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Biao Luo and Huai-Ning Wu*,†

Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering,
Beihang University (Beijing University of Aeronautics and Astronautics), Beijing 100191, P. R. China

SUMMARY

The main bottleneck for the application of H1 control theory on practical nonlinear systems is the need
to solve the Hamilton–Jacobi–Isaacs (HJI) equation. The HJI equation is a nonlinear partial differential
equation (PDE) that has proven to be impossible to solve analytically, even the approximate solution is still
difficult to obtain. In this paper, we propose a simultaneous policy update algorithm (SPUA), in which the
nonlinear HJI equation is solved by iteratively solving a sequence of Lyapunov function equations that are
linear PDEs. By constructing a fixed point equation, the convergence of the SPUA is established rigorously
by proving that it is essentially a Newton’s iteration method for finding the fixed point. Subsequently, a
computationally efficient SPUA (CESPUA) based on Galerkin’s method, is developed to solve Lyapunov
function equations in each iterative step of SPUA. The CESPUA is simple for implementation because only
one iterative loop is included. Through the simulation studies on three examples, the results demonstrate that
the proposed CESPUA is valid and efficient. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An important paradigm in control theory is H1 control, which is used to synthesize controllers
achieving robust performance or stabilization. Over the past few decades, a large number of
theoretical results on H1 control have been reported [1–8]. Although the formulation of the
nonlinear theory of H1 control has been well developed, the main bottleneck for the practical
application of the theory is the need to solve the Hamilton–Jacobi–Isaacs (HJI) equation. The HJI
equation, similar with the Hamilton– Jacobi–Bellman (HJB) equation of nonlinear optimal control,
is a first-order nonlinear partial differential equation (PDE), which is difficult or impossible to solve,
and may not have global analytic solutions even in simple cases.

In recent years, some works [9–12] have been conducted for the solution of HJB equation in non-
linear optimal control. However, it is clear that HJI equations are generally more difficult to solve
than HJB equations, because the disturbance inputs are additionally reflected in HJI equations. The
HJI equation is intractable to solve directly, thus, many works have be directed toward approximat-
ing their solutions. In [8], it was proven that there exists a sequence of policy iterations on the control
input to pursue the smooth solution of the HJI equation, where the HJI equation was successively
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approximated with a sequence of HJB equations (more actually, they are HJB-like equations, see
Section 2.2). Then, the methods for solving HJB equation can be used for the solution of HJI equa-
tion. In [9], the HJB equation was successively approximated by a sequence of linear generalized
HJB (GHJB) equations, which were solved with Galerkin’s approximation in [10, 11]. On the basis
of these works [8–11], iteration in policy space was used to approximate the HJI equation in [13],
where each HJB equation in [8] was further successively approximated by a sequence of general-
ized HJI (GHJI) equations (that are essentially the same as GHJB equations, see Section 2.2) and
solved with Galerkin’s approximation. This obviously results in two iterative loops for the solution
of HJI equation, that is, the inner loop solves an HJB equation by iteratively solving a sequence of
GHJB equations, and the outer loop solves the HJI equation by iteratively solving a sequence of
HJB equations. In [12], a revised generalized policy iteration method was developed to solve the
HJB equation, in which the weights of both actor and critic networks tune at the same time. This
work [12] was extended to solve the HJI equation online in [14]. Similar to [13], a policy iteration
scheme was developed in [15] for the constrained input system, and a practical way to implement
this scheme was developed on the basis of neuro-dynamic programming in [16], where neural net-
works were used for value function approximation. However, this approach can only be applied to
the case that the saddle point exists, thus, a situation that the saddle point does not exist was con-
sidered in [17]. In [18], Feng and colleagues extended the method in [19] (for H1algebra Riccati
equation (ARE)) to solve the HJI equation, in which the approaches in [20] and [21] (as described
in [18]) were used to solve the associated HJB equations (or HJB-like equations).

Essentially, the works in [13–18] follow such a thought that the HJI equation is first succes-
sively approximated with a sequence of HJB equations, and then each HJB equation is solved by
the existing methods. This often brings two iterative loops, because the updates of control and dis-
turbance policies are asynchronous, that is, one player updates its policy while the other remains
invariant. Such a procedure may lead to redundant equation solutions (i.e., redundant iterations),
and thus waste of resources and result in low efficiency. In this paper, we propose a simultaneous
policy update algorithm (SPUA) for solving the HJI equation in nonlinear H1 state feedback con-
trol, where the control and disturbance policies update simultaneously. The SPUA avoids solving
the HJB equations, because the HJI equation is directly successively approximated by a sequence
of Lyapunov function equations (LFEs). This leads to only one iterative loop in the SPUA rather
than two. Hence, the SPUA is much simpler and easier to implement than the existing methods.
Because the SPUA is essentially different with the algorithm framework in [13–18], the proof of
its convergence is also different, which needs a new course of action. By constructing a fixed point
equation, the convergence of the SPUA is established by showing that it is a Newton’s method in
a Banach space. For implementation purposes, we employ Galerkin’s method to solve LFEs, and
further develop a computationally efficient SPUA (CESPUA). In Galerkin’s method, amounts of
integrals need to be computed, which are often time-consuming and will increase exponentially with
the increase of the number of basis functions and the dimension of system states. In the CESPUA,
all integrals are computed once for all. Furthermore, we use Monte Carlo integration together with
the Latin hypercube sampling (LHS) to evaluate all integrals, which further improves the efficiency
of the CESPUA.

The rest of this paper is organized as follows. In Section 2, we give the problem description and
briefly present the preliminary results. In Section 3, we propose the SPUA and discuss some related
issues, where a CESPUA is also developed. Simulation studies are conducted in Section 4. Finally,
a brief conclusion is derived in Section 5.

Notations: R, Rn, and Rn�m are the set of real numbers, the n-dimensional Euclidean space and
the set of all real n�m matrices, respectively. k � k denotes the vector norm or matrix norm in Rn or
Rn�m, respectively. For a symmetric matrixM ,M > .>/0means that it is a positive (semi-positive)
definite matrix. The superscript T is used for the transpose and I denotes the identity matrix of
appropriate dimension. L2Œ0,1/ is a Banach space, for 8w.t/ 2 L2Œ0,1/,

R1
0 kw.t/k

2 dt <1.

For a column vector function s.x/, x 2��Rn, ks.x/k� ,
�R
� s

T .x/s .x/dx
�1=2

.
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2. BACKGROUND

In this section, we present some background knowledge. First, we give the problem description of
continuous-time nonlinear H1 control. Second, we briefly review the method in [13] for solving
the HJI equation.

2.1. Problem description

Let us consider the following continuous-time nonlinear system with external disturbance:

Px.t/D f .x/C g.x/u.t/C k .x/w.t/ (1)

´.t/D h.x/ , (2)

where x 2 � � Rn is the state, u 2 Rm is the control input and u.t/ 2 L2Œ0,1/, w 2 Rq is
the external disturbance and w.t/ 2 L2Œ0,1/, and ´ 2 Rp is the objective output. f .x/, g.x/,
k .x/, and h.x/ are vector or matrix functions of appropriate dimension. We assume xe D 0 be an
equilibrium point.

The H1 control problem under consideration is to find a state feedback control law u.t/ D
u.x.t// such that the systems (1) and (2) are closed-loop asymptotically stable, and has L2-gain
less than or equal to � , that is,Z 1

0

�
k´.t/k2Cku.t/k2R

�
dt 6 �2

Z 1
0

kw.t/k2 dt (3)

for all w.t/ 2 L2Œ0,1/, where ku.t/k2R D u
TRu, R > 0 and � > 0 is some prescribed level of

disturbance attenuation.

Lemma 1 (see Theorem 16 and Corollary 17 in [8])
Assume the systems (1) and (2) are zero-state observable. Let � > 0. Suppose there exists a smooth
solution V �.x/> 0 to the HJI equation

G.V �/D
�
@V � .x/

@x

�T
f .x/C hT .x/h.x/�

1

4

�
@V � .x/

@x

�T
g.x/R�1gT .x/

@V � .x/

@x

C
1

4�2

�
@V � .x/

@x

�T
k.x/kT .x/

@V � .x/

@x
D 0. (4)

Then, the closed-loop system for the state feedback control

u.t/D u� .x .t//D�
1

2
R�1gT .x/

@V �.x/

@x
(5)

has L2-gain less than or equal to � , and the closed-loop systems (1), (2), and (5) (when w.t/ � 0/
is locally asymptotically stable.

2.2. Preliminary results

It is noted from Lemma 1 that the nonlinear H1 control problem hinges on the solution of the HJI
equation (4). In [13], the HJI equation was solved by using two iterative loops. Here, we briefly
review this approach in Algorithm 1 without deduction.

Algorithm 1.

Step 1: Give an initial control law u.0/ that can stabilize the system (1) (with wD 0/. Let i D 0.
Step 2: Let w.iC1,0/ D 0, and j D 0.
Step 3: Solve the following GHJI equation for V .iC1,jC1/:

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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@V .iC1,jC1/

@x

!T �
f C gu.i/C kw.iC1,j /

�
C hThC

�
u.i/

�T
Ru.i/

� �2
�
w.iC1,j /

�T
w.iC1,j / D 0. (6)

Step 4: Update the disturbance policy with

w.iC1,jC1/ D
1

2
��2kT

@V .iC1,jC1/

@x
. (7)

Step 5: Set j D j C 1. If
��V .iC1,j / � V .iC1,j�1/

��
�
6 "1 ("1 is a small positive real number), let

V .iC1,�/ D V .iC1,j / and go to step 6, else, go back to step 3.
Step 6: Update the control policy with

u.iC1/ D�
1

2
R�1gT

@V .iC1,�/

@x
. (8)

Step 7: Set i D i C 1. If
��u.i/ � u.i�1/��

�
6 " (" is a small positive real number), stop and output

V .i ,�/ as the solution of the HJI equation (4)
�
i.e.,V � D V .i ,�/

�
, else, go back to step 2

and continue.

Remark 1
It is observed that Algorithm 1 has two iterative loops. The inner iterative loop (i.e., from step 2 to
step 5) is to solve the following HJB-like equation for V .iC1,�/:

 
@V .iC1,�/

@x

!T �
f C gu.i/

�
C hThC

�
u.i/

�T
Ru.i/C

1

4�2

 
@V .iC1,�/

@x

!T
kkT

@V .iC1,�/

@x
D 0.

(9)
Then, the (9) is successively approximated with a sequence of GHJI equations (6), which are LFEs
(i.e., linear PDEs). The outer iterative loop (i.e., from step 1 to step 7) is to solve the HJI equation
by solving a sequence of HJB-like equations (9). In other words, the inner loop is for the update of
disturbance policy w, and the outer loop is for the update of control policy u.

Remark 2
If we exchange the roles of w and u in Algorithm 1, the (9) is an HJB equation for optimal control
(with w fixed) and the GHJI equations (6) is the GHJB equation. It is worth pointing out that the
HJB equation and HJB-like equation, and the GHJB equation and GHJI equation are not founda-
tionally different. For simplicity, throughout the whole paper, we denote the HJB-like equation and
GHJI equation as HJB equation and GHJB equation, respectively.

Remark 3
In [13], Galerkin’s method was used to solve the LFEs (6). Of course, any other method for the
solution of linear PDE can also be used for this purpose, such as, using approximate dynamic pro-
gramming with neural networks in [14, 16, 17]. That is to say, the methods in [13–17] follow the
same procedure as in Algorithm 1.

3. COMPUTATIONALLY EFFICIENT SPUA WITH GALERKIN’S METHOD

We notice that Algorithm 1 brings two iterative loops, that is to say, while one player’s policy is
updated the other remains invariant. Thus, an intuitive question is that ‘Can we update both control
policy and disturbance policy simultaneously?’ This section gives a positive answer. A SPUA is
proposed, where both policies update simultaneously.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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Figure 1. The main thoughts of the Algorithm 1 and the proposed SPUA.

We use Figure 1 to show the main differences between the Algorithm 1 and the proposed
SPUA intuitively. In [8], it was shown that the HJI equation can be successively approximated
by a sequence of HJB equations (9). In [9], the HJB equation was successively approximated by a
sequence of LFEs. Thus, Algorithm 1 is in fact a direct extension of the works in [8] and [9] for
solving the HJI equation. In [13], Galerkin’s approximation developed in [10] and [11] was used
to solve LFEs. Just as mentioned in Remark 3, the methods in [13–17] follow the same procedure
as in Algorithm 1, thus, their convergence is guaranteed by References [8, 9, 13]. However, in the
SPUA, we use a sequence of LFEs to directly approximate the HJI equation and develop an efficient
method for solving LFEs. Because only one iterative loop is included in the SPUA, a new course of
action is needed for the proof of its convergence.

3.1. Simultaneous policy update algorithm and its convergence

In this subsection, we propose the SPUA for the solution of HJI equation (4) and establish its con-
vergence. We first give the procedure of the SPUA.

Algorithm 2 (SPUA).

Step 1: Give an initial function V .0/ 2 V0 (V0 � V is determined by Lemma 5). Let u.0/ D
�1
2
R�1gT @V

.0/

@x
, w.0/ D 1

2
��2kT @V

.0/

@x
, and i D 0.

Step 2: Solve the following LFE for the cost function V .iC1/:

 
@V .iC1/

@x

!T �
f C gu.i/C kw.i/

�
ChThC

�
u.i/

�T
Ru.i/��2

�
w.i/

�T
w.i/ D 0 (10)

Step 3: Update the control and disturbance policies with

u.iC1/ D�
1

2
R�1gT

@V .iC1/

@x
(11)

w.iC1/ D
1

2
��2kT

@V .iC1/

@x
(12)

Step 4: Set i D i C 1. If
��V .i/ � V .i�1/��

�
6 " (" is a small positive real number), stop and out-

put V .i/ as the solution of the HJI equation (4)
�
i.e.,V � D V .i/

�
, else, go back to step 2

and continue.

Remark 4
Compared with Algorithm 1, the proposed SPUA reduces two iterative loops to one and updates
the control and disturbance policies simultaneously, which avoids solving the HJB equation (9) by
using a sequence of LFEs (10) to directly successively approximate the HJI equation (4).

Next, we will establish the convergence of SPUA. Namely, we want to show that the solution of
LFEs (10) converges to the solution of HJI equation (4) when i goes to infinity.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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To this end, let us consider such a Banach space V � ¹V.x/ W�!Rº equipped with a norm
k � k�, and consider the mapping G W V ! V defined in (4). Define a mapping T W V ! V
as follows:

T V D V � .G0.V //�1G.V /, (13)

where G0.V / is the Fréchet derivative of G.�/ at point V . It should be noticed that both G0.V / and
.G0.V //�1 are operators on Banach space V .

The Fréchet derivative is often difficult to compute directly, thus we introduce the Gâteaux
derivative.

Definition 1 (Gâteaux derivative [22])
Let G W U.V / � X ! Y be a given map, with X and Y Banach spaces. Here, U.V / denotes
a neighborhood of V . The map G is Gâteaux differentiable at V if there exists a bounded linear
operator L WX! Y such that

G.V C sW /� G .V /D sL.W /C o.s/, s! 0, (14)

for all W with kW k� D 1 and all real numbers s in some neighborhood of zero, where
lim
s!0

.o.s/=s/ D 0. L is called the Gâteaux derivative of G at V . The Gâteaux differential at V

is defined byL.W /.
From (14), the Gâteaux differential at V can be defined equivalently through the following

expression [22]:

L.W /D lim
s!0

G .V C sW /� G.V /
s

. (15)

The formula (15) gives a method to compute the Gâteaux derivative, rather than Fréchet derivative
required in (13). Thus, we introduce the following Lemma to give the relationship between them.

Lemma 2 ([22])
If G0 exists as Gâteaux derivative in some neighborhood of V , and if G0 is continuous at V , then
LD G0.V / is also a Fréchet derivative at V .

Now, it follows from Lemma 2 that we can compute the Fréchet derivative G0.V / in (13) via (15).
We have the following result.

Lemma 3
Let G W V ! V be a mapping defined as (4), then, for 8V 2 V , the Fréchet differential of G at V is

G0.V /W D L.W /D@W
T

@x
f �

1

4

@W T

@x
gR�1gT

@V

@x
�
1

4

@V T

@x
gR�1gT

@W

@x

C
1

4�2
@W T

@x
kkT

@V

@x
C

1

4�2
@V T

@x
kkT

@W

@x
. (16)

Proof
See Appendix. �

Given an initial function V .0/, we construct a Newton iterative sequence
®
V .i/

¯
as

V .iC1/ D T V .i/, i D 0, 1, 2, � � � . (17)

Under some proper assumptions, this sequence (17) can converge to the unique solution of the
fixed-point equation T V � D V �, that is, the solution of equation G.V �/ D 0. The conver-
gence and the error bound of sequence ¹V .i/º are guaranteed by the following Kantorovtich’s
Theorem [23, 24].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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Lemma 4 (Kantorovtich’s Theorem)
Assume for some V .0/ 2 V1 � V such that

�
G0
�
V .0/

���1
exists and that

1) �����G0 �V .0/���1
����
�

6 B0, (18)

2) �����G0.V .0//��1 G �V .0/�
����
�

6 �, (19)

3) ���G0 �V .1/�� G0
�
V .2/

����
�
6K

���V .1/ � V .2/���
�

, for all V .1/,V .2/ 2 V1 (20)

with hD B0K�6 1
2

. Let

V2 D
°
V j
���V � V .0/���

�
6 �

±
, where � D

 
1�
p
1� 2h

h

!
�. (21)

Now, if V2 � V1, then, the sequence
®
V .i/

¯
given in (17) is well defined, remains in V2, and

converges to V � 2 V2 such that G.V �/D 0. In addition,

���V � � V .i/���
�
6 �
h

0
BB@
�
1�
p
1� 2h

�2i
2i

1
CCA , i D 0, 1, 2, � � � (22)

It is observed from Lemma 4 that the V1 must be suitably chosen. The following lemma gives a
method to determine a V0 satisfyingV0 � V1, so that V0 conversely guarantees the hypotheses of
Lemma 4.

Lemma 5 ([25])

Suppose V � > 0 is the solution of HJI equation G.V �/D 0. If
���.G0.V �//�1���

�
6 B�, and

V3= ¹V j kV � V �k� 6 .1=B�K/º � V1, (23)

then, the hypotheses of Lemma 4 is satisfied, that is, for each V .0/ 2 V0, h 6 1=2, B0 and � in
conditions (18) and (19) are

B0 D
B�

1�B�K
��V .0/ � V ���

�

>
�����G 0 �V .0/���1

����
�

and

�D
1� 1

2
B�K

��V .0/ � V ���
�

1�B�K
��V .0/ � V ���

�

���V .0/ � V ����
�
>
�����G 0 �V .0/���1 G �V .0/�

����
�

,

where V0 is

V0=
°
V j kV � V �k� 6

�
2�
p
2
�
=
�
2B�K

�±
. (24)

Lemmas 4 and 5 imply that if V .0/ is chosen in V0 defined by (24), the Newton sequence
®
V .i/

¯
generated by (17) can converge to the fixed point of (13), that is, the solution of HJI equation
G.V �/ D 0, and the error bound is given in (22). With Lemmas 4 and 5, we will prove that the
sequence

®
V .i/

¯
generated by Algorithm 2 is essentially a Newton sequence in Theorem 1.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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Theorem 1
Let T be a mapping defined by (13). Then, the sequence

®
V .i/

¯
generated by Algorithm 2 and the

Newton iteration (17) are equivalent.

Proof
See Appendix. �

Remark 5
Theorem 1 shows that the sequence

®
V .i/

¯
generated by Algorithm 2 is equivalent to the Newton

sequence obtained by (17), the convergence of which can be guaranteed by Lemma 4. Therefore,
the sequence

®
V .i/

¯
also converges to the solution V � of HJI equation (4), that is, V .i/ ! V �,

when i !1.

3.2. Galerkin’s method for Lyapunov function equations

Note that in Algorithm 1 and 2, one needs to solve the LFEs (6) and (10), respectively. In [10],
Galerkin’s approximation was used to solve the LFE (6). Because both LFEs (6) and (10) are first-
order, linear PDEs, the methods for solving them are similar. For completeness, we briefly recall the
Galerkin’s method for the solution of LFE (10).

Galerkin’s method assumes that there exist a complete set of linearly independent basis functions
� .x/ D ¹ k.x/º

1
kD1 such that  k.0/ D 0,8k, and for the LFE (10), its solution can be expressed

as a linear combination of basis functions � .x/, that is, V .iC1/ .x/ D
P1
kD1 c

.iC1/

k
 k.x/, where

the sum is assumed to converge pointwise in �. An approximation of V .iC1/.x/can be obtained by
truncating the series to

OV .iC1/.x/D
�
c.iC1/

�T
�N .x/D �

T
N .x/c

.iC1/. (25)

where c.iC1/ D
�
c
.iC1/
1 , � � � , c.iC1/N

�T
, �N .x/D . 1, � � � , N /

T . Then, the coefficients c.iC1/ are

computed by solving the following algebraic equation:

Z
�

0
@ @ OV .iC1/

@x

!T �
f C g Ou

.i/
Ck Ow

.i/
�
C hThC

�
Ou
.i/
�T
R Ou

.i/
� �2

�
Ow
.i/
�T
Ow
.i/

1
A k.x/dx D 0,

k D 1, � � � ,N ,
(26)

that is,

Z .i/c.iC1/C s.i/ D 0 (27)

where

Z .i/ DZ1CZ
.i/
2 , Z1 D

Z
�

�Nf
Tr�TNdx, Z

.i/
2 D

Z
�

�N

�
g Ou

.i/
C k Ow

.i/
�T
r�TNdx

(28)

s.i/ D s1C s
.i/
2 , s1 D

Z
�

�Nh
Thdx, s

.i/
2 D

Z
�

�N

�
Ou
.i/T

R Ou
.i/
� �2 Ow

.i/T
Ow
.i/
�
dx (29)

in which r�N .x/ D ..@ 1=@x/, � � � , .@ N =@x//
T is the Jacobian of �N . From (27), the

coefficients c.iC1/ can be computed with

c.iC1/ D�
�
Z .i/

��1
s.i/, (30)

where Z .i/ is invertible [10]. Then, the solution of LFE (10) is obtained by (25).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
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Remark 6
From the well-known high-order Weierstrass approximation theorem [26], it follows that a con-
tinuous function can be uniformly approximated to any degree of accuracy by a complete set of
linear independent basis functions. This means that the solution of HJI equation can be uniformly
approximated to any degree of accuracy by any infinite-dimensional linear independent basis func-
tion set � .x/D ¹ k.x/º

1
kD1. For the truncated case (25), the selections of finite-dimensional basis

function set �N .x/ and its size are often experience-based, which can affect the convergence of
HJI equation. Like all function approximation techniques, large size of the basis function set can
improve the convergence at the price of highly computational effort. Thus, an appropriate selection
of a basis function set and its size are useful to balance the convergence and computation. How-
ever, it is still difficult to develop a general optimal selection method for all systems. This is simply
because the optimal selection is often different for different systems. In a word, for a specific system,
prior experiences would be helpful for the selection of basis function set and its size.

Notice that there does not exist any fundamental difference for solving LFEs (6) and (10)
with Galerkin’s method. The convergence of the Galerkin approximation for solving LFEs was
established mathematically in [10]. Here, we introduce this result briefly without deduction.

Lemma 6 ([10])

If the conditions 1–6 in [10] hold, then
���V .iC1/.x/� OV .iC1/ .x/���

�
! 0, when N !1.

3.3. Galerkin simultaneous policy update algorithm and convergence

By using Galerkin’s method to solve LFEs (10) in each iteration, we can derive a Galerkin SPUA
(GSPUA). With (25), the control policy (11) and disturbance policy (12) can be rewritten as

Ou
.iC1/

D�
1

2
R�1gT

@ OV .iC1/

@x
D�

1

2
R�1gTr� TN c

.iC1/ (31)

Ow
.iC1/

D
1

2
��2kT

@ OV .iC1/

@x
D
1

2
��2kTr� TN c

.iC1/. (32)

Then, the GSPUA for the solution of HJI equation is presented as follows.

Algorithm 3 (GSPUA)

Step 1: Select an independent basis function set �N .x/, and evaluate Z1 and s1. Give
initial coefficients c.0/ such that OV .0/ 2 V0. Let Ou.0/ D �1

2
R�1gTr� TN c

.0/, Ow.0/ D
1
2
��2kTr� TN c

.0/, and i D 0.

Step 2: Compute Z .i/ and s.i/ according to (28) and (29), and then solve the equation (30)
for c.iC1/.

Step 3: Update the control and disturbance policies Ou.iC1/ and Ow.iC1/ with (31) and (32).
Step 4: Set i D i C 1. If

��c.i/ � c.i�1/��6 " (" is a small positive real number), stop and use c.i/ as

the coefficients of V �
�

i.e.,V � is approximated expressed with V � D
�
c.i/

�T
�N

�
, else,

go back to step 2 and continue.

The convergence of GSPUA is guaranteed by the following theorem.

Theorem 2
Suppose V �.x/ > 0 is the solution of the HJI equation (4). Then, for 8� > 0, there exist positive
integers I and NN , such that when i > I ,N > NN ,���V �.x/� OV .i/.x/���

�
< �. (33)

Proof
See Appendix. �
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3.4. A computationally efficient Galerkin simultaneous policy update algorithm

To solve the (30) for coefficients c.iC1/ in the GSPUA, we need to compute integrals Z .i/ and
s.i/ in each iterative step, which are often time-consuming and will increase exponentially with the
increase of the number of basis functions and the dimension of system states. In this subsection,
we derive a CESPUA, which improves the efficiency from two aspects: (1) we derive a method that
evaluates all integrals once for all, which is to reduce the number of integral evaluations, and (2) we
use Monte Carlo method together with the Latin hypercube sampling (LHS) to evaluate integrals,
which is to improve the efficiency of integral evaluations. Now, we discuss the first one.

We rewrite Ou.i/ and Ow.i/ as

Ou
.i/
D�

1

2
R�1gT

�XN

kD1
c
.i/

k

@ k

@x

�
D�

1

2

XN

kD1
c
.i/

k

�
R�1gT

@ k

@x

�
(34)

Ow
.i/
D
1

2
��2kT

�XN

kD1
c
.i/

k

@ k

@x

�
D
1

2
��2

XN

kD1
c
.i/

k

�
kT
@ k

@x

�
. (35)

Substituting (34) and (35) into Z .i/2 in (28), yields

Z
.i/
2 D

Z
�

�N

�
g Ou

.i/
C k Ow

.i/
�T
r� TNdx

D

Z
�

�N

�
g

�
�
1

2

XN

kD1
c
.i/

k

�
R�1gT

@ k

@x

��
C k

�
1

2
��2

XN

kD1
c
.i/

k

�
kT
@ k

@x

���T
r� TNdx

D�
1

2

XN

kD1
c
.i/

k

Z
�

�N
@ T

k

@x
gR�1gTr� TNdxC

1

2
��2

XN

kD1
c
.i/

k

Z
�

�N
@ T

k

@x
kkTr�TNdx.

(36)

Let us consider

�N
@ T

k

@x
gR�1gTr� TN D

2
64
 1
:::

 N

3
75 @ Tk

@x
gR�1gT

h
@ 1
@x

� � � @ N
@x

i

D

2
666666664

 1
@ T
k

@x
gR�1gT @ 1

@x
� � �  1

@ T
k

@x
gR�1gT

@ l
@x

� � �  1
@ T
k

@x
gR�1gT @ N

@x
:::

: : :
::: : :

: :::

 j
@ T
k

@x
gR�1gT @ 1

@x
� � �  j

@ T
k

@x
gR�1gT

@ l
@x

� � �  j
@ T
k

@x
gR�1gT @ N

@x
::: : :

: :::
: : :

:::

 N
@ T
k

@x
gR�1gT @ 1

@x
� � �  N

@ T
k

@x
gR�1gT

@ l
@x

� � �  N
@ T
k

@x
gR�1gT @ N

@x

3
777777775

.

A similar expression can be derived for �N
@ T
k

@x
kkTr� TN . Thus, we write (36) as

Z
.i/
2 D �

1

2

XN

kD1
c
.i/

k
Xk C

1

2
��2

XN

kD1
c
.i/

k
Y k

D
1

2

XN

kD1
c
.i/

k

�
�Xk C �

�2Y k
�
, (37)

where

Xk D

Z
�

�N
@ T

k

@x
gR�1gTr� TNdx, (38)

Y k D

Z
�

�N
@ T

k

@x
kkTr�TNdx. (39)
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Xk D .Xk.j ,l//N�N 2R
N�N , Y k D .Yk.j ,l//N�N 2R

N�N , k D 1, � � � ,N ,

Xk.j ,l/ D
R
�  j

@ T
k

@x
gR�1gT

@ l
@x

dx and Yk.j ,l/ D
R
�  j

@ T
k

@x
kkT

@ l
@x

dx. Similarly, the s.i/2 in
(29) can be written as

s
.i/
2 D

Z
�

�N

�
�
1

2

XN

kD1
c
.i/

k

�
R�1gT

@ k

@x

��T
R

�
�
1

2
R�1gTr� TN c

.i/

�
dx

� �2
Z
�

�N

�
1

2
��2

XN

kD1
c
.i/

k

�
kT
@ k

@x

��T �
1

2
��2kTr� TN c

.i/

�
dx

D
1

4

XN

kD1
c
.i/

k

Z
�

�N
@ T

k

@x
gR�1gTr� TN c

.i/dx�
1

4
��2

XN

kD1
c
.i/

k

Z
�

�N
@ T

k

@x
kkTr� TN c

.i/dx

D
1

4

XN

kD1
c
.i/

k

 Z
�

�N
@ T

k

@x
gR�1gTr� TNdx

!
c.i/

�
1

4
��2

XN

kD1
c
.i/

k

 Z
�

�N
@ T

k

@x
kkTr� TNdx

!
c.i/

D
1

4

�XN

kD1
c
.i/

k

�
Xk � �

�2Y k
��
c.i/. (40)

The substitution of (37) and (40) into (30), yields

c.iC1/ D�

�
Z1 �

1

2

XN

kD1
c
.i/

k

�
Xk � �

�2Y k
���1�

s1C
1

4

�XN

kD1
c
.i/

k

�
Xk � �

�2Y k
��
c.i/

�
.

(41)

Remark 7
From (41), it is observed that Xk and Y k (k D 1, � � � ,N/ are invariant in each iteration. They can
be computed once for all, thus, we need not update Z .i/ and s.i/ in each iteration as in Algorithm 3.

Now, we use Monte Carlo method together with LHS to compute integrals Z1, s1, Xk and Y k
(k D 1, � � � ,N/. Monte Carlo integration is usually employed to estimate integrals over multidi-
mensional domains. It is especially competitive in high dimensional domains. LHS is a uniform
sampling method that has small variance, which was first proposed as a Monte Carlo integration
technique by McKay et al. [27]. Here, we use Xk as an example to illustrate this procedure. First,
select H samples xi 2� (i D 1, � � � ,H/ with LHS. Then, evaluate Xk with

Xk D
1

H

HX
iD1

�N .xi /
@ T

k
.xi /

@x
g .xi /R

�1gT .xi /r�
T
N .xi / . (42)

On the basis of (41) and (42), we derive the CESPUA.

Algorithm 4 (CESPUA).

Step 1: Select an independent basis function set�N .x/, computeZ1, s1,Xk and Y k (k D 1, L,N/
with the above Monte Carlo integration. Give initial coefficients c.0/ such that OV .0/ 2 V0.
Let i D 0.

Step 2: Solve the equation (41) for c.iC1/.
Step 3: Set i D i C 1. If

��c.i/ � c.i�1/�� 6 " (" is a small positive real number), stop and use c.i/ as

the coefficients of V �
�

i.e.,V � D
�
c.i/

�T
�N

�
, else, go back to step 2 and continue.

Remark 8
It is observed that the CESPUA is the SPUA (i.e., Algorithm 2) by using the developed efficient
Galerkin’s method to solve LEF (10) in each iteration. In CESPUA, as far as the basis functions are
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selected, the integrals Z1, s1, Xk and Y k (k D 1, � � � ,N/ can be precomputed directly and remain
invariant during the iterative procedure. Thus, it is very convenient for offline controller design.

4. COMPARATIVE SIMULATION STUDIES

In this section, we give comparative simulation studies between CESPUA (i.e., Algorithm 4) and
Algorithm 1 (with the efficient Galerkin’s method) on three examples. Because the analytic solu-
tion of HJI equation is often not available, we first compare CESPUA and Algorithm 1 on a
linear system to illustrate their validity, and then apply them to a simple nonlinear system and a
rotational/translational actuator (RTAC) nonlinear benchmark problem.

Remark 9
For fairness reason, the method for solving LFEs (6) and (10) should be the same. Moreover, by
comparing (6) and (10), we observe that they have the same form. Thus, if the same method is
employed to solve (6) and (10), the time required for one iterative step in Algorithm 1 and 2 is
also the same. Therefore, it is equivalent to compare the efficiency of two algorithms by observing
the iterative steps they needed. Here, we use the efficient Galerkin’s method (described in Sub-
sections 3.2 and 3.4) to solve (6) and (10). Of course, as mentioned in Remark 3, other methods
can also be used to solve (6) and (10). For example, using neural network (as in [16]), our sim-
ulation results show that the proposed SPUA still performs better than Algorithm 1, which are
omitted here.

4.1. Simulations on linear system

We consider the H1 control problem of a power system in [28] described by the following linear
state-space model:

Px DAxCB1wCB2u, ´D Cx (43)

where

A D

2
64
�0.0665 8 0 0

0 � 3.663 3.663 0

�6.86 0 �13.736 �13.736
0.6 0 0 0

3
75 ,

B1 D

2
64
�8
0

0

0

3
75 , B2 D

2
64

0

0

13.736
0

3
75 , C D I .

Select R D I and � D 3. Letting V.x/D xTPx, the HJI equation (4) for the linear system (43) is

the following H1 ARE:

ATP CPACC TC C ��2PB1B
T
1 P �PB2R

�1BT2 P D 0 (44)

and the corresponding H1 control law (5) is

u�.x/D�R�1BT2 Px. (45)

Solving the ARE (44) with the MATLAB (MathWorks, Inc., Natick, MA, USA) command CARE,
we obtain

P D

2
64

1.2606 1.5616 0.2341 1.1793
1.5616 2.3229 0.3734 1.3223
0.2341 0.3734 0.0920 0.1782
1.1793 1.3223 0.1782 3.0258

3
75 . (46)
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Select the state domain � for integrals evaluation in Galerkin’s method as �D ¹xj � 0.56 xi 6
0.5, i D 1, 2, 3, 4º, and 10 polynomials as basis functions as follows:

� 10.x/D
	
x21 x1x2 x1x3 x1x4 x22 x2x3 x2x4 x23 x3x4 x24


T
.

Then, the true values of coefficients c are

c D
	
P11 2P12 2P13 2P14 P22 2P23 2P24 P33 2P34 P44


T
D
	
1.2606 3.1232 0.4682 2.3586 2.3229 0.7468 2.6446 0.0920 0.3564 3.0258


T
.

(47)

The value of "1 in Algorithm 1 is selected as 10�5, and the value of stop criterion " in Algorithm 1
and CESPUA is set to be 10�7. Select the initial coefficients as c.0/ D 0.

Remark 10
As mentioned in Remark 6, the selection of basis function set and its size are often experience-
based. However, for a linear system, the basis function set is known because the solution of HJI
equation is V �.x/ D xTPx, which can be accurately represented with polynomial basis function
set �N D ¹xixj , i , j D 1, : : : ,nº via (25).

We first use Algorithm 1 to solve the H1 control problem under the above settings. However,
the simulation results show that the coefficients are divergent. To test the ability of Algorithm 1, we
gradually increase the value of � and run Algorithm 1 in ‘PC’ and ‘FS’ modes again, where the sym-
bol ‘PC’ means that Algorithm 1 terminates when precisions "1 and " are attained, and ‘FS’ means
that fixed iteration steps: 100 are used for both the inner and outer loops of Algorithm 1. Table I
gives the simulation results obtained by Algorithm 1 for different values of � , where the symbol —’
denotes divergence of the iteration. From Table I, we find that Algorithm 1 is not convergent until
� D 12 for ‘PC’ mode, and � D 8 for ‘FS’ mode. Figure 2 gives coefficients c.i/ at each iterative
step obtained by Algorithm 1 in ‘PC’ case with � D 12, where the dash lines represent the true
values of coefficients c.

Remark 11
It is observed from Table I that Algorithm 1 in ‘FS’ mode converges at a lower value of � than in
‘PC’ mode. The reason for this is that when the inner loop of Algorithm 1 cannot yield a convergent
solution with precision of "1, the algorithm in ‘PC’ mode, cannot terminate the inner loop and thus
results in divergence, while in ‘FS’ mode, by terminating forcibly the inner loop after fixed steps, it
is likely to obtain a convergent solution in the outer loop in the end. Generally, Algorithm 1 is bound
to converge in ‘FS’ mode if it is convergent in ‘PC’ mode, and the results in Table I demonstrate
this fact.

The proposed CESPUA is also used to solve the H1 control problem (with � D 3/. Figure 3
shows coefficients c.i/ in each iterative step, where the dashed lines represent the true values of
coefficients c (i.e., (47)). It is observed that Algorithm 4 can find the coefficients of precision " at
the 13th iterative step.

Obviously, the results demonstrate that the convergence of CESPUA is much better than
Algorithm 1.

Table I. Simulation results obtained by Algorithm 1.

� 3 4 6 8 10 12 14

PC — — — — — 529 489
FS — — — 926 725 529 489

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:991–1012
DOI: 10.1002/rnc



1004 B. LUO AND H.-N. WU
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Figure 2. Coefficients (with� D 12/ obtained by Algorithm 1 in ‘PC’ mode.
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Figure 3. Coefficients (with � D 3) obtained by CESPUA.

4.2. Simulations on nonlinear system

This section considers a revised version of the example in [29]. The system model is given
as follows:

Px D

�
�x1C x2

�0.5.x1C x2/C 0.5x2 sin2.x1/

�
C

�
0

sin.x1/

�
wC

�
0

cos.x1/

�
u

´Dx.

Select the state domain � for integrals evaluation in Galerkin’s method as � D
¹xj � 26 xi 6 2, i D 1, 2º, the weight matrix R D I and � D 2. We select five polynomials as

basis functions � 5.x/ D
	
x21 x1x2 x22 x41 x42


T
, and the initial coefficients c.0/ D 0. The

value of "1 in Algorithm 1 is selected as 10�3, and the value of stop criterion " in Algorithm 1 and
CESPUA is set as 10�7.
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Figure 4. Coefficients obtained by Algorithm 1 and CESPUA.
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Figure 5. Control actions corresponding to Algorithm 1 and CESPUA.

We use Algorithm 1 and CESPUA to solve the nonlinear H1 control problem, respectively.
Figure 4 shows the coefficients c.i/ in each iterative step. It is observed that CESPUA converges
much more quickly than Algorithm 1. Algorithm 1 terminates at the 299th iterative step, and the
coefficients are

	
0.4129 �0.0819 1.1554 0.0090 �0.0163



. CESPUA terminates at the 6th

iterative step, and the coefficients are
	
0.4163 �0.0812 1.1452 0.0086 �0.0149



.

With the coefficients, the solution of HJI (4) is obtained by (25), and then the H1 con-
troller is designed by (5). Select a disturbance signal as w.t/ D 5e�t cos.t/, and use the H1
controller for the closed-loop system simulations. Figures 5 and 6 show the control actions
and the closed-loop state trajectories corresponding to Algorithm 1 and CESPUA, respec-
tively. It can be seen from Figure 6 that the closed-loop systems are asymptotically stable.
Figure 7 shows the evolutions of r.t/ corresponding to Algorithm 1 and CESPUA, where

r.t/,

R t
0

�
k´.�/k2Cku.�/k2R

�
d�R t

0 kw.�/k
2 d�

. (45)

The r.t/ corresponding to Algorithm 1 and CESPUA converge to 0.6237 and 0.6235, respectively,
both satisfy the L2-gain requirement (i.e., r.t/ < �2 D 4/ when t !1.
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Figure 6. Closed-loop state trajectories corresponding to Algorithm 1 and CESPUA.
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Figure 7. Evolutions of r.t/ corresponding to Algorithm 1 and CESPUA.

4.3. Application to the rotational/translational actuator nonlinear benchmark problem

The RTAC nonlinear benchmark problem has been widely used to test the abilities of control meth-
ods [16, 30, 31]. The dynamics of this nonlinear plant poses challenges because the rotational and
translation motions are coupled. The RTAC system is given as follows:

Px D

2
66664

x2
�x1C&x

2
4

sinx3
1�&2 cos2 x3

x4
& cosx3.x1�&x24 sinx3/

1�&2 cos2 x3

3
77775C

2
664

0
1

1�&2 cos2 x3
0

�& cosx3
1�&2 cos2 x3

3
775wC

2
664

0
�& cosx3

1�&2 cos2 x3
0
1

1�&2 cos2 x3

3
775u

´Dx,

where & D 0.2.
Select the state domain � for integrals evaluation in Galerkin’s method as � D
¹xj � 0.56 xi 6 0.5, i D 1, 2, 3, 4º, the weight matrix RDI and �D12. We select 20 polynomials
as basis functions

� 20.x/D
	
x21 x1x2 x1x3 x1x4 x22 x2x3 x2x4 x23 x3x4 x24

x31x2 x31x3 x31x4 x21x
2
2 x21x2x3 x21x2x4 x21x

2
3 x21x3x4 x21x

2
4 x1x

3
2


T
,

and the initial coefficients

c.0/ D
	
25.9955 �4.9320 �0.1281 �5.9837 26.3805 5.7509 11.1264

2.5446 3.6809 3.5886 0 0 0 0 0 0 0 0 0 0

T

.

The value of "1 in Algorithm 1 is selected as 10�3, and the value of stop criterion " in Algorithm 1
and CESPUA is set as 10�7.
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We first use the Algorithm 1 to solve the nonlinearH1 control problem under the above settings,
but the simulation results show that the coefficients are divergent. However, applying CESPUA to
the problem, we can obtain the convergent coefficients. Figure 8 shows some representative coeffi-
cients c1, c4, c6, c7, and c11 in each iterative step. Note that CESPUA terminates at the 6th iterative
step, and the coefficients converge to

	
19.6565 �3.4249 �0.6704 �4.5848 19.6744 4.0408 7.7612

1.6390 2.5310 2.5962 �2.1325 0.5822 �0.5073 0.0522 0.3060

0.0255 0.2150 0.5853 �0.0377 �1.6824

T

.

By using the above coefficients, the solution of HJI equation (4) is obtained by (25), and then
the H1 controller is designed by (5). Select a disturbance signal as w.t/ D 0.5e�t cos.t/, and use
the resultingH1 controller for the closed-loop system simulations. Figures 10(a) and 9 demonstrate
the control actions and the closed-loop state trajectories corresponding to CESPUA. It can be seen
from Figure 9 that the closed-loop system is asymptotically stable. Figure 10(b) gives the evolutions
of r.t/ corresponding to CESPUA. It is observed that the r.t/ converges to 15.1105 .< �2 D 144/,
which satisfies the L2-gain requirement when t !1.
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15
20
25
30

0 1 2 3 4 5 6
-6
-5
-4
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0 1 2 3 4 5 6
3
4
5
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0 1 2 3 4 5 6
5

10

15

0 1 2

0
-1

3 4 5 6
-3
-2

c1

c4

c6

c7

c11

step

Figure 8. Coefficients c1, c4, c6, c7, and c11and obtained by CESPUA.
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Figure 9. Closed-loop state trajectories corresponding to CESPUA.
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(a) (b)
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Figure 10. (a) Control action, (b) evolution of r.t/ corresponding to CESPUA.

5. CONCLUSIONS

In this paper, we have proposed a SPUA to solve theH1 state feedback control problem for nonlin-
ear systems, where the HJI equation is directly successively approximated with a sequence of LFEs.
Different from the existing methods, the proposed SPUA updates control and disturbance policies
simultaneously, which avoids solving a series of HJB equations. We discover that the SPUA is
essentially a Newton’s method for finding the solution of a fixed point equation, thus, its conver-
gence is proven with the help of the Kantorovtich’s Theorem. For implementation purposes, we
employ Galerkin’s method to solve LFEs, and derive a GSPUA. Moreover, we further improve the
efficiency of GSPUA from two aspects, and provide a CESPUA. Finally, through the simulation
studies on a linear power system and two nonlinear systems, the achieved results demonstrate that
CESPUA is valid and efficient.

APPENDIX

Proof of Lemma 3
For 8V 2 V , we have

G.V C sW /� G.V /D @ .V C sW /
T

@x
f C hTh�

@.V C sW /T

@x
gR�1gT

@.V C sW /

@x

C
1

4�2
@.V C sW /T

@x
kkT

@.V C sW /

@x

�

�
@V T

@x
f C hTh�

@V T

@x
gR�1gT

@V

@x
C

1

4�2
@V T

@x
kkT

@V

@x

�

D s
@W T

@x
f �

s

4

@W T

@x
gR�1gT

@V

@x
�
s

4

@V T

@x
gR�1gT

@W

@x

�
s2

4

@W T

@x
gR�1gT

@W

@x
C

s

4�2
@W T

@x
kkT

@V

@x
C

s

4�2
@V T

@x
kkT

@W

@x

C
s2

4�2
@W T

@x
kkT

@W

@x
.

Thus, the Gâteaux differential at V is

L.W /D lim
s!0

G .V C sW /� G.V /
s

D
@W T

@x
f �

1

4

@W T

@x
gR�1gT

@V

@x
�
1

4

@V T

@x
gR�1gT

@W

@x
C

1

4�2
@W T

@x
kkT

@V

@x

C
1

4�2
@V T

@x
kkT

@W

@x
. (A1)
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Next, we will prove that the map LD G 0.V / is continuous. For 8W0 2 V , it is immediate that

L.W /�L.W0/D
@.W �W0/

T

@x
f �

1

4

@.W �W0/
T

@x
gR�1gT

@V

@x
�
1

4

@V T

@x
gR�1gT

@.W �W0/

@x

C
1

4�2
@.W �W0/

T

@x
kkT

@V

@x
C

1

4�2
@V T

@x
kkT

@.W �W0/

@x

Then, we have

kL.W /�L.W0/k�

6
����@.W �W0/T@x

f

����
�

C

����14 @.W �W0/
T

@x
gR�1gT

@V

@x

����
�

C

����14 @V
T

@x
gR�1gT

@.W �W0/

@x

����
�

C

����� 1

4�2
@ .W �W0/

T

@x
kkT

@V

@x

�����
�

C

���� 1

4�2
@V T

@x
kkT

@ .W �W0/

@x

����
�

D

�
kf k�C

����12gR�1gT @V@x
����
�

C

���� 1

2�2
kkT

@V

@x

����
�

�����@.W �W0/@x

����
�

6
�
kf k�C

����12gR�1gT @V@x
����
�

C

���� 1

2�2
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@V

@x

����
�

�
m1 kW �W0k� (A2)

where m1 > 0. Let

M Dm1

�
kf k�C

����12gR�1gT @V@x
����
�

C

���� 1

2�2
kkT

@V

@x

����
�

�
,

then, for 8" > 0, there exists a ı D "=M , when kW �W0k� < ı, we have

kL.W /�L.W0/k� 6M kW �W0k� < ". (A3)

This means L D G 0.V / is continuous on V , thus according to Lemma 2, L.W / D G 0.V /W (i.e.,
(A1)) is the Fréchet differential, and LD G 0.V / is the Fréchet derivative at V . �

Proof of Theorem 1
It follows from (17) that

V .iC1/ D T V .i/ D V .i/ �
�
G 0
�
V .i/

���1
G
�
V .i/

�
,

which can be rewritten as

G
0
�
V .i/

�
V .iC1/ DG

0
�
V .i/

�
V .i/ �G

�
V .i/

�
. (A4)
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From (10)–(12) and (16), we have
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, (A5)
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Substituting (A5)–(A7) into (A4), yields 
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f C gu.i/C kw.i/

�
D
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�
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�
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Tf C hTh�
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�T
Ru.i/C �2

�
w.i/
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!

that is  
@V .iC1/

@x
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f C gu.i/C kw.i/

�
C hThC

�
u.i/

�T
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�
w.i/
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w.i/ D 0.

This completes the proof. �
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Proof of Theorem 2
From (22) in Lemma 4, we have that, when i !1,

���V � � V .i/���
�
6 �
h

0
BB@
�
1�
p
1� 2h

�2i
2i

1
CCA! 0,

then, for 8� > 0, 9i > I such that ���V � � V .i/���
�
6 �
2

. (A8)

From Lemma 6, 9N > NN such that ���V .i/ � OV .i/���
�
<
�

2
. (A9)

Then,���V �� OV .i/���
�
D
����V � � V .i/�C �V .i/ � OV .i/����

�
6
���V � � V .i/���

�
C
���V .i/ � OV .i/���

�
<
�

2
C
�
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D �.

Moreover, when i !1 and N !1,
���V � � OV .i/���

�
! 0. �

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and sugges-
tions. This work was supported in part by the National Basic Research Program of China (973 Program)
(2012CB720003), in part by the National Natural Science Foundation of China under Grants 61074057,
61121003, and 91016004.

REFERENCES
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