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Neural Network Based Online Simultaneous
Policy Update Algorithm for Solving the
HJI Equation in Nonlinear H∞ Control

Huai-Ning Wu and Biao Luo

Abstract— It is well known that the nonlinear H∞ state
feedback control problem relies on the solution of the Hamilton–
Jacobi–Isaacs (HJI) equation, which is a nonlinear partial dif-
ferential equation that has proven to be impossible to solve
analytically. In this paper, a neural network (NN)-based online
simultaneous policy update algorithm (SPUA) is developed to
solve the HJI equation, in which knowledge of internal system
dynamics is not required. First, we propose an online SPUA which
can be viewed as a reinforcement learning technique for two play-
ers to learn their optimal actions in an unknown environment.
The proposed online SPUA updates control and disturbance
policies simultaneously; thus, only one iterative loop is needed.
Second, the convergence of the online SPUA is established by
proving that it is mathematically equivalent to Newton’s method
for finding a fixed point in a Banach space. Third, we develop an
actor-critic structure for the implementation of the online SPUA,
in which only one critic NN is needed for approximating the cost
function, and a least-square method is given for estimating the
NN weight parameters. Finally, simulation studies are provided
to demonstrate the effectiveness of the proposed algorithm.

Index Terms— H∞ state feedback control, Hamilton–Jacobi–
Isaacs equation, neural network, online, simultaneous policy
update algorithm.

I. INTRODUCTION

OVER the past few decades, a large number of theoreti-
cal results on H∞ control have been reported [1]–[6].

Although the nonlinear H∞ control theory has been well
developed, the main bottleneck for its practical application is
the need to solve the Hamilton–Jacobi–Isaacs (HJI) equation.
The HJI equation, similar with the Hamilton–Jacobi–Bellman
(HJB) equation of nonlinear optimal control, is a first order
nonlinear partial differential equation (PDE), which is difficult
or impossible to solve, and may not have global analytic
solutions even in simple cases.

In recent years, reinforcement learning (RL) and
approximate dynamic programming (ADP) have appeared to
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be promising techniques for approximately solving nonlinear
optimal control problems [7]–[18]. RL [19]–[21] is a kind
of machine learning method, which refers to an actor
or agent that interacts with its environment and aims to
learn the optimal actions, or control policies, by observing
their responses from the environment. ADP [20]–[23]
solves approximately the dynamic programming problem
forward-in-time; thus, it affords a methodology for learning
the feedback control actions online in real time based on
system performance without necessarily knowing the system
dynamics. This overcomes the computational complexity,
such as the curse of dimensionality [22] that exists in the
classical dynamic programming, which is an offline technique
that requires a backward-in-time solution procedure. ADP
has many implement structures, such as heuristic dynamic
programming (HDP), dual heuristic programming (DHP),
globalized DHP, etc., which are widely employed for
nonlinear discrete-time systems. In [7], an HDP algorithm
was developed to solve the discrete-time HJB equation
appearing in infinite horizon discrete-time nonlinear optimal
control, and a full proof of convergence was provided. In [12],
the near-optimal control problem for a class of nonlinear
discrete-time systems with control constraints was solved
using a DHP method. Wang et al. [14] studied the finite-
horizon optimal control problem of discrete-time nonlinear
systems and suggested an iterative ADP algorithm to obtain
the optimal control law, which makes the performance index
function close to the greatest lower bound of all performance
indices within a ε-error bound. Policy iteration is one of the
most popular RL methods [20] for feedback controller design.
In [10] and [11], the optimal control problems of linear and
nonlinear continuous-time systems were solved online by
policy iteration, respectively. Vamvoudakis and Lewis [13]
gave an online synchronous policy iteration algorithm to learn
the continuous-time optimal control solution with infinite
horizon cost for nonlinear systems with known dynamics, in
which an actor and a critic neural network (NN) are involved,
and the weights of both NNs tune at the same time instant.

However, it is clear that the HJI equation associated with
the nonlinear H∞ control problem is generally more difficult
to solve than the HJB equation appearing in nonlinear optimal
control, since the disturbance inputs are additionally reflected
in the HJI equation. The main difference between the HJB
and HJI equations is that the HJB equation has a “negative
semi-definite quadratic term,” while the HJI equation has an
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“indefinite quadratic term” [26]. Thus, the methods for the
HJB equation may not be directly used to the HJI equation.
In [27], the linear H∞ control problem was considered, in
which the H∞ algebraic Riccati equation (ARE) with an
indefinite quadratic term was converted to a sequence of
H2 AREs with a negative semi-definite quadratic term. This
paper was subsequently extended to solve the HJI equation
for nonlinear systems in [26]. In [28], the solution of the HJI
equation was approximated by the Taylor series expansion,
and an efficient algorithm was furnished to generate the
coefficients of the Taylor series. In [6], it was proven that
there exists a sequence of policy iterations on the control
input to pursue the smooth solution of the HJI equation,
where the HJI equation was successively approximated by a
sequence of HJB equations. Then, the methods for solving
HJB equations can be used for the solution of the HJI equation.
In [29], the HJB equation was successively approximated by
a sequence of linear generalized HJB equations, which can be
solved by Galerkin’s approximation in [30] and [31]. Based
on [6] and [29]–[31], policy iteration on the disturbance was
used to approximate the HJI equation in [32], where each
HJB equation in [6] was further successively approximated
by a sequence of generalized HJI equations and solved by
Galerkin’s approximation. This obviously results in two itera-
tive loops for the solution of HJI equation, i.e., the inner loop
solves an HJB equation by iteratively solving a sequence of
GHJB equations, and the outer loop solves the HJI equation
by iteratively solving a sequence of HJB equations. Following
such a thought, the method in [13] was extended to solve the
HJI equation in [33] with known dynamics. A policy iteration
scheme was also developed in [34] for nonlinear systems with
actuator saturation, and its implementation was facilitated on
the basis of neurodynamic programming in [35] and [36],
where NNs were used for approximating the value
function.

Most of the methods mentioned in the above paragraph
for solving the HJI equation of H∞ control problem, such
as, [26]–[28], [32]–[36], require full knowledge of the system
dynamics. Furthermore, these approaches follow the thought
that the HJI equation is first successively approximated with
a sequence of HJB equations, and then each HJB equation
is solved by the existing methods [26], [32]–[36]. This often
brings two iterative loops because the control and disturbance
policies are updated at the different iterative steps. Such a
procedure may lead to redundant equation solutions (i.e.,
redundant iterations), and thus waste of sources, resulting in
low efficiency. In [37], ADP was used to solve the linear H∞
control online without the need of internal system dynamics
in [37], but it is still a linear special case based on the same
procedure as the works in [32]–[36], i.e., it also involves two
iterative loops.

In this paper, we propose an online simultaneous policy
update algorithm (SPUA) for solving the HJI equation in
nonlinear H∞ state feedback control. The main contributions
of this paper include three aspects.

1) Propose an online SPUA, in which the knowledge of
internal system dynamics is not required. To the best of
our knowledge, this paper may be the first work that

uses RL technique for the online H∞ control design
of nonlinear continuous-time systems with unknown
internal systems dynamics.

2) The online SPUA updates the control and disturbance
policies simultaneously, which needs only one iterative
loop rather than two. This is the essential difference
between the online SPUA and the existing methods in
[32]–[37]. Moreover, the theory of Newton’s method in
Banach space is introduced to prove the convergence of
the online SPUA.

3) Develop an actor-critic structure for nonlinear H∞
control design without requiring the knowledge of inter-
nal system dynamics, where only one critic NN is
needed for approximating the cost function and a least-
square (LS) method is given to estimate the NN weight
parameters.

The rest of this paper is organized as follows. In Section II,
we give the problem description. In Section III, we propose
the NN-based online SPUA and discuss some related issues.
Simulation studies are conducted in Section IV. Finally, a brief
conclusion is derived in Section V.

Notations: R, R
n , and R

n×m are the set of real numbers,
the n-dimensional Euclidean space and the set of all real
n × m matrices, respectively. ‖·‖ denotes the vector norm or
matrix norm in R

n or R
n×m , respectively. For a symmetric

matrix M, M > (≥)0 means that it is a positive (semi-
positive) definite matrix. The superscript T is used for the
transpose and I denotes the identity matrix of appropriate

dimension. ∇ �= ∂/∂x denotes a gradient operator nota-
tion. L2[0,∞) is a Banach space, for ∀w(t) ∈ L2[0,∞),∫ ∞

0 ‖w(t)‖2 dt < ∞. For a column vector function s(x),

‖s(x)‖� �= (∫
� sT (x)s(x)dx

)1/2
, x ∈ � ⊂ R

n . H m,p(�) is a
Sobolev space that consists of functions in space L p(�) such
that their derivatives of order at least m are also in L p(�).

II. PROBLEM DESCRIPTION

Consider the following partially unknown continuous-time
nonlinear system with external disturbance:

ẋ(t) = f (x)+ g(x)u(t)+ k(x)w(t) (1)

z(t) = h(x) (2)

where x ∈ � ⊂ R
n is the state, u ∈ R

m is the control input
and u(t) ∈ L2[0,∞), w ∈ R

q is the external disturbance and
w(t) ∈ L2[0,∞), and z ∈ R

p is the objective output. f (x) is
an unknown continuous nonlinear vector function satisfying
f (0) = 0, which represents the internal system dynamics.
g(x), k(x), and h(x) are known continuous vector or matrix
functions of appropriate dimensions.

The H∞ control problem under consideration is to find a
state feedback control law u(t) = u (x(t)) such that (1) and (2)
is closed-loop asymptotically stable, and has L2-gain less than
or equal to γ , that is

∫ ∞

0

(
‖z(t)‖2 + ‖u(t)‖2

R

)
dt ≤ γ 2

∫ ∞

0
‖w(t)‖2 dt (3)

for all w(t) ∈ L2[0,∞), where ‖u(t)‖2
R = uT Ru, R > 0, and

γ > 0 is some prescribed level of disturbance attenuation.
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Lemma 1 (see Theorem 16 and Corollary 17 in [6]):
Assume (1) and (2) is zero-state observable. Let γ > 0.
Suppose there exists a smooth solution V ∗ (x) ≥ 0 to the
HJI equation

G(V ∗) = (∇V ∗(x)
)T

f (x)+ hT (x)h(x)

−1

4

(∇V ∗(x)
)T

g(x)R−1gT (x)∇V ∗(x)

+ 1

4γ 2

(∇V ∗(x)
)T

k(x)kT (x)∇V ∗(x) = 0. (4)

Then, the closed-loop system for the state feedback control

u(t) = u∗ (x(t)) = −1

2
R−1gT (x)∇V ∗(x) (5)

has L2-gain less than or equal to γ , and the closed-loop system
(1), (2), (5) (when w(t) ≡ 0) is locally asymptotically stable.

III. NN-BASED ONLINE SPUA

An immediate idea for the H∞ control design of the par-
tially unknown system (1) and (2) is to conduct identification
of the system model first, and then model-based approaches
can be employed to synthesize the controller. It is noted from
Lemma 1 that the nonlinear H∞ control problem hinges on the
solution of the HJI equation (4). However, the HJI equation is a
nonlinear PDE that is difficult or impossible to solve, and may
not have global analytic solutions even in simple cases. In this
section, we propose an online SPUA to solve the HJI equa-
tion without requiring the knowledge of the internal system
dynamics f (x). Thus, the identification process is avoided.

A. Two-Player Zero-Sum Game

It is well known that the two-player zero-sum differential
game theory [1], [26], [27], [33], [35]–[37] has been exten-
sively applied for the H∞ control problem. Correspondingly,
the control input u is a minimizing player and the disturbance
w is a maximizing one. Both the H∞ control problem and the
two-player zero-sum differential game rely on the solution of
the HJI equation (4). The solution of the H∞ control problem
is the saddle point (u∗, w∗) of the two-player zero-sum game,
where u∗ and w∗ are the optimal control policy and the worst-
case disturbance, respectively. Defining the following infinite
horizon quadratic cost functional:

V (u, w) =
∫ ∞

0

(
‖z(t)‖2 + ‖u(t)‖2

R − γ 2 ‖w(t)‖2
)

dt (6)

then, the two-player zero-sum game under consideration can
be formulated. Given (1) and (2) with two players u and w,
and the cost (6), find a saddle point (u∗, w∗) such that

V (u∗, w∗) = min
u

max
w

V (u, w) (7)

that means

V (u∗, w) ≤ V (u∗, w∗) ≤ V (u, w∗).

Define the Hamiltonian of the problem

H (x, u, w,∇V ) = (∇V )T ( f + gu + kw)

+hT h + uT Ru − γ 2wTw (8)

Algorithm 1 Online SPUA

Step 1: Given an initial function V (0) ∈ V0 (V0 ⊂ V is
determined by Lemma 5), let u(0) = − 1

2 R−1gT ∇V (0), w(0) =
1
2γ

−2kT ∇V (0), and i = 0.
Step 2: With policies u(i) and w(i), solve the following
equation for the cost function V (i+1):
V (i+1) (x(t))

=
∫ t+�t

t

(∥
∥h (x(τ ))

∥
∥2 +

∥
∥
∥u(i)(τ )

∥
∥
∥

2

R
−γ 2

∥
∥
∥w(i)(τ )

∥
∥
∥

2
)

dτ

+V (i+1) (x(t +�t)) . (13)

Step 3: Update the control and disturbance policies by

u(i+1) = arg min
u

H
(

x, u, w(i),∇V (i+1)
)

= −1

2
R−1gT ∇V (i+1) (14)

w(i+1) = arg max
w

H
(

x, u(i), w,∇V (i+1)
)

= 1

2
γ−2kT ∇V (i+1). (15)

Step 4: Set i = i + 1. If
∥
∥V (i) − V (i−1)

∥
∥
�

≤ ε (ε is
a small positive real number), stop and output V (i) as the
solution of the HJI equation (4) (i.e., V ∗ = V (i)), else, go
back to Step 2 and continue.

then, the HJI equation (4) can also be written as

min
u

max
w

H
(
x, u, w,∇V ∗) = 0 (9)

and the saddle point (u∗, w∗) of the game is given as follows:

u∗(x) = arg min
u

H
(
x, u, w∗,∇V ∗) = −1

2
R−1gT ∇V ∗ (10)

w∗(x) = arg max
w

H
(
x, u∗, w,∇V ∗) = 1

2
γ−2kT ∇V ∗. (11)

B. Online SPUA

It follows from (6) that, given arbitrary control action u(t)
and disturbance signal w(t) with initial system state x(t), the
cost function is

V (x(t)) =
∫ ∞

t

(
‖h (x(τ ))‖2 + ‖u(τ )‖2

R − γ 2 ‖w(τ)‖2
)

dτ

which can be rewritten as

V (x(t)) =
∫ t+�t

t

(
‖h (x(τ ))‖2 + ‖u(τ )‖2

R − γ 2 ‖w(τ)‖2
)

dτ

+V (x(t +�t)). (12)

Based on (12), we propose the online SPUA (as shown
in Algorithm 1) for finding the solution V ∗(x) of the HJI
equation (4).

Remark 1: The online SPUA follows the basic procedure
of policy iteration in RL, which involves policy evaluation
(in Step 2) and policy improvement (in Step 3). Hence, it can
also be viewed as an RL technique for two players to learn
their optimal actions in the unknown environment.
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Remark 2: Although the procedure of policy iteration is
also included in the methods of [32]–[36], there are two
main differences between these methods and the online SPUA.
1) The methods in [32]–[36] are model-based ones, which
require the full knowledge of the system dynamics, while the
online SPUA does not require the internal system dynam-
ics f (x). 2) The methods in [32]–[36] update the control
and disturbance policies at different iterative steps (i.e., one
player updates its policy while the other remains invariant),
which brings two iterative loops. In contrast, the online SPUA
updates the control and disturbance policies at the same
iterative step, in which only one iterative loop is needed. This
means that the online SPUA is essentially different from the
methods in [32]–[36]. The methods in [32]–[36] are based
on the same procedure as in [32], their convergence can be
directly guaranteed by the results in [6] and [32]. However,
new tools are needed for the online SPUA to establish its
convergence.

Remark 3: Notice that the SPUA avoids the identification
of f (x) whose information is embedded in the online mea-
surement of the states x(t) and x(t + �t), and evaluation
of the cost

∫ t+�t
t

(‖h (x(τ ))‖2 + ‖u(τ )‖2
R − γ 2 ‖w(τ )‖2)dτ .

That is to say, the lack of knowledge about f (x) does not
have any impact on the online SPUA to obtain the equilibrium
solution. Thus, the resulting equilibrium behavior policies of
the two players will not be affected by any errors between the
dynamics of a model of the system and the dynamics of the
real system.

C. Convergence of Online SPUA

In this section, we will prove the convergence of the online
SPUA. Namely, we want to show that the solution of equa-
tion (13) converges to the solution of HJI equation (4) when
i goes to infinity. Just as mentioned in Remark 2, the online
SPUA is essentially different from the algorithm framework
in [32]–[36]. Hence, its convergence proof is also different.

To this end, let us consider such a Banach space V ⊂
{ V (x)| V (x) : � → R, V (0) = 0} equipped with a norm ‖·‖�,
and consider the mapping G : V → V defined in (4). Define
a mapping T : V → V as follows:

T V = V − (
G′(V )

)−1
G(V ) (16)

where G′(V ) is the Fréchet derivative of G(·) at point V .
It should be noticed that both G′(V ) and

(
G′(V )

)−1 are
operators on Banach space V.

The Fréchet derivative is often difficult to compute directly,
thus we introduce the Gâteaux derivative.

Definition 1 (Gâteaux Derivative) [38]: Let G: U(V ) ⊆
X → Y be a given map, with X and Y Banach spaces. Here,
U(V ) denotes a neighborhood of V . The map G is Gâteaux
differentiable at V if there exists a bounded linear operator
L : X → Y such that

G(V + sW ) − G(V ) = sL(W )+ o(s), s → 0 (17)

for all W with ‖W‖� = 1 and all real numbers s in some
neighborhood of zero, where lim

s→0
(o(s)/s) = 0. L is called

the Gâteaux derivative of G at V . The Gâteaux differential at
V is defined by L(W ).

From (17), the Gâteaux differential at V can be defined
equivalently through the following expression [38]:

L(W ) = lim
s→0

G(V + sW ) − G(V )

s
. (18)

Equation (18) gives a method to compute Gâteaux derivative,
rather than Fréchet derivative required in (16). Thus, we
introduce the following lemma to give the relationship between
them.

Lemma 2 [38]: If G′ exists as Gâteaux derivative in some
neighborhood of V , and if G′ is continuous at V , then L =
G′(V ) is also an Fréchet derivative at V .

Now, it follows from Lemma 2 that we can compute
the Fréchet derivative G′(V ) in (16) via (18). We have the
following result.

Lemma 3: Let G : V → V be a mapping defined as (4),
then, for ∀V ∈ V, the Fréchet differential of G at V is

G′(V )W = L(W ) = (∇W )T f − 1

4
(∇W )T g R−1gT ∇V

−1

4
(∇V )T g R−1gT ∇W + 1

4γ 2 (∇W )T kkT ∇V

+ 1

4γ 2 (∇V )T kkT ∇W. (19)

Proof: See Appendix.
The following theorem provides an interesting result, in

which we discover that the online SPUA is mathematically
equivalent to Newton’s iteration in a Banach space V.

Theorem 1: Let T be a mapping defined by (16). Then,
the iteration from (13) to (15) is equivalent to the following
Newton’s iteration with (14) and (15):

V (i+1) = T V (i), i = 0, 1, 2, . . . (20)

Proof: See Appendix.
Under some proper assumptions, Newton’s iteration (20)

can converge to the unique solution of the fixed-point equation
T V ∗ = V ∗, that is, the solution of equation G(V ∗) = 0.
The convergence of Newton’s method is guaranteed by the
following Kantorovtich’s theorem [39], [40].

Lemma 4 (Kantorovtich’s Theorem): Assume for some
V (0) ∈ V1 ⊂ V such that

(
G′(V (0))

)−1
exists and that:

1)

∥
∥
∥
∥

(
G′(V (0))

)−1
∥
∥
∥
∥
�

≤ B0; (21)

2)

∥
∥
∥
∥

(
G′(V (0))

)−1
G(V (0))

∥
∥
∥
∥
�

≤ η; (22)

3) for all V (1), V (2) ∈ V1,∥
∥
∥
∥G′(V (1))− G′(V (2))

∥
∥
∥
∥
�

≤ K

∥
∥
∥
∥V (1) − V (2)

∥
∥
∥
∥
�

(23)

with h = B0Kη ≤ 1/2. Let

V2=
{

V |
∥
∥
∥V − V (0)

∥
∥
∥
�

≤ σ
}
,where σ = 1 − √

1 − 2h

h
η.

(24)
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Now, if V2 ⊂ V1, then, the sequence {V (i)} given in (20) is
well defined, remains in V2, and converges to V ∗ ∈ V2 such
that G(V ∗) = 0. In addition

∥
∥
∥V ∗ − V (i)

∥
∥
∥
�

≤ η

h

(
1 − √

1 − 2h
)2i

2i
, i = 0, 1, 2, . . .

(25)

It is observed from Lemma 4 that the V1 must be suitably
chosen. The following lemma gives a method to determine a
V0 satisfying V0 ⊂ V1, so that V0 conversely guarantees the
hypotheses of Lemma 4.

Lemma 5 [41]: Suppose V ∗ ≥ 0 is the solution of HJI
equation G(V ∗) = 0. If ‖(G′(V ∗)

)−1‖� ≤ B∗, and

V3 =
{

V | ∥∥V − V ∗∥∥
�

≤
(

1

B∗K

)}

⊂ V1 (26)

then, the hypotheses of Lemma 4 are satisfied. That is, for
each V (0) ∈ V0, h ≤ 1/2, conditions (21) and (22) hold with

B0 = B∗

1 − B∗K
∥
∥V (0) − V ∗∥∥

�

≥
∥
∥
∥
∥

(
G′(V (0))

)−1
∥
∥
∥
∥
�

and

η = 1 − 1
2 B∗K

∥
∥V (0) − V ∗∥∥

�

1 − B∗K
∥
∥V (0) − V ∗∥∥

�

∥
∥
∥
∥V (0)−V ∗

∥
∥
∥
∥
�

≥
∥
∥
∥
∥

(
G′(V (0))

)−1
G(V (0))

∥
∥
∥
∥
�

where

V0 =
{

V | ∥∥V − V ∗∥∥
�

≤ (2 − √
2)

(2B∗K )

}

. (27)

Lemmas 4 and 5 imply that if V (0) is chosen in V0 defined
by (27) (V0 is a neighborhood of nonnegative definite solution
V ∗ ≥ 0), the online SPUA, i.e., Newton’s method, is bound
to converge to the fixed point of (16), i.e., the solution of HJI
equation (4), and the error bound is given by (25).

Remark 4: Theorem 1 shows that the sequence {V (i)}
generated by the online SPUA is equivalent to the Newton
sequence obtained by (20), the convergence of which can be
guaranteed by Lemma 4. Therefore, the sequence {V (i)} also
converges to the solution V ∗ of HJI equation (4), i.e.,V (i) →
V ∗, when i → ∞. Once V ∗ is obtained, the saddle point
(u∗, w∗) can be directly computed by (10) and (11).

D. Actor-Critic Structure for Online SPUA and LS NN
Approach

Actor-critic schemes [42] originated in the artificial intelli-
gence literature in the context of RL. In the past three decades,
actor-critic algorithms have received much attention (see [43]
and [44] and references therein), and have been introduced to
solve optimal control problems [11], [13].

In this section, we develop an actor-critic structure for the
online SPUA (see Fig. 1) to solve the H∞ state feedback
control problem. This structure involves three learning units,
a critic and two actors, interacting with each other and with
the system during the course of the online SPUA. Two actors
have tunable parameter vectors that parameterize a set of

Cost Function V(x)CostSystem

Disturbance Policy w(x)

Control Policy u(x)

Critic

Actor 2

Actor 1

State

Fig. 1. Actor-critic structure for online SPUA.

control policies and disturbance policies, respectively. They
update their parameter vectors at each iterative step using the
observations of the system state and the information obtained
from the critic. Similarly, at each iterative step, the critic
updates the approximation of cost function corresponding to
the current control and disturbance policies of two actors.

If we use NNs to parameterize the cost function, control, and
disturbance policies in the actor-critic structure, three NNs are
needed. Here, we derive a simple method for implementation
of this structure, in which only a single critic NN is required
for the cost function, and then two actor NNs for the control
and disturbance policies are updated accordingly.

Let 
N (x) = (ψ1(x), . . . , ψN (x))T be the activation func-
tions, where N is the number of hidden-layer neurons. Then,
the cost function V (i+1)(x) in (13) is approximated by

V̂ (i+1)(x) =
(

c(i+1)
)T

N (x) = 
T

N (x)c
(i+1) (28)

where c(i+1) =
(

c(i+1)
1 , . . . , c(i+1)

N

)T
is the weight vector.

Thus, (13) can be written as


T
N

(

x(t)

)

c(i+1) =
∫ t+�t

t

(∥
∥
∥
∥h

(

x(τ )

)∥
∥
∥
∥

2

+
∥
∥
∥û(i)(τ )

∥
∥
∥

2

R

−γ 2
∥
∥
∥ŵ(i)(τ )

∥
∥
∥

2
)

dτ +
T
N

(

x(t +�t)

)

c(i+1)

that means
(

T

N (x(t))−
T
N (x(t +�t))

)
c(i+1)

=
∫ t+�t

t

(
‖h (x(τ ))‖2 +

∥
∥
∥û(i)(τ )

∥
∥
∥

2

R
− γ 2

∥
∥
∥ŵ(i)(τ )

∥
∥
∥

2
)

dτ .

(29)

Accordingly, the control and disturbance policies in (14) and
(15) can be approximated by

û(i+1) = −1

2
R−1gT ∇ V̂ (i+1) = −1

2
R−1gT ∇
T

N c(i+1) (30)

ŵ(i+1) = 1

2
γ−2kT ∇ V̂ (i+1) = 1

2
γ−2kT ∇
T

N c(i+1) (31)
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where ∇
N (x) = ((∂ψ1/∂x), . . . , (∂ψN /∂x))T is the
Jacobian of 
N .

Remark 5: Note that only one NN is needed in the online
SPUA (Algorithm 1), i.e., the critic NN for approximating the
cost function via (28). After the weight vector is computed
via (29), the control and disturbance policies in (14) and (15)
can be approximately updated by (30) and (31) accordingly.
Therefore, the iteration from (13) to (15) in the online SPUA
is converted to the weights iteration from (29) to (31).

It is noticed that the NN weight parameters c(i+1) have N
unknown elements. Thus, in order to solve for c(i+1), at least
N equations are required. Here, we construct N̄(N̄ ≥ N)
equations, and use an LS method to estimate c(i+1). In each
time interval [t, t +�t], we collect N̄ sample data along state
trajectories, and construct the LS solution of the NN weights
as follows:

c(i+1) = (X X T )−1 XY (32)

where

X = [

N (x(t))−
N (x(t + δt)) · · ·
N

(
x(t + (N̄ − 1)δt)

)

−
N
(
x(t + N̄δt)

)]

Y =
[

y(x(t), û(i)(t), ŵ(i)(t)) · · · y(x(t + (N̄ − 1)δt),

û(i)(t + (N̄ − 1)δt), ŵ(i)(t + (N̄ − 1)δt))
]T

with δt = �t/N̄ and

y(x(t + kδt), û(i)(t + kδt), ŵ(i)(t + kδt))

=
∫ t+(k+1)δt

t+kδt

(
‖h (x(τ ))‖2 +

∥
∥
∥û(i)(τ )

∥
∥
∥

2

R

−γ 2
∥
∥
∥ŵ(i)(τ )

∥
∥
∥

2
)

dτ , k = 0, . . . , N − 1.

It is worth mentioning that the LS method (32) requires a
nonsingular matrix XXT . To attain the goal, we can inject
probing noises into states or reset system states.

Based on the actor-critic structure and the above LS
estimation of the NN weights, we develop an implementable
NN-based online SPUA procedure as shown in Algorithm 2.

Remark 6: It should be pointed out that the word “simul-
taneous” in this paper and the word “synchronous” in [33]
represent different meanings. The former emphasizes the same
“iterative step,” while the latter emphasizes the same “time
instant. In this paper, the online SPUA updates control and
disturbance policies at the same iterative step, while the
algorithm in [33] updates control and disturbance policies at
the different iterative steps.

Remark 7: It is worth emphasizing that different from the
result in [11], which was used for solving HJB equation of
nonlinear optimal control problem, the proposed online SPUA
is developed for solving HJI equation of nonlinear H∞ control
problem. Moreover, there are two main differences between
the approach in [34] and the proposed online SPUA. 1) The
former is an offline approach that requires the system model,
while the latter is an online one that does not need the
knowledge of internal system dynamics and 2) The method
in [34] brings two iterative loops, while the online SPUA
involves only one loop.

Algorithm 2 NN-Based Online SPUA
Step 1: Select N activation functions 
N (x). Given initial
weights c(0) such that V̂ (0) ∈ V0, let

û(0) = −1

2
R−1gT ∇
T

N c(0), ŵ(0) = 1

2
γ−2kT ∇
T

N c(0),

and i = 0.

Step 2: With policies û(i) and ŵ(i), collect N̄ sample data along
state trajectories in time interval [i�t, (i + 1)�t]. Compute
c(i+1) via (32) at time instant (i + 1)�t .
Step 3: Update the control and disturbance policies by (30)
and (31) at time instant (i + 1)�t .
Step 4: Set i = i + 1. If

∥
∥c(i) − c(i−1)

∥
∥ ≤ ε (ε is a small

positive real number), stop and use V (i) as the solution of the
HJI equation (4), i.e., use û(i) as the H∞ controller, else, go
back to step 2 and continue.

E. Convergence of LS NN-Based Online SPUA

In this section, we show that the LS NN-based online SPUA
converges to the solution of HJI equation (4).

It is seen that the LS NN method derived in the above
section is used for solving (13) for cost function V (i+1)(x).
It follows from the proof of Theorem 1 that (13) is equal to
(A5), which means that the LS NN approach is nothing but
for solving (A5) mathematically.

We notice that (A5) is essentially the same as the Lyapunov
equation in [45] from pure mathematical view, because both
of them are first order linear PDEs of the same form. Some
important theories have been established in computational
mathematics community to solve these types of PDEs, such
as the LS approach in [45] and Galerkin’s method in [30] and
[32]. Moreover, in [45], the convergence of LS NN approach
for solving the first order, linear PDE was established, which
provides the theoretical foundation of the online LS NN
method in this paper. We can directly obtain the following
Lemma by using the results in [45].

Lemma 6: For i = 0, 1, 2, . . ., assume that the solution of
equation (A5) V (i+1) ∈ H 1,2(�), the NN activation functions
ψ j ∈ H 1,2(�), j = 1, 2, . . . , N are chosen such that, they
are complete when N → ∞, V (i+1) and ∇V (i+1) can be

uniformly approximated, and the set {ϕ j (x1, x2)
�= ψ j (x1) −

ψ j (x2)}N
j=1, ∀x1, x2 ∈ �, x1 �= x2 is linearly independent and

complete. Then, for i = 0, 1, 2

sup
x∈�

∣
∣
∣V̂ (i+1)(x)− V (i+1)(x)

∣
∣
∣ → 0

sup
x∈�

∣
∣
∣∇ V̂ (i+1)(x)− ∇V (i+1)(x)

∣
∣
∣ → 0

sup
x∈�

∣
∣
∣û(i+1)(x)− u(i+1)(x)

∣
∣
∣ → 0

sup
x∈�

∣
∣
∣ŵ(i+1)(x)−w(i+1)(x)

∣
∣
∣ → 0.

Proof: In order to use the results in [45], we first show
the set{∇ψT

j ( f + gu(i) + kw(i))}is linearly independent by
contradiction. Suppose this is not true, then there exists a
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nonzero vector
�
c
�=

[
�
c1 . . .

�
c N

]
∈ R

N such that

N∑

j=1

�
c j∇ψT

j ( f + gu(i) + kw(i)) = 0

which implies that for ∀x(t) ∈ �
∫ t+�t

t

N∑

j=1

�
c j ∇ψT

j ( f + gu(i) + kw(i))dτ

=
N∑

j=1

�
c j

(
ψ j (x(t +�t))− ψ j (x(t))

) = 0

that means
N∑

j=1

�
c jϕ j (x(t +�t), x(t)) = 0.

This contradicts the linear independence of {ϕ j }N
j=1. Thus, the

set{∇ψT
j ( f + gu(i) + kw(i))} is linearly independent.

Then, the first three items of Lemma 6 can be proved by
following the same procedure used in Theorem 2 and Corol-
lary 2 of [45]. The result sup

x∈�
∣
∣ŵ(i+1)(x)− w(i+1)(x)

∣
∣ → 0

can also be proved by arguments similar to
sup
x∈�

∣
∣û(i+1)(x)− u(i+1)(x)

∣
∣ → 0.

Lemma 6 shows the LS NN approach can achieve the
uniform approximation for the solution of (A5).

Theorem 2: If the conditions in Lemma 6 hold, then, for
∀ς > 0, ∃i0, N0, when i ≥ i0 and N ≥ N0, we have

sup
x∈�

∣
∣
∣V̂ (i)(x)− V ∗(x)

∣
∣
∣ < ς

sup
x∈�

∣
∣
∣û(i)(x)− u∗(x)

∣
∣
∣ < ς

sup
x∈�

∣
∣
∣ŵ(i)(x)−w∗(x)

∣
∣
∣ < ς.

Proof: The first two items can be proved by following
the same procedure used in the proofs of Theorems 3 and
4 of [45]. The result sup

x∈�
∣
∣ŵ(i)(x)− w∗(x)

∣
∣ → 0 can also be

proved in a similar way of sup
x∈�

∣
∣û(i)(x)− u∗(x)

∣
∣ → 0.

Theorem 2 demonstrates the uniform convergence of the
proposed online SPUA with LS NN approximation.

Remark 8: Observe that the convergence proof of the
proposed LS NN approach in this paper is almost the same as
that in [45]. The reason is that both the proposed LS NN
approach in this paper and one in [45] are developed for
solving a first order linear PDE. However, the final goal of
[45] is to solve a HJB equation of nonlinear optimal control
problem, while our aim is to solve a HJI equation in nonlinear
H∞ control problem. On the other hand, the method in [45]
is an offline one that requires the system model, while our
method is an online one without requiring the knowledge of
internal system dynamics.

IV. SIMULATION STUDIES

In this section, we present simulation studies on two exam-
ples to illustrate the effectiveness of the developed NN-based
online SPUA.

A. Simulations on Linear System

The first example considers the following F-16 aircraft plant
that studied in [47] and [48]

ẋ = Ax + B1w + B2u, z = Cx (33)

where C = I and

A =
⎡

⎣
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

⎤

⎦, B1 =
⎡

⎣
1
0
0

⎤

⎦

B2 =
⎡

⎣
0
0
1

⎤

⎦

the system state vector is x = [
α q δe

]T, α denotes the angle
of attack, q is the rate, and δe is the elevator deflection angle.
The control input u is the elevator actuator voltage and the
disturbance w is wind gusts on angle of attack. Select R = I
and γ = 5. Letting V ∗(x) = x T Px , the HJI equation (4) for
linear system (33) is the following H∞ ARE:
AT P + P A + CT C + γ−2 P B1 BT

1 P − P B2 R−1 BT
2 P = 0

(34)

and the corresponding H∞ control law (5) is

u∗ (x) = −R−1 BT
2 Px. (35)

Solving the ARE (34) with the MATLAB command CARE,
we obtain

P =
⎡

⎣
1.6573 1.3954 −0.1661
1.3954 1.6573 −0.1804

−0.1661 −0.1804 0.4371

⎤

⎦. (36)

Here, we use the proposed NN-based online SPUA to solve
the H∞ control problem of system (33). Select six polynomials
as activation functions as follows:


N (x) = [
x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

]T

thus, the true values of the NN weights c are

c = [
P11 2P12 2P13 P22 2P23 P33

]T

= [
1.6573 2.7908 −0.3322 1.6573 −0.3608 0.4370

]T
.

(37)

Select the value of stop criterion ε = 10−7, initial state
x(0) = [

1 1 1
]T , the initial NN weights c(0) = 0, and

sampling interval δt = 0.05(s). In each iterative step, after
collecting 10 (i.e., N̄ = 10) system state measurements, the
LS method (32) is used to update NN weights, that is, the
NN weights are updated every 0.5(s) (i.e., �t = 0.5(s)).
After each update, we reset the system state as initial state
x0. Fig. 2 shows the weights c(i) in each iterative step, where
we can observe that the NN weights converge to the true values
in (37) at t0 = 2.5(s). Then the solution of HJI equation is
computed via (28) and the corresponding H∞ controller is
obtained by (30). Select a disturbance signal as

w(t) =
{

8e−(t−t0) cos (t − t0) , t ≥ t0
0, t < t0

(38)
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Fig. 2. NN weights for the first example with �t = 0.5(s).
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Fig. 3. For the first example (a) closed-loop state trajectories and (b) control
action u(t).

and use the resulting H∞ controller for closed-loop system
simulations. Fig. 3 shows the closed-loop state trajectories
and control action u(t). The trajectories at the first 2.5 s are
corresponding to a phrase in which the online SPUA is applied
to learn the NN weights.

In order to test the influence of different �t on the per-
formance of the online SPUA, we run the online SPUA on
Example 1 again under the same above parameters except by
setting �t = 1(s) (i.e., δt = 0.1(s)). Fig. 4 gives the NN
weights in each iterative step. It is noticed that the weights
are convergent at t0 = 5(s), which is doubled compared with
Fig. 2. However, it is also found that the online SPUA is
convergent at iterative step 5 (i.e., i = 5), which is the same
as the results obtained by setting �t = 0.5(s). This means that
the change of �t have great effect on the time of convergence,
but little on the iterative steps of convergence.

0 1 2 3 4 5
-1

0

1

2

3

c1 c2 c3 c4 c5 c6

time (s) 

Fig. 4. NN weights for the first example with �t = 1(s).
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Fig. 5. NN weights for the second example.

B. Simulations on Nonlinear System

The second example is constructed by using the converse
HJB approach [49]. The system model is given as follows:

ẋ =
[ −0.25x1

0.5x2
1 x2 − 0.5γ−2x3

2 + 0.5x2

]

+
[

0
x1

]

w +
[

0
x2

]

u

z = x .

With the choice of γ = 2, the solution of the associated HJI
equation is V ∗(x) = 2x2

1 + x2
2 .

Select R = I , x(0) = [ 0.4 0.5 ]T , ε = 10−7, NN activation
functions 
N (x) = [ x2

1 x1x2 x2
2 x4

1 x4
2 ]T , and the initial NN

weights c(0) = 0. The parameters of states sampling are the
same as Example 1. After each update, we reset the system
state as initial state x0. By the proposed NN-based online
SPUA, the simulation results are shown in Figs. 5 and 6.
Fig. 5 indicates the weights c(i) in each iterative step, where
it can be observed that the NN weights converge to the true
weights (i.e.,

[
2 0 1 0 0

]T
) at t0 = 3(s). By the resulting

NN weights at instant t0 = 3(s), we can obtain the solution of
HJI equation (4) by (28) and the corresponding H∞ controller
by (30). Select a disturbance signal as in (38) with t0 = 3(s)
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Fig. 6. For the second example (a) closed-loop state trajectories, (b) control
action u(t), and (c) evolution of r(t).

and define the function r(t) as

r(t)
�=

t∫

t0

(‖z(τ )‖2 + ‖u(τ )‖2
R

)
dτ

t∫

t0
‖w(τ)‖2 dτ

. (39)

Applying the resulting H∞ controller to the system, Fig. 6
shows the closed-loop state trajectories, control action u(t),
and evolution of r(t). The trajectories at the first 3 s in Fig. 6
are corresponding to a learning phrase, in which the online
SPUA is used to learn the NN weights. It can also be seen from
Fig. 6 that the closed-loop system is asymptotically stable,
and the r(t) converges to 0.9232, which satisfies the L2-gain
requirement (i.e., r(t) < γ 2 = 4) when t → ∞.

V. CONCLUSION

In this paper, a NN-based online SPUA has been developed
to solve the HJI equation of H∞ state feedback control
problem for nonlinear systems. The H∞control problem was
viewed as a zero-sum game, where the control is a minimizing
player and the disturbance is a maximizing one. By updating
two players’ policies simultaneously, an online SPUA was

proposed to learn the solution of the HJI equation. The con-
vergence of the online SPUA was established by showing that
it is mathematically equivalent to Newton’s method for finding
a fixed point in a Banach space. Moreover, for implementation
purpose, we presented an actor-critic structure, in which two
actors and one critic were involved. To simplify this structure,
only a single critic NN was employed for approximating the
cost function, and then two actor NNs for the control and
disturbance policies were updated correspondingly. Further-
more, an LS method was given to estimate the NN weight
parameters, and its convergence was proved. Finally, through
the simulation studies on two examples, the achieved results
showed that the proposed NN-based online SPUA is effective.

APPENDIX

PROOF OF LEMMA 3

For ∀V ∈ V and W ∈ Ṽ ⊂ V, where Ṽ is a neighborhood
of V , we have

G(V + sW ) − G(V )

= (∇(V + sW ))T f + hT h − (∇(V + sW ))T g R−1

× gT ∇(V + sW )+ 1

4γ 2 (∇(V + sW ))T kkT ∇(V + sW )

−
(

(∇V )T f + hT h − (∇V )T g R−1gT ∇V

+ 1

4γ 2 (∇V )T kkT ∇V

)

= s (∇W )T f − s

4
(∇W )T g R−1gT ∇V

− s

4
(∇V )T g R−1gT ∇W

− s2

4
(∇W )T g R−1gT ∇W + s

4γ 2 (∇W )T kkT ∇V

+ s

4γ 2 (∇V )T kkT ∇W + s2

4γ 2 (∇W )T kkT ∇W.

Thus, the Gâteaux differential at V is

L(W ) = lim
s→0

G(V + sW ) − G(V )

s

= (∇W )T f − 1

4
(∇W )T g R−1gT ∇V − 1

4
(∇V )T

× g R−1gT ∇W + 1

4γ 2 (∇W )T kkT ∇V

+ 1

4γ 2 (∇V )T kkT ∇W. (A1)

Next, we will prove that the map L = G′(V ) is continuous.
For ∀W0 ∈ Ṽ, it is immediate that

L(W )− L(W0) = (∇(W − W0))
T f − 1

4
(∇(W − W0))

T

×g R−1gT ∇V

−1

4
(∇V )T g R−1gT ∇(W − W0)

+ 1

4γ 2 (∇(W − W0))
T kkT ∂V

∂x

+ 1

4γ 2 (∇V )T kkT ∇(W − W0).



WU AND LUO: NN-BASED ONLINE SPUA FOR SOLVING THE HJI EQUATION 1893

Then, we have

‖L(W ) − L(W0)‖�
≤

∥
∥
∥(∇(W − W0))

T f
∥
∥
∥
�

+
∥
∥
∥
∥

1

4
(∇(W − W0))

T

× g R−1gT ∇V

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

4
(∇V )T g R−1gT ∇(W − W0)

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

4γ 2 (∇(W − W0))
T kkT ∇V

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

4γ 2 (∇V )T kkT ∇(W − W0)

∥
∥
∥
∥
�

=
(

‖ f ‖� +
∥
∥
∥
∥

1

2
g R−1gT ∇V

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

2γ 2 kkT ∇V

∥
∥
∥
∥
�

)

× ‖∇(W − W0)‖�
≤

(
‖ f ‖� +

∥
∥
∥
∥

1

2
g R−1gT ∇V

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

2γ 2 kkT ∇V

∥
∥
∥
∥
�

)

× m1 ‖W − W0‖� (A2)

where m1 > 0. Let

M = m1

(

‖ f ‖� +
∥
∥
∥
∥

1

2
g R−1gT ∇V

∥
∥
∥
∥
�

+
∥
∥
∥
∥

1

2γ 2 kkT ∇V

∥
∥
∥
∥
�

)

.

Then, for ∀ε > 0, there exists a δ = ε
/

M such that

‖L(W ) − L(W0)‖� ≤ M ‖W − W0‖� < ε (A3)

when ‖W − W0‖� < δ. This means L = G′(V ) is continuous
on Ṽ, thus according to Lemma 2, L(W ) = G′(V )W [i.e.,
(A1)] is the Fréchet differential, and L = G′(V ) is the Fréchet
derivative at V .

Proof of Theorem 1: We will give the proof with two steps.
1) On the one hand, with policies u(i) and w(i), the system

state x(t) satisfies

ẋ(t) = f (x)+ g(x)u(i)(t)+ k(x)w(i)(t). (A4)

Let V (i+1) be a solution of the following equations:
(
∇V (i+1)

)T (
f + gu(i) + kw(i)

)
+ ‖h‖2 +

∥
∥
∥u(i)

∥
∥
∥

2

R

−γ 2
∥
∥
∥w(i)

∥
∥
∥

2 = 0. (A5)

Using (A4), (A5) can be rewritten as

d

dt
V (i+1)(x(t)) = −

(
‖h‖2 +

∥
∥
∥u(i)

∥
∥
∥

2

R
− γ 2

∥
∥
∥w(i)

∥
∥
∥

2
)

. (A6)

Integrating (A6) from t to t +�t yields

V (i+1)(x(t +�t))− V (i+1)(x(t)) = −
∫ t+�t

t

×
(

‖h (x(τ ))‖2 +
∥
∥
∥u(i)(τ )

∥
∥
∥

2

R
− γ 2

∥
∥
∥w(i)(τ )

∥
∥
∥

2
)

dτ (A7)

which implies that the solution V (i+1) satisfies (13).
Obviously, (13) can be rewritten as

V (i+1)
(

x(t)

)

=
∫ ∞

t

(∥
∥
∥
∥h

(

x(τ )

)∥
∥
∥
∥

2

+
∥
∥
∥u(i)(τ )

∥
∥
∥

2

R

−γ 2
∥
∥
∥w(i)(τ )

∥
∥
∥

2
)

dτ . (A8)

Calculating the derivative of (A8), yields

V̇ (i+1) (x(t)) =
(
∇V (i+1)

)T
ẋ

= −
(

‖h (x(t))‖2 +
∥
∥
∥u(i)(t)

∥
∥
∥

2

R
− γ 2

∥
∥
∥w(i)(t)

∥
∥
∥

2
)

. (A9)

In the following, we prove that V (i+1) is the unique solution

of (13) by contradiction. Assume
�

V
(i+1)

is another solution of
(13), that is

�

V
(i+1)

(x(t)) =
∫ ∞

t

(

‖h (x(τ ))‖2 +
∥
∥
∥u(i)(τ )

∥
∥
∥

2

R

−γ 2
∥
∥
∥w(i)(τ )

∥
∥
∥

2
)

dτ . (A10)

Then the derivative of (A10) can be calculated as

�̇

V
(i+1)

(x(t)) =
(

∇ �

V
(i+1)

)T

ẋ

= −
(

‖h (x(t))‖2 +
∥
∥
∥u(i)(t)

∥
∥
∥

2

R
− γ 2

∥
∥
∥w(i)(t)

∥
∥
∥

2
)

. (A11)

It follows from (A9) and (A11) that
(

∇
(

V (i+1) − �

V
(i+1)

))T

ẋ = 0 (A12)

which must hold for any x ∈ �. Thus, we have

d

dt

(

V (i+1) − �

V
(i+1)

)

= 0. (A13)

This means
�

V
(i+1)

(x) = V (i+1)(x) − d , whered is a con-

stant. Due to
�

V
(i+1)

(0) = V (i+1)(0) = 0 and
�

V
(i+1)

(0) =
V (i+1)(0) − d , then d = 0. Thus,

�

V
(i+1)

(x) = V (i+1)(x).
Therefore, the (13) is equal to (A5).

2) On the other hand, it follows from (16) and (20) that:
V (i+1) = T V (i) = V (i) −

(
G′(V (i))

)−1
G(V (i))

which can be rewritten as

G′(V (i))V (i+1) = G′(V (i))V (i) − G(V (i)). (A14)

From (14), (15), and (19), we have

G′(V (i))V (i+1) =
(
∇V (i+1)

)T
f − 1

4

(
∇V (i+1)

)T

× g R−1gT ∇V (i)

− 1

4

(
∇V (i)

)T
g R−1gT ∇V (i+1) + 1

4γ 2

(
∇V (i+1)

)T

× kkT ∇V (i) + 1

4γ 2

(
∇V (i)

)T
kkT ∇V (i+1)

=
(
∇V (i+1)

)T
f − 1

4

(
∇V (i+1)

)T
g R−1gT ∇V (i)

−
(

1

4

(
∇V (i)

)T
g R−1gT ∇V (i+1)

)T

+ 1

4γ 2

(
∇V (i+1)

)T

× kkT ∇V (i) + 1

4γ 2

((
∇V (i)

)T
kkT ∇V (i+1)

)T

=
(
∇V (i+1)

)T
(

f − 1

2
g R−1gT ∇V (i) + 1

2γ 2 kkT ∇V (i)
)
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=
(
∇V (i+1)

)T (
f + gu(i) + kw(i)

)
(A15)

G′(V (i))V (i) =
(
∇V (i)

)T
f − 1

4

(
∇V (i)

)T
g R−1gT ∇V (i)

− 1

4

(
∇V (i)

)T
g R−1gT ∇V (i) + 1

4γ 2

(
∇V (i)

)T

× kkT ∇V (i) + 1

4γ 2

(
∇V (i)

)T
kkT ∇V (i)

=
(
∇V (i)

)T
f − 2

∥
∥
∥u(i)

∥
∥
∥

2

R
+ 2γ 2

∥
∥
∥w(i)

∥
∥
∥

2
(A16)

G(V (i)) =
(
∇V (i)

)T
f + hT h − 1

4

(
∇V (i)

)T

× g R−1gT ∇V (i) + 1

4γ 2

(
∇V (i)

)T
kkT ∇V (i)

=
(
∇V (i)

)T
f + ‖h‖2 −

∥
∥
∥u(i)

∥
∥
∥

2

R
+ γ 2

∥
∥
∥w(i)

∥
∥
∥

2
. (A17)

Substituting (A15)–(A17) into (A14) gives
(
∇V (i+1)

)T (
f + gu(i) + kw(i)

)

=
(
∇V (i)

)T
f − 2

∥
∥
∥u(i)

∥
∥
∥

2

R
+ 2γ 2

∥
∥
∥w(i)

∥
∥
∥

2

−
((

∇V (i)
)T

f + ‖h‖2 −
∥
∥
∥u(i)

∥
∥
∥

2

R
+ γ 2

∥
∥
∥w(i)

∥
∥
∥

2
)

that means
(
∇V (i+1)

)T (
f + gu(i) + kw(i)

)
+ ‖h‖2 +

∥
∥
∥u(i)

∥
∥
∥

2

R

−γ 2
∥
∥
∥w(i)

∥
∥
∥

2 = 0.

This means that the (20) in Newton’s iteration is also equal
to (A5). This completes the proof.
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