;Rn and Rn�m are the set of real numbers, the n-dimensional Euclidean space and the set of all real n �m
matrices, respectively. k�k denotes the vector norm or matrix norm in Rn or Rn�m, respectively. For a symmetric matrix M,
M > 0(M P 0) means that it is a positive (semi-)definite matrix. kð�Þ; �rð�Þ denote the eigenvalue and maximum singular value
of a matrix, respectively. The superscript T is used for the transpose and I denotes the identity matrix of appropriate dimen-
sion. C� is the open left-half of the complex plane.

2. Backgrounds

In this section, we give the problem description and recall some preliminary results.

2.1. Problem description

Let us consider the following linear time-invariant (LTI) continuous-time system with external disturbances:

_xðtÞ ¼ AxðtÞ þ B1wðtÞ þ B2uðtÞ ð1Þ

zðtÞ ¼
CxðtÞ
DuðtÞ

� �
ð2Þ

where x 2 Rn is the state, u 2 Rm is the control input, w 2 Rq is the external disturbance and w(t) 2 L2[0,1), and z 2 Rp is the
objective output. A, B1, B2, C and D are known constant matrices with appropriate dimensions.

We consider the following linear state feedback control law:

uðtÞ ¼ KxðtÞ ð3Þ

where K 2 Rm�n is a state feedback gain matrix to be determined.
Substituting the control law (3) into (1) and (2) leads to the following closed-loop system:

_xðtÞ ¼ ðAþ B2KÞxðtÞ þ B1wðtÞ ð4Þ

zðtÞ ¼
C

DK

� �
xðtÞ: ð5Þ

The H1 control problem under consideration is to find a state feedback control law of form (3) such that the closed-loop
system (4) and (5) is asymptotically stable, and satisfiesR1

0 kzðtÞk
2dtR1

0 kwðtÞk
2dt
¼
R1

0 ðxT Qxþ uT RuÞdtR1
0 ðwT wÞdt

6 c2 ð6Þ
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for all nonzero w(t) 2 L2[0,1), where Q = CTC, R = DTD and c > 0 is some prescribed level of disturbance attenuation.
In order that a stabilizing controller exists, the following standard assumptions are necessary:

(1) The pair (A,B2) is stabilizable.
(2) The pair (C,A) has no unobservable modes on the imaginary axis.

Lemma 1 [11]. Suppose the standard assumptions hold. Then there exists a linear control law (3), such that the closed-loop sys-
tem (4) and (5) is asymptotically stable and satisfies (6) for a prescribed level c > 0 if and only if the ARE

FðPÞ , AT P þ PAþ Q þ c�2PB1BT
1P � PB2R�1BT

2P ¼ 0 ð7Þ

has a stabilizing solution P P 0, i.e., kðAþ c�2B1BT
1P � B2R�1BT

2PÞ 2 C�. In this case, the gain matrix of a suitable state-feedback
controller is given by

K ¼ �R�1BT
2P:

2.2. Offline method for the solution of H 1 ARE

Note from Lemma 1 that the H1 control problem is reduced to find a stabilizing solution P P 0 of ARE (7). In [16], the H1
ARE was converted to a sequence of H2 AREs of LQ optimal control problems. As mentioned in [16], Kleinman’s algorithm
[15] can be used to solve each H2 ARE. Here, we first review the Kleinman’s method for solving an H2 ARE.

Let us consider the following H2 ARE for the LQ optimal control:

AT P þ PAþ Q � PB2R�1BT
2P ¼ 0: ð8Þ

Then Kleinman’s method is given as follows:

Algorithm 1 (Kleinman’s method).

Step 1 . Give an initial stabilizing matrix P(0), i.e., kðA� B2R�1BT
2Pð0ÞÞ 2 C�. Let i = 0.

Step 2 . Solve the following LE for P(i+1):eAT
i Pðiþ1Þ þ Pðiþ1ÞeAi þ Q þ PðiÞB2R�1BT

2PðiÞ ¼ 0

where eAi ¼ A� B2R�1BT
2PðiÞ.

Step 3 . Set i = i + 1. If kP(i) � P(i�1)k 6 e(e is a small positive real number), stop and output P(i) as the solution P of H2

ARE (8), else, go to Step 2 and continue.

Remark 1. It is seen from Algorithm 1 that the nonlinear H2 ARE can be iteratively solved with a sequence of linear LEs.

Using the same manipulations as in Proposition 1 of [29], the iterative algorithm in [16] for solving the ARE (7) is to solve
the following sequence of H2 AREs.

AT
i Pðiþ1Þ

u þ Pðiþ1Þ
u Ai � Pðiþ1Þ

u B2R�1BT
2Pðiþ1Þ

u þ Q ðiÞ ¼ 0; i ¼ 0; . . . ;1 ð9Þ

where Q ðiÞ ¼ Q � c�2PðiÞw B1BT
1PðiÞw and Ai ¼ Aþ c�2B1BT

1PðiÞw .

As described in [16], applying Algorithm 1 for solving each H2 ARE (9) yields the following algorithm.

Algorithm 2.

Step 1. Let Pð0Þw ¼ 0, and i = 0.

Step 2. Let Pðiþ1;0Þ
u ¼ PðiÞw , and j = 0.

Step 3. Solve the following LE for Pðiþ1;jþ1Þ
u :

AT
i;jP
ðiþ1;jþ1Þ
u þ Pðiþ1;jþ1Þ

u Ai;j þ Pðiþ1;jÞ
u B2R�1BT

2Pðiþ1;jÞ
u þ Q ðiÞ ¼ 0 ð10Þ

where Ai;j ¼ Ai � B2R�1BT
2Pðiþ1;jÞ

u .
Step 4. Set j = j + 1. If kPðiþ1;jÞ

u � Pðiþ1;j�1Þ
u k 6 e1ðe1 is a small positive real number), go to Step 5, else, go to Step 3.

Step 5. Set Pðiþ1Þ
w ¼ Pðiþ1;jÞ

u and i = i + 1. If PðiÞw � Pði�1Þ
w

��� ��� 6 eðe is a small positive real number), stop and output PðiÞw as the

solution P of ARE (7), else, go to Step 2 and continue.
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Remark 2. It is observed from Algorithm 2 that the solution of H1 ARE (7) is firstly converted to the solution of a series
of H2 AREs (9), each of which is further reduced to a sequence of LEs (10) according to Algorithm 1. Thus, Algorithm 2
has two iterative loops: (i) the inner loop (i.e., from Step 3 to 4) for the iterative solution of an H2 ARE (9) by solving a
series of LEs (10), and (ii) the outer loop (i.e., from Step 2 to 5) for the iterative solution of ARE (7) by solving a series of
H2 AREs (9).

We notice that Algorithm 2 is an offline method, which requires full system dynamics of (1). In [29], by employing VI to
solve each H2 ARE (9), an online ADP algorithm was developed for the case that the system dynamic is partially unknown.
The details of this algorithm are presented in Subsection 2.3.

2.3. Online method for the solution of H 1 ARE

It is well known that the H1 control problem can be equivalently viewed as a two-player zero-sum game, where the con-
trol input u(t) is a minimizing player and the disturbance w(t) is a maximizing one. The solution of the H1 control problem is
the saddle point stabilizing equilibrium of the two-player zero-sum game. Define the following infinite horizon quadratic
performance index:

Vðu; wÞ ¼
Z 1

0
ðkzðtÞk2 � c2kwðtÞk2Þdt ¼

Z 1

0
ðxT Qxþ uT Ru� c2wT wÞdt: ð11Þ

The goal of the two-player zero-sum game is to find the following saddle point stabilizing equilibrium (u⁄,w⁄):

u�ðtÞ ¼ �R�1BT
2Px; ð12Þ

w�ðtÞ ¼ c�2BT
1Px; ð13Þ

such that

Vðu�;wÞ 6 Vðu�;w�Þ 6 Vðu;w�Þ;

where matrix P satisfies the ARE (7).
In [29], a VI based ADP method was used to online solve the H2 ARE (9), where two persons play online to learn the solu-

tion of ARE (7), i.e., the saddle point stabilizing equilibrium (u⁄,w⁄). Once the solution is obtained, the H1 controller u⁄(t) can
be used for real time control. Here, we briefly present this method without deduction as follows.

Algorithm 3.

Step 1. Let Pð0Þw ¼ 0;wð0Þ ¼ 0 and i = 0.
Step 2. Let Pðiþ1;0Þ

u ¼ PðiÞw ; uðiþ1;0Þ ¼ �R�1BT
2Pðiþ1;0Þ

u x and j = 0.
Step 3. Online solve the following equation for matrix Pðiþ1;jþ1Þ

u :

xTðtÞPðiþ1;jþ1Þ
u xðtÞ ¼ xTðt þ DtÞPðiþ1;jÞ

u xðt þ DtÞ þ
Z tþDt

t
ðxTðsÞQxðsÞ þ ðuðiþ1;jÞðsÞÞT Ruðiþ1;jÞðsÞ

� c2ðwðiÞðsÞÞT wðiÞðsÞÞds ð14Þ

where x(s) is the state of the system _xðsÞ ¼ AxðsÞ þ B1wðiÞðsÞ þ B2uðiþ1;jÞðsÞ.
Step 4. Update u(i+1,j+1) with

uðiþ1;jþ1Þ ¼ �R�1BT
2Pðiþ1;jþ1Þ

u x: ð15Þ

Step 5. Set j = j + 1. If Pðiþ1;jÞ
u � Pðiþ1;j�1Þ

u

��� ��� 6 e1ðe1 is a small positive real number), go to Step 6, else, go to Step 3.

Step 6. Set Pðiþ1Þ
w ¼ Pðiþ1;jÞ

u . Update w(i+1) with

wðiþ1Þ ¼ c�2BT
1Pðiþ1Þ

w x: ð16Þ

Step 7. Set i = i + 1. If PðiÞw � Pði�1Þ
w

��� ��� 6 eðe is a small positive real number), stop and output PðiÞw as the solution P of ARE

(7), go to Step 2 and continue.

In Algorithm 3, Steps 3–5 is a VI procedure for online solution of an H2 ARE (9) without requiring the internal system
dynamics.

Remark 3. To simplify the notation, we describe all algorithms in uniform formulation by using the H2 ARE with
expression (9) instead of that in [16]. Although the descriptions of Algorithms 2 and 3 are seemingly different from
those in [16] (by using Kleinman’s algorithm to solve each H2 ARE therein) and [29], they are the same procedures
essentially.

H.-N. Wu, B. Luo / Information Sciences 222 (2013) 472–485 475
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Remark 4. In Algorithms 2 and 3, only one of the two players is actively learning and improving its policy. This results in two
iterative loops in the iteration process for the solution of ARE. The algorithms are built on interplay between a learning
phase, performed by the control player u(t) that is learning in order to optimize its behavior, and a policy update phase, per-
formed by the disturbance player w(t) that is gradually increasing its detrimental effect. That is to say, when one player’s
policy is updated, the other remains invariant. Therefore, these methods are often time-consuming and inefficient.

3. SPUA for the solution of H ‘ ARE

This section presents the main results of this paper. To overcome the low efficiency of the above algorithms, we propose a
SPUA that involves only one iterative loop since it updates policies of both players simultaneously for the solution of H1 ARE
(7). Firstly, an offline SPUA is proposed and its convergence is established rigorously. Then, an online SPUA without requiring
the internal system dynamics is developed, whose convergence is guaranteed by proving that it is equivalent to the offline
SPUA mathematically.

3.1. Offline SPUA for the solution of H 1 ARE

In Algorithm 2, the ARE (7) is firstly converted into a sequence of H2 AREs (9), which are corresponding to a sequence of
optimal control problems. Then, based on Algorithm 1, the solution of each H2 ARE is obtained by solving a series of LEs. The
SPUA proposed in this paper directly transforms the ARE (7) into a sequence of LEs. Therefore, the SPUA is much simpler than
Algorithm 2 for implementation.

Algorithm 4 (Offline SPUA).

Step 1. Give an initial matrix Pð0Þ 2 P0 ðP0 � P is determined by Lemma 3). Let i = 0.
Step 2. Slove the following LE for P(i+1):

AT
i Pðiþ1Þ þ Pðiþ1ÞAi þ Q ðiÞ ¼ 0 ð17Þ

where Ai ¼ Aþ c�2B1BT
1PðiÞ � B2R�1BT

2PðiÞ and

Q ðiÞ ¼ Q � c�2PðiÞB1BT
1PðiÞ þ PðiÞB2R�1BT

2PðiÞ:

Step 3. Set i = i + 1. If kP(i) � P(i�1)k 6 e (e is a small positive real number), stop and output P(i), else, go to Step 2 and
continue.

Remark 5. It is noticed that Algorithm 4 solves ARE (7) by iteratively solving a sequence of LEs (17), similarly, an inner loop
of Algorithm 2 also solves an H2 ARE (9) by iteratively solving a sequence of LEs (10). Since both LEs (10) and (17) are linear
matrix equations of the same form, the computational loads for solving them are fundamentally the same. Thus, the com-
putational load of Algorithm 4 is nearly the same as that of an inner loop in Algorithm 2. However, Algorithm 2 needs an
outer loop to solve a series of H2 ARE rather than one. Therefore, Algorithm 4 is naturally more efficient than Algorithm 2.

Remark 6. The obvious difference between Algorithms 2 and 4 is that, Algorithm 2 updates the control and disturbance pol-
icies nonsimultaneously (i.e., one player updates its policy while the other remains invariant), which brings two iterative
loops, while SPUA (i.e., Algorithm 4) updates the control and disturbance policies simultaneously, in which only one iterative
loop is needed. Moreover, we notice that the convergence of Algorithm 2 can be proved by showing that the ARE (7) is suc-
cessively approximated by a sequence of H2 AREs (9), and then demonstrating that each H2 ARE is successively approximated
by a sequence of LEs (10) (i.e., Kleinman’s method). However, the ARE (7) is directly successively approximated by a
sequence of LEs (17) in Algorithm 4, thus new tools are needed to establish its convergence.

Next, we will establish the convergence of Algorithm 4. Namely, we want to show that the solution of LEs (17) converges
to the solution of ARE (7) when i goes to infinity.

To this end, let us consider such a Banach space P � fP 2 Rn�n j P P 0;PT ¼ Pg equipped with a norm kPk ¼ �rðPÞ, and
consider the mapping F : P! P defined in (7). Then, the Fréchet differential [6] of FðPÞ at P can be obtained as

dF ðP; MÞ ¼ F 0ðPÞM ¼ AT M þMA; ð18Þ

where A ¼ Aþ c�2B1BT
1P � B2R�1BT

2P; M 2 P. F 0ðPÞ called the Fréchet derivative of FðPÞ at P, is a linear operator mapping P

into itself.
Define a mapping T : P! P as follows:

T P ¼ P � ðF 0ðPÞÞ�1
F ðPÞ: ð19Þ

We construct a Newton iterative sequence {P(i)} as

476 H.-N. Wu, B. Luo / Information Sciences 222 (2013) 472–485
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Pðiþ1Þ ¼ T PðiÞ; i ¼ 0;1;2; . . . : ð20Þ

Under some proper assumptions (as shown in Lemma 2 below), the sequence {P(i)} given in (20) can converge to the unique
solution of the fixed-point equation T P ¼ P, i.e., the solution of ARE FðPÞ ¼ 0. The convergence and the error bound of se-
quence {P(i)} are guaranteed by the following Kantorovtich’s Theorem [14,23].

Lemma 2 (Kantorovtich’s Theorem). Assume for some Pð0Þ 2 P1 � P such that ðF 0ðPð0ÞÞÞ�1 exists and that

(1) kðF 0ðPð0ÞÞÞ�1k 6 B0; ð21Þ

(2) kðF 0ðPð0ÞÞÞ�1
FðPð0ÞÞk 6 g; ð22Þ

(3) kF 0ðPð1ÞÞ � F 0ðPð2ÞÞk 6 KkPð1Þ � Pð2Þk; for all Pð1Þ;Pð2Þ 2 P1; ð23Þ

with h ¼ B0Kg 6 1
2. Let

P2 ¼ fPjkP � Pð0Þk 6 rg; where r ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h
p

h

 !
g: ð24Þ

Now, if P2 � P1, then, the sequence {P(i)} given in (20) is well defined, remains in P2, and converges to P 2 P2 such that
FðPÞ ¼ 0. In addition,

kP � PðiÞk 6 g
h
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h
p

Þ2
i

2i

 !
; i ¼ 0;1;2; . . . ð25Þ

It is observed from Lemma 2 that P1 is required to be suitably chosen. The following lemma gives a method to determine
a suitable P0 satisfying P0 � P1, so that P0 conversely guarantees the hypotheses of Lemma 2.

Lemma 3. (19) Suppose P P 0 is the stabilizing solution of equation FðPÞ ¼ 0. If kðF 0ðPÞÞ�1k 6 B�, and

P3 ¼ fP
_

jkP
_

�Pk 6 ð1=B�KÞg � P1 ð26Þ

then, the hypotheses of Lemma 2 is satisfied, i.e., for each Pð0Þ 2 P0, h 6 1/2, B0 and g in conditions (21) and (22) are

B0 ¼ B�

1�B�KkPð0Þ�Pk P kðF 0ðPð0ÞÞÞ�1k and

g ¼ 1�1
2B�KkPð0Þ�Pk

1�B�KkPð0Þ�Pk kP
ð0Þ � PkP kðF 0ðPð0ÞÞÞ�1

FðPð0ÞÞk;

where P0 is defined as

P0 ¼ fP
_

jkP
_

�Pk 6 ð2�
ffiffiffi
2
p
Þ=ð2B�KÞg: ð27Þ

Lemmas 2 and 3 imply that if P(0) is chosen in P0 (that defined by (27)), the Newton sequence {P(i)} generated by (20) can
converge to the unique fixed point of (19), i.e., the positive definite stabilizing solution of ARE FðPÞ ¼ 0, and the error bound
is given in (25). With Lemmas 2 and 3, we prove that the sequence {P(i)} generated by Algorithm 4 is essentially a Newton
sequence in Theorem 1, and give the convergence of Algorithm 4 in Theorem 2.

Theorem 1. Let T be a mapping defined by (19). Then, the sequence {P(i)} generated by Algorithm 4 and the Newton iteration
(20) are equivalent.

Proof. It follows from (20) that

Pðiþ1Þ ¼ T PðiÞ ¼ PðiÞ � ðF 0ðPðiÞÞÞ�1
F ðPðiÞÞ

which is equivalently rewritten as

F 0ðPðiÞÞPðiþ1Þ ¼ F 0ðPðiÞÞPðiÞ � F ðPðiÞÞ: ð28Þ

From (18) and (7), we have

F 0ðPðiÞÞPðiþ1Þ ¼ AT
i Pðiþ1Þ þ Pðiþ1ÞAi ð29Þ

F 0ðPðiÞÞPðiÞ ¼ AT
i PðiÞ þ PðiÞAi ð30Þ

FðPðiÞÞ ¼ AT PðiÞ þ PðiÞAþ Q ðiÞ: ð31Þ

H.-N. Wu, B. Luo / Information Sciences 222 (2013) 472–485 477
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Substituting (29)–(31) into (28), we can obtain

AT
i Pðiþ1Þ þ Pðiþ1ÞAi ¼ �Q ðiÞ

This completes the proof. h

Theorem 2. Let P P 0 is the stabilizing solution of ARE (7) and {P(i)} be the sequence generated by Algorithm 4. Then, when
i ?1, P(i) ? P.

Proof. Theorem 1 shows that the sequence {P(i)} generated by Algorithm 4 is equivalent to the Newton sequence obtained
by (20). According to Algorithm 4, we have the initial matrix Pð0Þ 2 P0 where P0 is defined by (27). It follows from Lemma 3
that the P0 can conversely guarantee the hypotheses of Lemma 2. Therefore, we can conclude from Lemma 2 that the
sequence {P(i)} is convergent, i.e., P(i) ? P, when i ?1. h

3.2. Online SPUA for the solution of H1 ARE

The SPUA of Algorithm 4 is an offline approach, which requires the full knowledge of the system dynamics. In this sub-
section, we make use of the thought of RL techniques, and propose an online SPUA to learn the solution of ARE (7) in an on-
line scheme without requiring the knowledge of internal system dynamics.

It follows from (11) that, given arbitrary control action u(t) and disturbance signal w(t) with initial system state x(t), the
cost function is

VðxðtÞÞ ¼
Z 1

t
NðsÞds;

which can be rewritten as

VðxðtÞÞ ¼
Z tþDt

t
NðsÞdsþ Vðxðt þ DtÞÞ; ð32Þ

where N(s) , xT(s)Qx(s) + uT(s)Ru(s) � c2wT(s)w(s). For a linear two-player zero-sum game, V(x(t)) can be parameterized as

VðxðtÞÞ ¼ xTðtÞPxðtÞ; ð33Þ

then, (32) is rewritten as

xTðtÞPxðtÞ ¼ xTðt þ DtÞPxðt þ DtÞ þ
Z tþDt

t
NðsÞds: ð34Þ

Based on (34), an online SPUA is developed for the solution of ARE (7) as follows.

Algorithm 5 (Online SPUA).

Step 1. Give an initial matrix Pð0Þ 2 P0, and let uð0Þ ¼ �R�1BT
2Pð0Þx;wð0Þ ¼ c�2BT

1Pð0Þx. Set i = 0.
Step 2. With policies u(i) and w(i), solve the following equation for P(i+1):

xTðtÞPðiþ1ÞxðtÞ ¼ xTðt þ DtÞPðiþ1Þxðt þ DtÞ þ
Z tþDt

t
NðiÞðsÞds ð35Þ

where N(i)(s) , xT(s)Qx(s) + (u(i)(s))TRu(i)(s) � c2(w(i)(s))Tw(i)(s) and x(s) is the state of the system

_xðsÞ ¼ AxðsÞ þ B1wðiÞðsÞ þ B2uðiÞðsÞ: ð36Þ

Step 3. Update control policy u(i+1) and disturbance policy w(i+1) as follows:

uðiþ1Þ ¼ �R�1BT
2Pðiþ1Þx ð37Þ

wðiþ1Þ ¼ c�2BT
1Pðiþ1Þx: ð38Þ

Step 4. Set i = i + 1. If kP(i) � P(i�1)k 6 e (e is a small positive real number), stop and output P(i), else, go to Step 2 and
continue.
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Remark 7. Observe that the online SPUA (i.e., Algorithm 5) does not require the internal system dynamic matrix A, whose
information is embedded in the online measurement of the states x(t) and x(t + Dt), and evaluation of the cost

R tþDt
t NðiÞðsÞds.

The online SPUA follows the basic procedure of policy iteration in RL, which involves policy evaluation (in Step 2) and policy
improvement (in Step 3). Hence, it can also be viewed as a RL technique for two players to learn their optimal actions in the
unknown environment.

Notice from Algorithm 5 that the control and disturbance policies update simultaneously with (37) and (38), and thus
only one iterative loop is needed. The convergence of Algorithm 5 is guaranteed by the following theorem.

Theorem 3. The iteration in Algorithm 5 is equivalent to the iteration in Algorithm 4, i.e., the iteration of Eqs. (35)–(38) is
equivalent to the iteration of Eq. (17).

Proof. With policies u(i) and w(i), it follows from (36) that the closed-loop system is _xðsÞ ¼ AixðsÞ. Consider the following
derivative:

d
ds

xTðsÞPðiþ1ÞxðsÞ ¼ _xTðsÞPðiþ1ÞxðsÞ þ xTðsÞPðiþ1Þ _xðsÞ ¼ xTðsÞAT
i Pðiþ1ÞxðsÞ þ xTðsÞPðiþ1ÞAixðsÞ

¼ xTðsÞ AT
i Pðiþ1Þ þ Pðiþ1ÞAi

� �
xðsÞ: ð39Þ

Integrating (39) from s = t to s = t + Dt yields

xTðt þ DtÞPðiþ1Þxðt þ DtÞ � xTðtÞPðiþ1ÞxðtÞ ¼
Z tþDt

t
xTðsÞ AT

i Pðiþ1Þ þ Pðiþ1ÞAi

� �
xðsÞds: ð40Þ

It follows from (35)–(38) that

xTðt þ DtÞPðiþ1Þxðt þ DtÞ � xTðtÞPðiþ1ÞxðtÞ ¼ �
Z tþDt

t
NðiÞðsÞds

¼ �
Z tþDt

t
xTðsÞ Q � c�2PðiÞB1BT

1PðiÞ þ PðiÞB2R�1BT
2PðiÞ

� �
xðsÞds

¼ �
Z tþDt

t
xTðsÞQ ðiÞxðsÞds: ð41Þ

From (40) and (41), we can get AT
i Pðiþ1Þ þ Pðiþ1ÞAi ¼ �Q ðiÞ, i.e., (17) holds. h

According to Theorems 2 and 3, it is immediate that Algorithm 5 is convergent. Obviously, the convergence of offline
SPUA provides the mathematical foundation for the online SPUA.

Remark 8. Theorem 3 shows that Algorithm 5 is mathematically equivalent to Algorithm 4, which also needs only one
iterative loop. In contrast, the VI algorithm is used to solve H2 AREs in Algorithm 3, which involves two loops. Therefore, as
mentioned in Remark 6, Algorithms 3 and 5 are also essentially different.

Remark 9. It is necessary to discuss the relationship and differences between Algorithms 3 and 5 for solving ARE (7). The
main common feature of them is that, both of them are online methods without requiring the internal system dynamics.
However, just as mentioned in Remark 8, they are essentially different. The main differences are reflected in two aspects:
(1) In Algorithm 3, an inner loop (i.e., the VI algorithm) mathematically solves an H2 ARE (9) online, while Algorithm 5
directly solves ARE (7) online; (2) Algorithm 5 is mathematically equivalent to a Newton’s iteration method as shown above,
which has a quadratic convergence rate [6], while the VI algorithm used in Algorithm 3 for solving H2 AREs only has a linear
convergence rate [5]. This means that the convergence of the whole Algorithm 5 is faster than an inner loop in Algorithm 3.
Therefore, it is natural that Algorithm 5 converges faster than Algorithm 3.

Remark 10. It is worth mentioning that the proposed SPUAs (both Algorithms 4 and 5) are essentially Newton’s methods,
which are not global approaches. Thus, they need a suitable choice of initial matrix. In a word, the SPUAs have the same
advantages and disadvantages as the Newton’s method. Similarly, the existing methods (i.e., Algorithms 2 and 3) also have
the problem of suitably choosing initial matrices. In Algorithm 2, the famous Kleinman’s method (i.e., Algorithm 1) was used
to solve H2 AREs (9) at each inner iterative loop, which was proven to be also a local approach in [15] and requires an initial
stabilizing matrix. However, the work in [16] did not provide a method for finding initial stabilizing matrices at each inner
iterative loop. This means that if not providing an initial stabilizing matrix for arbitrary inner iterative loop of Algorithm 2, it
may fail to obtain the solution of ARE (7). As to Algorithm 3, we have conducted simulations, and the results have shown that
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Algorithm 3 also failed to obtain the solution of ARE (7) when it is far from the initial matrix. Therefore, all of Algorithms 2–5
in our paper are valid only in neighborhood of the solution of the ARE (7). In fact, this problem also widely arises in many
existing works for solving optimal or H1 control problems of either linear or nonlinear systems through the observation from
computer simulations, such as [1–4,7–10,16,24–26,29,30,33]. Till present, it is still a difficult issue for finding proper initial-
izations or developing global approaches. To overcome this difficult, we are intending to introduce some global schemes to
attain this goal in future investigations.

3.3. Implement of online SPUA

The methods for computing P(i+1) in online Algorithms 3 and 5 are similar. In this subsection, we use Algorithm 5 as an
example to derive the implement approach (one can refer to [30] for similar method of optimal control problem) for online
algorithms. The term xT(t)P(i+1)x(t) in (35) can be written as

xTðtÞPðiþ1ÞxðtÞ ¼ ð�pðiþ1ÞÞT �xðtÞ ð42Þ

where �xðtÞ denotes the Kronecker product quadratic polynomial basis vector with the elements {xi(t)xj(t)}(i = 1, . . . ,n;
j = i, . . . ,n), and �pðiþ1Þ denotes the a column vector by stacking the elements of the diagonal and upper triangular part of
the symmetric matrix P into a vector where the off-diagonal elements are taken as 2pij. Then, the Eq. (35) can be written as

ð�pðiþ1ÞÞTð�xðtÞ � �xðt þ DtÞÞ ¼
Z tþDt

t
NðiÞðsÞds: ð43Þ

In (43), �pðiþ1Þ is a vector of unknown parameters, �xðtÞ � �xðt þ DtÞ acts as a regression vector and the right hand of (43) is
the target function. We notice that the symmetric matrix P(i+1) has n(n + 1)/2 unknown independent parameters. This
means that, in order to solve for P(i+1), we should construct at least N(N P n(n + 1)/2) equations. Therefore, in each time
interval Dt, we should sample N state vectors. Let dt = Dt/N, and �xðt þ kdtÞðk ¼ 0; . . . ;N � 1Þ be the Kronecker product qua-
dratic polynomial basis vector of the sampled state vector at time t + kdt. Then, P(i+1) can be found in the least-square (LS)
sense as follows:

�pðiþ1Þ ¼ ðXXTÞ�1XY ð44Þ

where

X ¼ ð�xðtÞ � �xðt þ dtÞÞ � � � ð�xðt þ ðN � 1ÞdtÞÞ � �xðt þ NdtÞ½ �;

Y ¼ yðiÞ0 � � � yðiÞN�1

h iT

with yðiÞk ¼
R tþðkþ1Þdt

tþkdt NðiÞðsÞds; k ¼ 0; . . . ;N � 1.
Clearly, the LS method (44) requires a nonsingular matrix XXT. To attain the goal, we can inject probing noises into inputs

or reset system states.

Remark 11. It should be pointed out that the proposed SPUAs (i.e., Algorithms 4 and 3) need to give an initial matrix P(0) in
P0, which maybe unavailable in some cases. For the offline SPUA (i.e., Algorithm 4), since the system model is completely
known, a practical method is to select the matrix P(0) such that kðA0Þ 2 C�. Thus, if the open-loop system (i.e., u = 0 and
w = 0) is stable, we can simply select P(0) = 0. As to the online SPUA (i.e., Algorithm 5), we can simply select P(0) = bI, where
b P 0 is some given scalar. Initially, we can run Algorithm 5 with b = 0. If the online SPUA does not converge to a positive-
definite matrix solution, then, increase b gradually until the online SPUA converges to a positive-definite matrix solution. It
should be pointed out that the methods presented here for the choice of P(0) in SPUAs are on the basis of experience, and this
issue will also be pursued in future work.

4. Comparative simulation studies

To test the efficiency of the two proposed SPUAs, we use two examples for comparative simulation, i.e., an F-16 aircraft
plant and a power system. For each example, the following two cases are considered:

Case 1: The system model is completely known. In this case, comparative studies are conducted with two offline algo-
rithms, i.e., Algorithms 2 and 4 are used to solve the ARE.

Case 2: The internal system dynamics is unknown. In this case, comparative studies are conducted with two online algo-
rithms, i.e., Algorithms 3 and 5 are used to online learn the solution of the ARE.

It is noted that both Algorithms 2 and 3 require an initial zero matrix. In order to be fair, we also select the same initial
matrices for our algorithms (i.e., Algorithms 4 and 5).
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4.1. F-16 aircraft plant

Consider an example of the following F-16 aircraft plant that studied in [21,26]:

_x ¼
�1:01887 0:90506 �0:00215
0:82225 �1:07741 �0:17555

0 0 �1

264
375xþ

1
0
0

264
375wþ

0
0
1

264
375u ð45Þ

where the system state vector is x ¼ a q de½ �T ;a denotes the angle of attack, q is the pitch rate and de is the elevator deflec-
tion angle. The control input u is the elevator actuator voltage and the disturbance w is wind gusts on angle of attack.

Select the matrices C and D in the output vector so that the matrices Q = CTC and R = DTD in the cost function are identity
matrices, and c = 5. Solve the associated ARE (7) with the MATLAB command CARE, we obtain

P ¼
1:6573 1:3954 �0:1661
1:3954 1:6573 �0:1804
�0:1661 �0:1804 0:4371

264
375: ð46Þ

4.1.1. Simulation for Case 1
The parameters in Algorithms 2 and 4 are given as follows. The value of e1 in Algorithm 2 is selected as 10�5, and the value

of stop criterion e in Algorithms 2 and 4 is set as 10�7.
Note that the matrix P in the associated ARE is a 3 � 3 symmetrical matrix, and thus it has 6 different parameters, i.e., pij,

(i, j 2 {1,2,3}, i 6 j), where pij denotes the (i, j)th block of P. By using Algorithms 2 and 4 to solve the ARE, Fig. 1 shows these
parameters in each iterative step, where the dash lines represent their true values, the star markers denote the parameters
obtained by Algorithm 2, the circle markers denote the parameters obtained by Algorithm 4, and i denotes the iterative steps
(i.e., the times of solving the associated LE (10) in Algorithm 2, or the associated LE (17) in Algorithm 4). It can be seen from
Fig. 1 that both Algorithms 2 and 4 converge to the solution of the associated ARE (7). However, Algorithm 4 achieves a faster
convergence than Algorithm 2. Moreover, Algorithm 2 terminates at the 14th iterative step (i.e., Algorithm 2 obtains the
solution of ARE with a precision of e at the 14th iterative step), while Algorithm 4 is convergent at the 5th iterative step.

Remark 12. At each iterative step, both Algorithms 2 and 4 solve an LE (i.e., the Eqs. (10) and (17), respectively), thus, it is
fair to compare Algorithms 2 and 4 based on the times for solving LEs.
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Fig. 1. The parameters pij, (i, j 2 {1,2,3}, i 6 j) obtained by Algorithms 2 and 4 for the F-16 aircraft plant.
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4.1.2. Simulation for Case 2
The selection of parameters in Algorithms 3 and 5 are given as follows. Select the value of e1 in Algorithm 3 as 10�5, the

value of stop criterion e in Algorithms 3 and 5 as 10�7, initial system state as x0 ¼ 0:1 0:1 0:1½ �T , update time for matrix P
as Dt = 0.5(s) and number of sampling states for the LS method (44) as N = 10.
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Fig. 2. The parameters pij, (i, j 2 {1,2,3}, i 6 j) obtained by Algorithms 3 and 5 for the F-16 aircraft plant.
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Remark 13. With the above parameters, Algorithms 3 and 5 sample states every 0.05 seconds, i.e., dt = 0.05(s). After
collecting 10 system state measurements, the LS method (44) is used to solve Eqs. (14) and (35) for new matrices P in
Algorithms 3 and 5. After each update, we reset the system state as initial state x0.

By applying Algorithms 3 and 5 for learning the solution of the associated ARE online, Fig. 2 shows the update of 6
different parameters pij(i, j 2 {1,2,3}, i 6 j), where t denotes the time, the dash lines represent the true values of matrix
parameters. From Fig. 2 and (46), we can see that both Algorithms 3 and 5 converge to the solution of the associated
ARE (7). It is also obvious that the convergence of Algorithm 5 is significantly better than Algorithm 3. Algorithm 3
terminates at time t = 702 s (i.e., it obtains the solution of ARE with a precision of e at t = 702 s), while Algorithm 5
stops at t = 2.5 s.

4.2. Power system

Consider an example of the following power system that studied in [29]:

_x ¼

�0:0665 8 0 0

0 �3:663 3:663 0

�6:86 0 �13:736 �13:736

0:6 0 0 0

2666664

3777775xþ

�8

0

0

0

2666664

3777775wþ

0

0

13:736

0

2666664

3777775u; ð47Þ

where the system state vector is x ¼ Df DPg DXg DE
� 	T

;Df denotes the incremental frequency deviation, DPg denotes
the incremental change in generator output, DXg is the incremental change in governor value position and DE is the incre-
mental change in integral control.

Select the matrices C and D in the output vector so that Q = CTC = I and R = DTD = I, and c = 3.5. By using the MATLAB com-
mand CARE to solve the associated ARE (7), we obtain

P ¼

0:8335 0:9649 0:1379 0:8005
0:9649 1:4751 0:2358 0:8046
0:1379 0:2358 0:0696 0:0955
0:8005 0:8046 0:0955 2:6716

26664
37775: ð48Þ

4.2.1. Simulation for Case 1
The parameters in Algorithms 2 and 4 are given as e1 = 10�5, and e = 10�7. By using Algorithms 2 and 4 to solve the asso-

ciated ARE (7), Fig. 3 gives the diagonal elements of matrix P, i.e., pii, (i 2 {1,2,3,4}), where the dash lines represent the true
values, the star markers denote the parameters obtained by Algorithm 2, the circle markers denote the parameters obtained
by Algorithm 4, and i denotes the iterative steps.

It is observed from Fig. 3 and (48) that Algorithm 2 converges to the solution of the associated ARE (7) with a precision of e
at the 25th iterative step, while Algorithm 4 is convergent at the 9th iterative step. This means that Algorithm 4 converges
faster than Algorithm 2.
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Fig. 3. The parameters pii, (i 2 {1,2,3,4}) obtained by Algorithms 2 and 4 for the power system.
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4.2.2. Simulation for Case 2
Select the value of e1 in Algorithm 3 as 10�5, the value of stop criterion e in Algorithms 3 and 5 as 10�7, initial system state

as x0 ¼ 0:1 0:1 0:1 0:1½ �T , update time for matrix P as Dt = 1.5(s) and number of sampling states for the LS method (44)
as N = 15. With the above parameters, Algorithms 3 and 5 sample states every 0.1 s, i.e., dt = 0.1(s). After collecting 15 system
state measurements, the LS method (44) is used to solve equations (14) and (35) for new matrices P in Algorithms 3 and 5.
After each update, the system state is reset as initial state x0.

By using Algorithms 3 and 5 to learn the solution of the associated ARE online, Fig. 4 shows the update of diagonal ele-
ments of matrix P, i.e., pii, (i 2 {1,2,3,4}), where t denotes the time, the dash lines represent the true values of matrix param-
eters. It can be seen from Fig. 4 that Algorithm 3 obtains the solution of the associated ARE (7) with a precision of e at
t = 117 s, while Algorithm 5 at t = 13.5 s. This implies that the convergence of Algorithm 5 is also much better than Algorithm
3 for the power system.

5. Conclusions

In this paper, we have introduced two methods to solve the ARE of the H1 control problem of continuous-time LTI system,
the offline SPUA and the online SPUA. In both SPUAs, only one iterative loop is needed. We find that the offline SPUA is essen-
tially a Newton’s method to find a solution of a fixed point equation, thus, its convergence is proven with the help of the
Kantorovtich’s Theorem. Moreover, an online SPUA is also developed, which learns the solution of the ARE without requiring
the knowledge of internal system dynamics. The convergence of the online SPUA guaranteed by showing that it is equivalent
to the offline SPUA. Through the comparative studies with the existing methods on an F-16 aircraft plant and a power sys-
tem, the results show that both offline SPUA and online SPUA can greatly improve the convergence.
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Fig. 4. The parameters pii, (i 2 {1,2,3,4}) obtained by Algorithms 3 and 5 for the power system.
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Our future works on SPUA include: (1) find a more efficient method for the selection of initial matrix on P0, (2) extend the
proposed SPUAs to H1 control of nonlinear systems.
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