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a  b  s  t  r  a  c  t

In  this  paper,  the  linear  quadratic  (LQ)  optimal  control  problem  is  considered  for  a  class  of  linear  dis-
tributed parameter  systems  described  by  first-order  hyperbolic  partial  differential  equations  (PDEs).
Reinforcement  learning  (RL)  technique  is introduced  for adaptive  optimal  control  design  from  the  design-
then-reduce  (DTR)  framework.  Initially,  a  policy  iteration  (PI)  algorithm  is  proposed,  which  learns  the
solution  of  the  space-dependent  Riccati  differential  equation  (SDRDE)  online  without  requiring  the  inter-
nal system  dynamics  of the PDE  system.  To prove  its  convergence,  the PI  algorithm  is  shown  to  be
equivalent  to  an  iterative  procedure  of a sequence  of  space-dependent  Lyapunov  differential  equations
(SDLDEs).  Then,  the  convergence  is  established  by showing  that  the  solutions  of  SDLDEs  are  a  monotone
non-increasing  sequence  that  converges  to the solution  of  the SDRDE.  For  implementation  purpose,  an
online  least-square  method  is developed  for  the  approximation  of  the  solutions  of  the SDLDEs.  Finally,  the
proposed  design  method  is  applied  to the  distributed  control  of a steam-jacketed  tubular  heat  exchanger
to illustrate  its  effectiveness.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In practice, a significant number of industrial processes are
inherently distributed in space so that their behaviors depend on
spatial position as well as time, such as heat conduction, fluid flow,
and chemical reactor processes [1,2]. The mathematical models of
these processes usually take the form of partial differential equa-
tions (PDEs) and are often derived from the fundamental balances
of momentum, energy, and material. The well-known classifica-
tion of PDE systems could be hyperbolic, parabolic, elliptic, etc. [1],
according to the properties of the spatial differential operator. Due
to their infinite-dimensional nature, it is very difficult directly using
control design methods of lumped parameters systems (LPSs) for
these PDE systems.

Optimal control theory is an important tool for the controller
synthesis. The main objective of the optimal control policy is to reg-
ulate a dynamic system by minimizing a given cost criterion. Over
the past decades, the optimal control theory of PDE systems has
been well studied from mathematical point of view [3–5]. Mean-
while, the optimal control problem of PDE systems has also been
well studied from engineering point of view, where a consider-
able attention has been paid to methods that are based on the
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minimization of linear quadratic (LQ) cost criteria. Existing works
on the optimal controller design of PDE systems can be classified
into two  types: reduce-then-design (RTD) [6–10] and design-then-
reduce (DTR) [1,4,5,11–21]. The former initially discretizes the PDE
system into an approximate finite-dimensional ordinary differen-
tial equation (ODE) system, which is then used for optimal control
design purposes. This approach is mostly used for parabolic PDE
systems, because their dominant dynamic behaviors are usually
characterized by a finite (typically small) number of degrees of free-
dom. In contrast to parabolic PDE systems, hyperbolic PDE  systems
involve a spatial differential operator whose eigenvalues cluster
along vertical or nearly vertical asymptotes in the complex plane
and thus cannot be accurately represented by a finite number of
modes. This feature prohibits the application of modal decom-
position techniques to the hyperbolic PDE system to derive an
approximate ODE model and suggests addressing the control prob-
lem on the basis of the infinite-dimensional model itself. Following
this suggestion, some control approaches have been developed for
hyperbolic PDE systems in the past decades, including the LQ opti-
mal  control method via spectral factorization [13] and operator
Riccati equation (ORE) [4,5,14], boundary control method [15–17],
the sliding mode control method [18] and model predictive control
method [19] on the basis of equivalent ODE realizations obtained
by the method of characteristics, the nonlinear control method [20]
through a combination of PDE theory and geometric control tech-
niques, and the fuzzy control method based on directly the T–S
fuzzy PDE model [21].
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However, most of the above approaches are model-based that
require the full knowledge of the mathematical system models,
which in most real cases are either unavailable or costly to obtain,
due to the high-complexity of the industrial processes. The most
prominent feature of such cases is the presence of vast volume
of data accompanied by the lack of an effective process physical
model that can support control. Moreover, the modeling and iden-
tification are also very difficult for PDE systems [22,23],  even for
ODE systems [24]. Then, these model-based methods encounter
limits on the achievable performance, induced by conservatism
introduced in the process modeling step. To overcome this limita-
tion and to improve the performance beyond model-based control
design, it is significant to develop control approaches for the cases
that accurate modeling is impossible. This is a promising but chal-
lenging area for future control theory researches. Reinforcement
learning (RL) [25–28] is a kind of machine learning method, which
refers to an actor or agent that interacts with its environment and
aims to learn the optimal actions, or control policies, by observing
their responses from the environment. It affords a methodology
for learning the feedback control actions online in real time based
on system performance without necessarily knowing the system
dynamics. This also overcomes computational complexity, such
as the curse of dimensionality [29] associated with dynamic pro-
gramming. In recent years, RL techniques have been used to the
optimal control design of ODE systems [28,30–34].  For linear con-
tinuous ODE systems, policy iteration (PI) was employed to find
the optimal control law online in [31,34]. This algorithm is theoret-
ically equal to the well known iterative method developed in [35],
where the algebraic Riccati equation (ARE) was approximated by a
sequence of linear Lyapunov equations (LEs). The optimal control
for nonlinear ODE systems with the PI algorithm was also stud-
ied in [32,34,36].  In [36], an offline PI method was developed for
nonlinear systems with control constraints, while an online PI algo-
rithm was given in [32]. Later, a so-called synchronous PI method
[33] and a generalized PI version [37] were also suggested for the
optimal control problem for nonlinear ODE systems. In addition,
some important approximate dynamic programming (ADP) meth-
ods were proposed to solve the optimal tracking control problem
of discrete-time nonlinear affine systems [38] and general nonlin-
ear systems [39]. Nevertheless, to the best of our knowledge, the
RL-based adaptive optimal control problem of linear hyperbolic
PDE systems from the DTR framework has not been addressed yet,
which motivates the present study.

In this paper, we try to synthesize an adaptive distributed opti-
mal  control law for a class of linear hyperbolic PDE systems by using
the RL techniques and the DTR approach. To avoid directly solv-
ing the model-based space-dependent Riccati differential equation
(SDRDE) for the LQ optimal control problem of linear hyperbolic
PDE systems [14], a PI algorithm is proposed to learn the solu-
tion of the SDRDE online without requiring the knowledge of the
internal system dynamics. The convergence of the PI algorithm is
established by showing that the SDRDE can be successively approx-
imated by a sequence of space-dependent Lyapunov differential
equations (SDLDEs). For implementation purpose, we develop a
least-square method to online estimate the solutions of the SDLDEs.
Finally, the simulation study on the distributed control of a steam-
jacketed tubular heat exchanger is given to show the effectiveness
of the proposed design method.

The reminder of the paper is arranged as follows. The prob-
lem description and some preliminary results are given in Section
2. The PI algorithm is proposed and related issues are analyzed
in Section 3. A least-square based implementation method for
adaptive distributed optimal control is developed in Section 4.
Simulation studies on a steam-jacketed tubular heat exchanger
are provided in Section 5. Finally, a brief conclusion is drawn in
Section 6.

Notations: R, Rn and Rn×m are the set of real numbers, the
n-dimensional Euclidean space and the set of all real n × m matri-
ces, respectively. ∥ · ∥ and ⟨·, ·⟩Rn denote the Euclidean norm and
inner product for vectors, respectively. Identity matrix, of appro-
priate dimensions, is denoted by I. The superscript ‘T’ is used for
the transpose of a vector or a matrix. For a symmetric matrix M,
M > (≥, <,  ≤)0 means that it is positive definite (positive semi-
definite, negative definite, negative semi-definite, respectively).
The space-varying symmetric matrix function M(z), z ∈ [z-, z̄]  is pos-
itive definite (positive semi-definite, negative definite, negative
semi-definite, respectively), if M(z) > (≥, <,  ≤)0 for each z ∈ [z-, z̄].
The symbol * is used as an ellipsis in matrix expressions that are
induced by symmetry, e.g., [P(z)A(z) + ∗] ! P(z)A(z) + AT (z)P(z),
z ∈ [z-, z̄].

!n ! L2([z-, z̄]; Rn) is an infinite-dimensional Hilbert space
of n-dimensional square integrable vector functions !(z) ∈ Hn,
z ∈ [z-, z̄] ⊂ R  equipped with the inner product and norm ⟨ω1, ω2⟩ =R z̄

z-
⟨ω1(z), ω2(z)⟩Rn dz and ∥ω1∥2 = ⟨ω1, ω1⟩1/2, where ω1 and ω2

are any two elements of Hn.

2. Preliminaries and problem description

We consider the following linear first-order hyperbolic PDE sys-
tems in one spatial dimension with a state-space description of the
form:

∂y(z, t)
∂t

= A1
∂y(z, t)

∂z
+ A2(z)y(z, t) + B(z)u(z, t) (1)

subject to the boundary condition

y(z-, t) = 0 (2)

and the initial condition

y(z, 0) = y0(z) (3)

where z ∈ [z-, z̄]  ⊂ R  and t ∈ [0,  ∞)  denote spatial position
and time, respectively, y(z, t) = [ y1(z, t) · · · yn(z, t) ]T ∈ Rn

is the state, y0(z) ∈ Rn is the initial state, and u(z, t) =
[ u1(z, t) · · · um(z, t) ]T ∈ Rm is the manipulated control input.
A1 is a real known diagonal n × n matrix, A2(z) and B(z) are real
continuous space-varying matrix functions of appropriate dimen-
sions. The PDE system (1)–(3) is referred to as an unforced PDE
system when u(z,t) ≡ 0, and the corresponding system dynamics,
i.e., A1(∂y(z, t)/∂z) + A2(z)y(z, t), is referred to as internal system
dynamics that is unknown in this paper.

Notice that the matrix A1 in (1) is assumed to be diagonal. This
is representative to some extent and is widely used in the literature
[13,14,40,41].  Typical examples satisfying this assumption include
plug flow reactors, fixed-bed reactors, and steam-jacketed tubular
heat exchangers where the elements of A1 are the fluid velocities
[1,42,43].

Remark 1. Due to the high-complexity of real industrial pro-
cesses, the accurate modeling and identification of which is
impossible or costly to conduct, and the most prominent feature
is the presence of vast volume of data accompanied by the lack of
an effective process physical model that can support control. Thus,
the statement that the internal system dynamics is unknown or
not completely known is true for the vast majority of processes of
practical interest. The development of control approaches for such
a case is significant, but also challenging.

We consider the following linear distributed state feedback con-
trol law:

u(z, t) = K(z)y(z, t) (4)
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where K(z) is the control gain to be determined, which is a real con-
tinuous space-varying m × n matrix function defined on the interval
[z-, z̄].

The substitution of the control law (4) into (1) results in the
following closed-loop PDE system:

∂y(z, t)
∂t

= A1
∂y(z, t)

∂z
+ Ā2(z)y(z, t) (5)

where

Ā2(z) ! A2(z) + B(z)K(z). (6)

For convenience, we denote y(·, t) ! y(z, t), z ∈ [z-, z̄], and
u(·, t) ! u(z, t), z ∈ [z-, z̄] and denote M(·) ! M(z), z ∈ [z-, z̄]  and
Ṁ(·) ! dM(z)/dz, z ∈ [z-, z̄] for some space-varying matrix function
M(z), z ∈ [z-, z̄]. Define the following infinite-horizon LQ cost func-
tional:

Vu(y(·, t)) !
Z +∞

t

(⟨y(·, "), Q (·)y(·, ")⟩ + ⟨u(·, "), R(·)u(·, ")⟩) d" (7)

where Q(z)>0 and R(z)>0.
The optimal control problem of PDE system (1)–(3) here is to

find a control law of the form (4) such that the LQ cost functional
Vu(y0(·)) is minimized, i.e.,

u(z, t) = u∗(z, t) ! argmin
u

Vu (y0(·)) (8)

We now give the following preliminary definition and result.

Definition 1. The unforced PDE system (1)–(3) is said to be expo-
nentially stable,  if there exist real constants #, $ > 0 such that the
following expression holds:

��y(·, t)
��2

2
≤ $e−#t

��y0(·)
��2

2
, ∀ t ≥ 0.

Lemma  1. [14]. Consider the system (1)–(3) with the state feedback
control law (4) and cost functional Vu(y0(·)). Suppose that A1 < 0. Let
P∗(z) > 0 be a diagonal real continuous space-varying n × n matrix
function defined on interval [z-, z̄), and P∗(z̄) = 0. If P∗(z) satisfies the
SDRDE

A1
dP∗(z)

dz
= [P∗(z)A2(z) + ∗] + Q (z) − P∗(z)B(z)R−1(z)BT (z)P∗(z),

P∗(z̄) = 0, z ∈ [z-, z̄] (9)

then P∗(z) is the unique solution of the SDRDE (9) and the solution
of the optimal control problem (8) is

u∗(z, t) = −R−1(z)BT (z)P∗(z)y(z, t) (10)

and the minimum cost is

Vu∗ (y0(·)) = ⟨y0(·), P∗(·)y0(·)⟩. (11)

Remark 2. It is mentioned in [14] that the solution P*(z) of SDRDE
(9) is diagonal. The existence of such a P*(z) can provide an opti-
mal  control law (10) for the PDE system (1)–(3).  The reason for the
need of a diagonal matrix function P*(z) results from the condi-
tion P∗(z)A1 = AT

1P
∗(z) required for the derivation of the SDRDE (9)

[14]. This may  lead to conservatism of the control design. However,
for the weakly hyperbolic PDE system (i.e., A1 = a1I, where a1 is a
constant) [43], the restriction of P*(z) can be removed.

It is observed from Lemma  1 that the distributed optimal con-
trol problem of the PDE system (1)–(3) hinges on the solution of the
SDRDE (9).  A direct solution approach was presented in [14], but it
is a model-based method which relies on the full knowledge of the
PDE system model. Thus, it can not be used for the case that internal
dynamics of the PDE system is unknown. Furthermore, the model-
based methods encounter limits on the achievable performance,

induced by conservatism introduced in the process modeling step.
To overcome this limitation and improve the performance beyond
model-based control design, we try to develop an adaptive dis-
tributed optimal control approach when the PDE system model is
not completely known.

3. Adaptive distributed optimal control design

In this section, we propose a PI algorithm for the adaptive opti-
mal  control design without requiring the knowledge of internal
dynamics of the PDE system (1)–(3).  The PI algorithm can learn the
solution of the SDRDE by measuring system states online. Learn-
ing control policy from online measured data is striking because
it requires no prior knowledge of a process model (i.e., the inter-
nal system dynamics), moreover, the estimations and assumptions
introduced in the process modeling step are omitted.

We first give procedure of the PI algorithm as follows:

Algorithm 1. Step 1: Give an initial diagonal matrix func-
tion P(0)(z) > 0, z ∈ [z-, z̄), P(0)(z̄) = 0, such that u(0)(z, t) =
−R−1(z)BT (z)P(0)(z)y(z, t) is an exponentially stabilizing control
law. Let i = 0.

Step 2: Solve the following equation for P(i+1)(z)

⟨y(·, t), P(i+1)(·)y(·, t)⟩ = ⟨y(·, t + %t), P(i+1)(·)y(·, t + %t)⟩

+
Z t+%t

t

&(i)(") d" (12)

where &(i)(") ! ⟨y(·, "), Q (·)y(·, ")⟩ + ⟨u(i)(·, "), R(·)u(i)(·, ")⟩,
P(i+1)(z) > 0 is a diagonal real continuous space-varying n × n
matrix function defined on interval [z-, z̄), and P(i+1)(z̄) = 0.

Step 3: Update u(i+1)(z, t) by

u(i+1)(z, t) = K (i+1)(z)y(z, t) (13)

with

K (i+1)(z) = −R−1(z)BT (z)P(i+1)(z). (14)

Step 4: Set i = i + 1. If $̄
⇣R z̄

z-
(P(i)(z) − P(i−1)(z)) dz

⌘
≤ ' (' is a

small positive real number, and $̄(·) denotes the maximum singular
value of a matrix), stop iteration, else, go to Step 2 and continue.

Remark 3. The PI algorithm involves two basic operations, pol-
icy evaluation (Step 2) and policy improvement (Step 3). Policy
evaluation is used for computing the cost for a control policy, and
policy improvement is used for finding a better control policy with
the corresponding cost. The two operations perform alternately
to approach the optimal control policy and minimum (optimal)
cost. Notice that it does not require the knowledge of the internal
dynamics of the PDE system (1)–(3),  whose information is embed-
ded in the online measurement of the system states y(z, t) and
y(z, t + %t), and evaluation of the cost

R t+%t

t
&(i)(") d".  That is to

say, the lack of knowledge about the internal system dynamics does
not have any impact on the PI algorithm to learn the solution of the
SDRDE. Thus, the resulting adaptive optimal control policy will not
be affected by any errors between the dynamics of a model of the
system and the dynamics of the real process.

Remark 4. It is noted that the information of B(z) of PDE  system
(1)–(3) is needed in the PI algorithm. This is reasonable for real
industrial processes, because the spatial positions for distributing
actuators are usually given beforehand.

Next, we establish the convergence of the PI algorithm. Let us
first consider a diagonal real continuous space-varying n × n matrix
function P(z) > 0 defined on interval [z-, z̄),  and P(z̄) = 0. Differ-
entiating ⟨y(·, t), P(·)y(·, t)⟩ with respect to time t along the state
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trajectories of the closed-loop system (5),  we get

d
dt

⟨y(·, t), P(·)y(·, t)⟩ =
⌧

∂y(·, t)
∂t

,  P(·)y(·, t)

�

+
⌧
y(·, t), P(·) ∂y(·, t)

∂t

�
=
Z z̄

z-

✓
A1

∂y(z, t)
∂z

+ Ā2(z)y(z, t)

◆T

× P(z)y(z, t) dz +
Z z̄

z-

yT (z, t)P(z)

✓
A1

∂y(z, t)
∂z

+ Ā2(z)y(z, t)

◆
dz

=
Z z̄

z-

✓
∂y(z, t)

∂z

◆T

AT
1P(z)y(z, t) dz +

Z z̄

z-

yT (z, t)P(z)A1
∂y(z, t)

∂z
dz

+ ⟨Ā2(·)y(·, t), P(·)y(·, t)⟩ + ⟨y(·, t), P(·)Ā2(·)y(·, t)⟩ (15)

Applying integration by parts, we find that
Z z̄

z-

yT (z, t)P(z)A1
∂y(z, t)

∂t
dz = yT (z, t)P(z)A1y(z, t)

��z=z̄

z=z-

−
Z z̄

z-

∂yT (z, t)
∂z

P(z)A1y(z, t)dz −
Z z̄

z-

yT (z, t)
dP(z)

dz
A1y(z, t)dz.

(16)

Considering the boundary condition (2) and P(z̄) = 0, we  have

yT (z, t)P(z)A1y(z, t)
��z=z̄

z=z-
= 0. (17)

Since both P(z) and A1 are diagonal matrices, the equality
P(z)A1 = AT

1P(z) holds clearly. Then, it follows from (15) to (17)
that

d
dt

⟨y(·, t), P(·)y(·, t)⟩ = −
Z z̄

z-

yT (z, t)A1
dP(z)

dz
y(z, t)dz

+ ⟨Ā2(·)y(·, t), P(·)y(·, t)⟩ + ⟨y(·, t), P(·)Ā2(·)y(·, t)⟩

= −⟨y(·, t), A1Ṗ(·)y(·, t)⟩ + ⟨y(·, t), Ā
T
2(·)P(·)y(·, t)⟩

+ ⟨y(·, t), P(·)Ā2(·)y(·, t)⟩ = ⟨y(·, t), (−A1Ṗ(·) + [P(·)Ā2(·)

+ ∗])y(·, t)⟩. (18)

Therefore, we have the following result:

Theorem 1. Let P(i+1)(z) > 0 be a diagonal real continuous space-
varying n × n matrix function defined on interval [z-, z̄), and P(i+1)(z̄) =
0, i = 0, 1, 2, . . ..  Then, P(i+1)(z) is a solution of Eq. (12) together with
(13), if and only if P(i+1)(z) is a solution of the SDLDE

A1
dP(i+1)(z)

dz
= [P(i+1)(z)Ā

(i)
2 (z) + ∗] + Q (z) + (K (i)(z))

T
R(z)K (i)(z)

(19)

where

Ā
(i)
2 (z) = A2(z) + B(z)K (i)(z) (20)

and K (i)(z) is obtained by (14).

Proof. Applying the control law u(i)(z, t) = K (i)(z)y(z, t), i =
0, 1, 2, . . . to the PDE system (1)–(3),  the state of the closed-loop
PDE system satisfies

∂y(z, t)
∂t

= A1
∂y(z, t)

∂z
+ A2(z)y(z, t) + B(z)u(i)(z, t)

= A1
∂y(z, t)

∂z
+ Ā(i)

2 (z)y(z, t). (21)

From (18) and (21), we have

d
dt

⟨y(·, t), P(i+1)(·)y(·, t)⟩ = ⟨y(·, t), (−A1Ṗ
(i+1)

(·)

+ [P(i+1)(·)Ā(i)
2 (·) + ∗])y(·, t)⟩.

Integrating the above equation from t to t + %t yields

⟨y(·, t + %t), P(i+1)(·)y(·, t + %t)⟩ − ⟨y(·, t), P(i+1)(·)y(·, t)⟩

=
Z t+%t

t

⟨y(·, "), (−A1Ṗ
(i+1)

(·) + [P(i+1)(·)Ā(i)
2 (·) + ∗])y(·, ")⟩ d".

(22)

On the one hand, if P(i+1)(z) is a solution of Eq. (19), we have

−A1
dP(i+1)(z)

dz
+ [P(i+1)(z)Ā

(i)
2 (z) + ∗]

= −(Q (z) + (K (i)(z))
T
R(z)K (i)(z)). (23)

The substitution of (23) into (22) and considering (13) yield

⟨y(·, t + %t), P(i+1)(·)y(·, t + %t)⟩ − ⟨y(·, t), P(i+1)(·)y(·, t)⟩

= −
Z t+%t

t

⟨y(·, "), (Q (·) + (K (i)(·))
T
R(·)K (i)(·))y(·, ")⟩ d"

= −
Z t+%t

t

&(i)(") d".

This implies that P(i+1)(z) is also a solution of Eq. (12).
On the other hand, we  prove that P(i+1)(z) is the unique solution

of (12) by contradiction. According to (12), we  have

d
dt

⟨y(·, t), P(i+1)(·)y(·, t)⟩= lim
%t→0

1
%t

(⟨y(·, t+%t), P(i+1)(·)y(·, t + %t)⟩

−⟨y(·, t), P(i+1)(·)y(·, t)⟩) = − lim
%t→0

1
%t

Z t+%t

t

&(i)(") d"

= − lim
%t→0

1
%t

 Z t+%t

0
&(i)(") d" −

Z t

0
&(i)(") d"

!

= − d
dt

Z t

0
&(i)(") d" = −&(i)(t) (24)

Assume that P̃
(i+1)

(z) is another solution of (12). Then similar to
(24), we  have

d
dt

⟨y(·, t), P̃
(i+1)

(·)y(·, t)⟩ = −&(i)(t). (25)

Subtracting (25) from (24), we get (d/dt)⟨y(·, t), (P(i+1)(·) −
P̃

(i+1)
(·))y(·, t)⟩ = 0 for ∀y(·, t). Then, ⟨y(·, t), (P(i+1)(·) −

P̃
(i+1)

(·))y(·, t)⟩ = c, where c is a real constant, c = 0 when
y(·, t) = 0. Thus, ⟨y(·, t), (P(i+1)(·) − P̃(i+1)

(·))y(·, t)⟩ = 0, for ∀y(·, t).
This means that P̃

(i+1)
(z) = P(i+1)(z) for each z ∈ [z-, z̄].  The proof is

completed. "

Remark 5. Theorem 1 indicates that, given an initial exponentially
stabilizing control policy u(0)(z, t) = K (0)(z)y(z, t), the iteration (12)
together with (13) is equivalent to the iteration (19) together with
(14). Therefore, the convergence of PI algorithm can be established
by proving that the iteration (19) together with (14) is convergent.
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Namely, we prove that the solution of SDLDE (19) converges to the
solution of SDRDE (9) when i goes to infinity.

Lemma  2. Let u(0)(z, t) = K (0)(z)y(z, t) be an exponentially sta-
bilizing control law. If (13) together with (12) is used to update
control policy, then, the new control policies are also exponen-
tially stabilizing, i.e., the closed-loop PDE system (5) with u(i)(z, t) =
K (i)(z)y(z, t), i = 1, 2, . . .,  is exponentially stable.

Proof. With the control law u(i)(z, t) = K (i)(z)y(z, t), i = 1, 2, . . .,
the state of the closed-loop PDE system is the solution of Eq. (21).
We take

W(y(·, t)) = ⟨y(·, t), P(i)(·)y(·, t)⟩

as a Lyapunov function candidate. According to (18), differentiating
W(y(·, t)) with respect to time t along the solution of (21) yields

dW(y(·, t))
dt

= d
dt

⟨y(·, t), P(i)(·)y(·, t)⟩ = ⟨y(·, t), (−A1Ṗ
(i)

(·)

+[P(i)(·)Ā(i)
2 (·) + ∗])y(·, t)⟩ (26)

From (20), we have

Ā
(i)
2 (z) = A2(z) + B(z)K (i)(z) = A2(z) + B(z)K (i−1)(z) + B(z)(K (i)(z)

−K (i−1)(z)) = Ā(i−1)
2 (z) + B(z)(K (i)(z) − K (i−1)(z))

then,

−A1
dP(i)(z)

dz
+ [P(i)(z)Ā

(i)
2 (z) + ∗] = −A1

dP(i)(z)
dz

+[P(i)(z)Ā
(i−1)
2 (z) + ∗] +

⇥
P(i)(z)B(z)(K (i)(z) − K (i−1)(z)) + ∗

⇤

= −A1
dP(i)(z)

dz
+ [P(i)(z)Ā

(i−1)
2 (z) + ∗] − (K (i−1)(z) − K (i)(z))

T
R(z)

×(K (i−1)(z) − K (i)(z)) − (K (i)(z))
T
R(z)K (i)(z)

+ (K (i−1)(z))
T
R(z)K (i−1)(z). (27)

Theorem 1 shows that the Eq. (12) together with (13) is equiv-
alent to Eq. (19) together with (14). Then, it follows from (19) and
(27) that

−A1
dP(i)(z)

dz
+
h
P(i)(z)Ā

(i)
2 (z) + ∗

i
= −
�
K (i−1)(z) − K (i)(z)

�T
R(z)

�
K (i−1)(z) − K (i)(z)

�
− Q (z) −

�
K (i)(z)

�T
R(z)K (i)(z). (28)

From (26) and (28), we have

dW(y(·, t))
dt

= −
D
y(·, t),

�
K (i−1)(·) − K (i)(·)

�T
R(·)
�
K (i−1)(·) − K (i)(·)

�
y(·, t)

E

−
D
y(·, t),

⇣
Q (·) +

�
K (i)(·)

�T
R(·)K (i)(·)

⌘
y(·, t)

E
,

thus,

dW(y(·, t))
dt

+
⌦
y(·, t), Q (·)y(·, t)

↵
< 0 for ∀y(·, t) /= 0 (29)

Considering Q (z) > 0 and P(i)(z) ≥ 0, z ∈ [z-, z̄], hence, there exist
real constants ˛,  ̌ > 0 such that

W(y(·, t)) ≤ ˛
⌦
y(·, t), y(·, t)

↵
(30)

⌦
y(·, t), Q (·)y(·, t)

↵
≥ ˇ
⌦
y(·, t), y(·, t)

↵
(31)

where  ̨ ! max
j ∈ {1,2,···,n}

⇢
max

z ∈ [z-,z̄]
{(j(P

(i)(z))}
�

and

 ̌ ! min
j ∈ {1,2,···,n}

⇢
min

z ∈ [z-,z̄]
{(j(Q (z))}

�
, (j( · ) represents the jth

eigenvalue of a matrix. It follows from (30) and (31) that
⌦
y(·, t), Q (·)y(·, t)

↵
≥ ˇ
⌦
y(·, t), y(·, t)

↵
≥ ˛−1ˇW(y(·, t)). (32)

From (29) and (32), we  can get

dW(y(·, t))
dt

+  ˛−1ˇW(y(·, t)) < 0 for ∀y(·, t) /= 0. (33)

Thus, by using Lemma  1 in [21], we can conclude that the closed-
loop PDE system (5) is exponentially stable."

Remark 6. Lemma  3 reveals that, given an initial exponentially
stabilizing control law, all control policies (in the PI algorithm)
obtained using iteration (12) and (13) are exponentially stabilizing.

Theorem 2. Let P∗(z) be the solution of the SDRDE (9),  P(0)(z) >
0 be a diagonal real continuous space-varying n × n matrix func-
tion defined on interval [z-, z̄)  and P(0)(z̄) = 0, such that u(0)(z, t) =
−R−1(z)BT (z)P(0)(z)y(z, t) is an exponentially stabilizing control law.
If P(i+1)(z), i = 0, 1, 2, . . . are the solutions of SDLDE (19), then,

(1) P∗(z) ≤ P(i+1)(z) ≤ P(i)(z), i = 1, 2, · · ·,  for ∀z ∈ [z-, z̄];
(2) P(i)(z) converges uniformly to P∗(z) when i → ∞.

Proof. (1) For i = 1, 2, . . .,  it follows from (20) that

Ā
(i−1)
2 (z) = A2(z) + B(z)K (i−1)(z) = A2(z) + B(z)K (i)(z)

+B(z)(K (i−1)(z) − K (i)(z)) = Ā(i)
2 (z) + B(z)(K (i−1)(z) − K (i)(z)).

(34)

From (19), we have

A1
dP(i)(z)

dz
= [P(i)(z)Ā

(i−1)
2 (z) + ∗] + Q (z) + (K (i−1)(z))

T
R(z)K (i−1)(z).

(35)

Substituting (34) into (35) yields

A1
dP(i)(z)

dz
= [P(i)(z)(Ā

(i)
2 (z) + B(z)(K (i−1)(z) − K (i)(z))) + ∗] + Q (z)

+(K (i−1)(z))
T
R(z)K (i−1)(z) = [P(i)(z)Ā

(i)
2 (z) + ∗] + Q (z)

+(K (i−1)(z))
T
R(z)K (i−1)(z) + [P(i)(z)B(z)(K (i−1)(z) − K (i)(z)) + ∗].

(36)

Let %P(i)(z) ! P(i)(z) − P(i+1)(z), where P(i+1)(z) is the solution of
(19). Subtracting (19) from (36) yields

A1
d%P(i)(z)

dz
= [%P(i)(z)Ā

(i)
2 (z) + ∗] + (K (i−1)(z))

T
R(z)K (i−1)(z)

− (K (i)(z))
T
R(z)K (i)(z) + [P(i)(z)B(z)(K (i−1)(z) − K (i)(z)) + ∗]. (37)

Adding and subtracting the term

[(K (i)(z))
T
R(z)(K (i−1)(z) − K (i)(z)) + ∗] = (K (i−1)(z))

T
R(z)K (i)

+ (K (i)(z))
T
R(z)K (i−1)(z) − 2(K (i)(z))

T
R(z)K (i)(z)
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from the right side of (37) and rearranging terms yield

A1
d%P(i)(z)

dz
= [%P(i)(z)Ā

(i)
2 (z) + ∗]

+[P(i)(z)B(z)(K (i−1)(z) − K (i)(z)) + ∗] + (K (i−1)(z))
T
R(z)K (i−1)(z)

−(K (i)(z))
T
R(z)K (i)(z) + [(K (i)(z))

T
R(z)(K (i−1)(z) − K (i)(z)) + ∗]

−(K (i−1)(z))
T
R(z)K (i) − (K (i)(z))

T
R(z)K (i−1)(z)

+2(K (i)(z))
T
R(z)K (i)(z) = [%P(i)(z)Ā

(i)
2 (z) + ∗]

+(K (i−1) − K (i))
T
R(z)(K (i−1) − K (i))

+[(R−1(z)BT (z)P(i)(z) + K (i)(z))
T
R(z)(K (i−1)(z) − K (i)(z)) + ∗]

(38)

Using (14), we obtain

A1
d%P(i)(z)

dz
= [%P(i)(z)Ā

(i)
2 (z)

+ ∗] + (K (i−1) − K (i))
T
R(z)(K (i−1) − K (i)),

i.e.,

−A1
d%P(i)(z)

dz
+  [%P(i)(z)Ā

(i)
2 (z) + ∗]

= −(K (i−1) − K (i))
T
R(z)(K (i−1) − K (i)). (39)

With the control law u(i)(z, t) = K (i)(z)y(z, t) and using (18), we
can obtain that the state of the resulting closed-loop PDE system
satisfies

d
dt

⟨y(·, t), %P(i)(·)y(·, t)⟩ = ⟨y(·, t), (−A1%Ṗ
(i)

(·)

+[%P(i)(·)Ā(i)
2 (·) + ∗])y(·, t)⟩. (40)

From (39) and (40), we have

d
dt

⟨y(·, t), %P(i)(·)y(·, t)⟩

= −⟨y(·, t), (K (i−1) − K (i))
T
R(·)(K (i−1) − K (i))y(·, t)⟩ ≤ 0

which means that ⟨y(·, t), %P(i)(·)y(·, t)⟩ is a non-increasing func-
tion with respect to time t. Since u(i)(z, t) = K (i)(z)y(z, t) is an
exponentially stabilizing control policy according to Lemma  2,
then we have lim

t→∞
⟨y(·, t), %P(i)(·)y(·, t)⟩ = 0. It further implies that

⟨y(·, t), %P(i)(·)y(·, t)⟩ ≥ 0, t ≥ 0 for ∀y(·, t). Thus, we  get %P(i)(z) ≥
0 for ∀z ∈ [z-, z̄], i.e., P(i+1)(z) ≤ P(i)(z), i = 1, 2, . . .,  ∀z ∈ [z-, z̄].

Now, we prove P(i)(z) ≥ P∗(z), ∀z ∈ [z-, z̄], i = 1, 2, . . ..  With
arbitrary state y(·, t) and control law u(i)(z, t) = K (i)(z)y(z, t), i =
0, 1, 2, . . .,  the cost functional (7) can be written as

Vu(i) (y(·, t)) =
Z +∞

t

&(i)(") d"

=
Z +∞

t

⟨y(·, "), (Q (·) + (K (i)(·))
T
R(·)K (i)(·))y(·, ")⟩ d". (41)

According to (18), (19) and (41), we have

Vu(i) (y(·, t)) = −
Z +∞

t

⟨y(·, "), (−A1Ṗ
(i+1)

(·)

+[P(i+1)(·)Ā(i)
2 (·) + ∗])y(·, ")⟩ d"

= −
Z +∞

t

d
d"

⟨y(·, "), P(i+1)(·)y(·, ")⟩ d"

= −⟨y(·, "), P(i+1)(·)y(·, ")⟩
��"=∞
"=t

.

Because u(i)(z, t) = K (i)(z)y(z, t) is an exponentially stabilizing
control policy, we obtain

Vu(i) (y(·, t)) = ⟨y(·, t), P(i+1)(·)y(·, t)⟩. (42)

Since P∗(z) is the solution of the SDRDE (8), the associated cost
Vu∗ (y(·, t)) = ⟨y(·, t), P∗(·)y(·, t)⟩ is the minimum. Thus, we have
Vu(i) (y(·, t)) ≥ Vu∗ (y(·, t)) for ∀y(·, t), which means that P(i)(z) ≥
P∗(z), ∀z ∈ [z-, z̄], i = 1, 2, . . . This completes the proof of the first
part of Theorem 2.

(2) To show that the sequence P(i)(z) has a limit as i →
∞, we choose an arbitrary e ∈E (E ⊂ !n is a set of orthogo-
nal basis). Then, from the first part of Theorem 2, ⟨e, P(i)(z)e⟩
is non-increasing as i → ∞ and is uniformly bounded below
by ⟨e, P∗(z)e⟩. Hence, lim

i→∞
⟨e, P(i)(z)e⟩ exists for all e ∈ E, since

a bounded monotone sequence always has a limit, denoted as
lim
i→∞

⟨e, P(i)(z)e⟩ ! ⟨e, P(∞)(z)e⟩. This means that the limit of P(i)(z)

exists for ∀z ∈ [z-, z̄], and lim
i→∞

P(i)(z) = P(∞)(z).

Now, we will show that P(∞)(z) satisfies the SDRDE (9), i.e.,
P(∞)(z) = P∗(z). It follows from (14) and (19) that P(i+1)(z) satisfies
the equation

A1
∂P(i+1)(z)

∂z
= [P(i+1)(z)Ā

(i)
2 (z) + ∗] + Q (z)

+ P(i)(z)B(z)R(z)BT (z)P(i)(z). (43)

Integrating both sides of Eq. (43) from z to z̄ and considering
P(i+1)(z̄) = 0, we get

A1P
(i+1)(z) = −

Z z̄

z

{[P(i+1)(ς)Ā
(i)
2 (ς) + ∗]

+ Q (ς) + P(i)(ς)B(ς)R(ς)BT (ς)P(i)(ς)} dς.

Taking the limit of both sides of the above expression and using
the bounded convergence theorem [44], yield

A1P
(∞)(z) = −

Z z̄

z

{[P(∞)(ς)Ā
(∞)
2 (ς) + ∗]

+ Q (ς) + P(∞)(ς)B(ς)R(ς)BT (ς)P(∞)(ς)} dς.

This implies that P(∞)(z) is continuous, then, differentiating
yields

A1
∂P(∞)(z)

∂z
= [P(∞)(z)Ā

(∞)
2 (z) + ∗]

+ Q (z) + P(∞)(z)B(z)R(z)BT (z)P(∞)(z).

This means that P(∞)(z) is a solution of the SDRDE (9). By unique-
ness of the solution, P(∞)(z) = P∗(z). The proof is complete. "

Remark 7. Observe that the SDLDE plays a critical role for con-
vergence analysis of the PI algorithm in this paper. (1) Theorem 1
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shows that the PI algorithm is theoretically equivalent to an itera-
tive procedure of a sequence of SDLDEs. (2) The solution of SDLDE
gives a compact representation (42) of the cost of an arbitrary expo-
nentially stabilizing control policy. (3) Theorem 2 implies that the
solution of SDLDE allows us to improve the cost of the original
control. By using the PI algorithm to iteratively solve a sequence
of SDLDEs online, we can obtain the approximate solution of the
SDRDE without the knowledge of the internal system dynamics. In
fact, the SDLDE can be viewed as a generalization of the SDRDE for
an arbitrary exponentially stabilizing control policy. The SDLDE is
a linear differential equation, while the SDRDE is nonlinear. Thus,
The SDLDE is theoretically easier to solve than the SDRDE.

Remark 8. It is worth mentioning that the proposed PI algorithm
(i.e. Algorithm 1) may  not be directly applied to linear parabolic
PDE systems. The reason is that the optimal control problem of lin-
ear parabolic PDE systems requires solving another SDRDE which
is completely different than (9). Thus, a new PI algorithm for linear
parabolic PDE systems is needed, which is left for future investi-
gation. Moreover, we notice that the proposed PI algorithm can
be used for nonlinear hyperbolic PDE systems in the vicinity of the
operating point. However, it cannot predict the “nonlocal” behavior
far from the operating point and certainly not the “global” behav-
ior throughout the state space. To overcome this difficulty, a new
PI algorithm should be developed for nonlinear hyperbolic PDE
systems. We  also leave this issue for future study.

4. Implementation of adaptive distributed optimal control

Notice that in each iterative step of the PI algorithm, we need to
solve Eq. (12). To this end, we derive a least-square approximation
method on a set D  ⊂ Hn such that y(·, t) ∈ D, to estimate the solution
of Eq. (12). Denoting P(i)(z) = diag{p(i)

1 (z), . . . , p(i)
n (z)}, i = 1, 2, . . .,

then (12) can be rewritten as

nX

j=1

Z z̄

z-

p(i+1)
j (z)(y2

j (z, t) − y2
j (z, t + %t)) dz

=
Z t+%t

t

&(i)(") d", i = 0, 1, 2, . . . (44)

Let  j(z) = [ ϕ1,j(z) · · · ϕNj,j
(z) ]

T
, j = 1, 2, . . . , n be basis

function vectors for approximating p(i)
j (z), where Nj is the number

of basis functions in  j(z). Then, p(i)
j (z) is approximated by

p̂(i)
j (z) = (w(i)

j )
T
 j(z) =  T

j (z)w(i)
j , (45)

where w(i)
j = [ w(i)

j,1 · · · w(i)
j,Nj

]
T

is the weight vector. Thus, the left
side of Eq. (44) can be written as

nX

j=1

Z z̄

z-

p̂(i+1)
j (z)(y2

j (z, t) − y2
j (z, t + %t)) dz

=
nX

j=1

Z z̄

z-

(w(i+1)
j )

T
 j(z)(y2

j (z, t) − y2
j (z, t + %t)) dz

=
nX

j=1

(w(i+1)
j )

T
Z z̄

z-

 j(z)(y2
j (z, t) − y2

j (z, t + %t)) dz

= (w(i+1))
T
"(t, t + %t)

where

w(i+1) =
h

(w(i+1)
1 )

T
· · · (w(i+1)

n )
T
iT

and

"(t, t + %t) =

2

6666664

Z z̄

z-

 1(z)(y2
1(z, t) − y2

1(z, t + %t)) dz

...
Z z̄

z-

 n(z)(y2
n(z, t) − y2

n(z, t + %t)) dz

3

7777775
.

Then, we  rewrite (44) as

(w(i+1))
T
"(t, t + %t) =

Z t+%t

t

&̂(i)(") d", i = 0, 1, 2, . . . (46)

where &̂(i)(") ! ⟨y(·, "), Q (·)y(·, ")⟩ + ⟨û(i)(·, "), R(·)û(i)(·, ")⟩.
Accordingly, the control law (13) can be approximately updated

by

û(i+1)(z, t) = −R−1(z)BT (z)P̂
(i+1)

(z)y(z, t) (47)

where P̂
(i+1)

(z) = diag{p̂(i+1)
1 (z), . . . , p̂(i+1)

n (z)}.

Remark 9. Observe that the iteration from (12) to (13) in the PI
algorithm is converted to the weight iteration from (46) to (47). The
evaluation of the right side of Eq. (46) requires the online measured
system states. After the weight vector w(i+1) is computed via (46),
the control policy is approximately updated by (47) accordingly.

To compute spatial integrals "(t, t + +t), ⟨y(·, "), Q (·)y(·, ")⟩ and
⟨û(i)(·, "), R(·)û(i)(·, ")⟩ in (46), we  discretize the spatial domain
[z-, z̄] into space instances {zk, z0 = z-, zNz = z̄, k = 0, 1, 2, . . . , Nz} of
the same distance d, where d ! zk+1 − zk = (z̄ − z-)/Nz . Then, the jth
component of "(t, t + %t)  can be evaluated with
Z z̄

z-

 j(z)(y2
j (z, t) − y2

j (z, t + %t)) dz

=
Nz−1X

k=0

 j(zk)(y2
j (zk, t) − y2

j (zk, t + %t)) d, j = 1, 2, . . . , n.

Similarly, ⟨y(·, "), Q (·)y(·, ")⟩ and ⟨û(i)(·, "), R(·)û(i)(·, ")⟩ can also
be evaluated.

Note that w(i+1) has N unknown elements, where N =
Pn

j=1Nj .

Thus, in order to solve for w(i+1), at least N equations are required.
Here, we  construct N̄(N̄ ≥ N) equations. In each time interval [t, t +
%t], we  collect N̄ sample state sets (each set contains Nz state data)
along state trajectories, and construct the least-square solution of
the weights as follows:

w(i+1) = (##T )
−1
#$(i) (48)

where

# = [ "(t, t + ıt) · · · "(t + (N̄ − 1)ıt, t + N̄ıt) ]

$(i) = [ !(i)
1 · · · !(i)

N̄
]
T

with ıt = %t/N̄ and ,(i)
k =

R t+kıt

t+(k−1)ıt
&̂(i)(") d",  k = 1, ..., N̄.

It is worth mentioning that the least-square method (48) should
satisfy the persistence of excitation (PE) condition, which can be
obtained by injecting probing noises into states.

Based on the above least-square method for estimating weights,
the specific implementation of the adaptive distributed optimal
control for the PDE system (1)–(3) can be represented as follows:
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Algorithm 2. Step 1: Select basis function vectors  j(z), j =
1, 2, . . . , n. Give an initial weight vector w(0) such that û(0)(z, t) =
−R−1(z)BT (z)P̂

(0)
(z)y(z, t) is an exponentially stabilizing control

law, where each element of P̂
(0)

(z) is computed via (45). Let i = 0.
Step 2: With control policy û(i), collect N̄ sample data sets along

state trajectories of the closed-loop PDE system, and evaluate the
associated matrices # and $(i) during time interval [i · %t,  (i + 1) ·
%t]. Compute w(i+1) via (48) at time instant t = (i + 1) · %t.

Step 3: Update the control policy with (47) at time instant t =
(i + 1)%t.

Step 4: Set i = i + 1. If
��w(i) − w(i−1)

�� ≤ ε (ε is a small positive real
number), stop iteration and the weights remains invariable, else, go
to Step 2 and continue.

Remark 10. Note that in [45], a computational efficient model
predictive control (MPC) approach was proposed to solve the opti-
mal  control problem of hyperbolic PDE systems, and good results
were achieved. However, there are two main differences between
the developed PI algorithm and the MPC  in [45]. Firstly, the MPC
needs appropriate analytical model [45–47] and computes open-
loop policies offline (as mentioned in [45]) which are then used for
real time control purpose, while the PI algorithm does not require
the internal system dynamics and computes optimal control policy
online by conducting closed-loop simulations. Secondly, the MPC
optimization problems require extra solvers (such as interior-point
method in [47]), while the proposed PI algorithm is a direct optimal
control method based on dynamic programming [26] in which the
optimization is merged into the online learning process. Moreover,
it has been shown in [47] via a comparative study for discrete-time
ODE systems that RL method may  certainly be competitive with
MPC  even in contexts where a good deterministic system model is
available.

5. Simulation studies

To illustrate the effectiveness of the developed adaptive dis-
tributed optimal control approach, we conduct simulation studies
on a steam-jacket tubular heat exchanger [1].  The dynamic model
of which has the form:

∂T
∂t

= −v
∂T
∂z

− hA
#Cp

(T − Tw) (49)

subject to the boundary condition

T(0, t) = Tf , t ∈ [0,  +∞)

and initial condition

T(z, 0) = T0(z), z ∈ [0,  L].

In the above model, T denotes the temperature in the tubular
heat exchanger, Tw, Tf and T0 denote steam-jacket temperature,
heat exchanger inlet constant temperature and initial temperature,
respectively. In addition, t, z and L denote the independent time and
space variables, and the length of the exchanger, respectively.

By taking change of variables as

y ! T − Tf , u ! Tw − Tf , y0 ! T0 − Tf and a(z) = hA
#Cp

, (50)

the equivalent representation of the model (49) is obtained as fol-
lows:

∂y
∂t

= −v
∂y
∂z

− a(z)y + a(z)u (51)

subject to the boundary condition

y(0, t) = 0, t ∈ [0,  +∞)

Fig. 1. The weights w1,w2 and w3 in each iteration.

and initial condition

y(z, 0) = y0(z), z ∈ [0,  L].

The control objective is to determine the adjustment in the
steam-jacket temperature Tw (through a steam inlet valve), such
that the exchanger temperature T approaches the desired temper-
ature profile Td(z). Here, we are interested in the constant profile
Td. Since Td(0) = Tf, then Td(z) = Tf for all z ∈ [0,L]. Thus, the desired
profile for system (51) is yd ! Td − Tf = 0. According to (9),  the dis-
tributed optimal control of system (51) is to solve the following
SDRDE for p*(z):

−v
∂p∗(z)

∂z
= −a(z)p∗(z) − p∗(z)a(z) + q(z)

−p∗(z)a(z)r−1(z)a(z)p∗(z), p∗(z) > 0, z ∈ [0,  L], p∗(L) = 0. (52)

Now, we apply the developed adaptive distributed optimal
control method (i.e., Algorithm 2) to online learn the solu-
tion of SDRDE (52). The system parameters are assumed to be:
v = 1, a(z) = 8 − 9 exp(−2z/L), L = 1 and Tf = 340 (then, Td = 340).
Let y0(z) = 0.5Tf sin(4.z/L)  (i.e., the initial temperature profile is
assumed to be T0(z) = Tf + 0.5Tf sin(4.z/L)). Choose Q(z) and R(z)
in cost functional (7) as Q(z)=q(z)=1 and R(z) = r(z) = 1, z ∈ [z-, z̄].
We  select 5 (i.e., N = N1 = 5) basis functions as ϕk(z) = sin(k.z/L),
k = 1, . . .,5 for approximating p*(z). Let wk be the weights and
set initial values as w(0)

k = 0, k = 1, . . .,5. In Algorithm 2, select
the value of stop criterion ε = 10−5, the sampling step size in
space d = 0.02 (i.e., Nz = 50) and in time ıt = 0.02(s). In each iter-
ative step, after collecting 10 (i.e., N̄ = 10) system state sets, the
least-square method (48) is used to update weights, that is, the
weights is updated every 0.2(s) (i.e., %t  = 0.2(s)). In order to sat-
isfy the PE condition, we reset the system state as initial state
after each update. Figs. 1 and 2 show the weights in each iter-
ative step, where we  observe that the weight vector converges
to
⇥

0.1247 0.0353 −0.0030 −0.0129 0.0300
⇤T

with accu-
racy ε at i = 11 iteration (i.e., at time instant t = 2.2(s)). That is,
the p̂(z) is convergent at time t = 2.2(s), then, the PI algorithm is
terminated and the p̂(z) remains invariable from this instant on.

Fig. 2. The weights w4 and w5 in each iteration.
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Fig. 3. The profile of p*(z).

Fig. 4. The evolution of exchanger’s temperature profile.

Fig. 5. The evolution of jacket’s temperature profile.

It can be seen from the figures that the PI algorithm converges
very fast. Fig. 3 gives the final profile of p̂(z) (denoted as p∗(z)).
Figs. 4 and 5 show the actual exchanger’s and jacket’s temperature
profile, respectively.

6. Conclusions

This paper has addressed the adaptive optimal control problem
of linear hyperbolic PDE systems from the DTR framework, where
the internal system dynamics is unknown. The thought of RL tech-
nique is introduced to solve this problem. An adaptive distributed
optimal control method based on PI and least-square function
approximation is developed. The PI algorithm was proposed to
learn the solution of SDRDE by measuring system state online.
The convergence of the algorithm is established by showing that

its equivalent sequence of SDLDEs is convergent. For implementa-
tion purpose, the PI algorithm is realized by using a least-square
method to approximate the solutions of the SDLDEs. Finally, by
implementing the developed control method on a steam-jacketed
tubular heat exchanger, the achieved simulation results illustrate
its effectiveness.
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