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ABSTRACT

Local feature descriptor plays a fundamental role in many vi-
sual tasks, and its rotation invariance is a key issue for many
recognition and detection problems. This paper proposes a
novel rotation invariant descriptor by ordinal pyramid pooling
of local Fourier transform features based on their radial gradi-
ent orientations. Since both the low-level feature and pooling
strategy are rotation invariant, the obtained descriptor is ro-
tation invariant by nature. Pooling based on orders of gradi-
ent orientations is not only invariant to in-plane rotation, but
also encodes gradient orientation information into descriptor
as well as spatial information to some extent. Moreover, these
information is enhanced by the proposed pyramid pooling
structure. Therefore, our method is naturally rotation invari-
ant and has strong discriminative ability. Experimental results
on the aerial car dataset demonstrate the effectiveness of our
descriptor.

Index Terms— Local feature descriptor, Rotation invari-
ant, Orders of radial gradient orientations, Ordinal pyramid

1. INTRODUCTION

Local feature descriptors computed from image patches have
been widely studied in recent years. They have been used
in a variety of visual tasks, such as human detection [1], ob-
ject classification [2] and tracking [3]. These tasks require lo-
cal feature descriptors with strong discriminative abilities and
good robustness to illumination changes, background clus-
ters, partial occlusions and so on.

Perhaps one of the most popular local feature descriptors
is HOG (Histogram of Oriented Gradients) [4, 5]. It divides
the image patch into small cells and aggregates histogram of
oriented gradients in each cell. Its subregion and histogram
accumulation structure provides more spatial information and
more robust presentation. However, HOG is not invariant to
in-plane rotation, which limits its application for detecting ro-
tated objects, such as cars in remote sensing images. Fig. 1(a)
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Fig. 1. Detection results of the aerial car candidates by (a)
HOG and (b) our proposed descriptor. True positives are in-
dicated by blue boxes while false positives are marked with
green boxes, and red boxes indicate false negatives.

shows an example of car detection by HOG, where true posi-
tives are detected along with many error detections.

In literature there are three prominent ways to achieve ro-
tation invariant descriptors. The first one estimates a domi-
nant orientation of the image patch and calculates descriptor
relative to this dominant orientation, e.g. SIFT (Scale Invari-
ant Feature Transform) [6, 7] and SURF (Speeded Up Ro-
bust Features) [8]. However, Fan et al. [9, 10] experimen-
tally proved that dominant orientation estimation is not exact
and orientation assignment error is the major cause for bad
recognition and matching results. The second way is to cal-
culate local descriptor in polar coordinates, such as spin im-
age, RIFT (Rotation Invariant Feature Transform) [11] and
RIFF (Rotation-Invariant Fast Feature) [3], but this kind of
methods lacks discrimination as the loss of spatial informa-
tion due to their ring shaped pooling schemes. The third tech-
nique is a recently proposed one, called Fourier HOG [12]
which achieves rotation invariance by representing features
in Fourier space. Since it loses partial phase information, its
discriminative ability could be further improved.

In this paper, we propose a novel method for local de-
scriptor construction which pools local Fourier transform fea-
tures [12] based on orders of their radial gradient orientations
in a pyramid manner. Fig. 2 shows that the radial gradient
orientations of the same parts of an object at different rotat-
ing angles are almost identical and the radial gradient orien-
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Fig. 2. An illustration of the rotation invariance of radial gra-
dient orientation. A handwritten digit image (140 × 140) is
rotated by 8 different orientations (Top). Their radial gradient
orientations are indicated by different colors (Bottom).

tations in local region are similar. Therefore, sorting radial
gradient orientations of sample points is rotation invariant. A
pooling scheme based on their orders not only maintains the
rotation invariance, but also encodes local regional informa-
tion into the descriptor and improves its discriminative ability.
Moreover, inspired by the spatial pyramid [13], we propose
to partition orders of radial gradient orientations into increas-
ing groups as a pyramid and pool local Fourier transform fea-
tures inside each groups. The pooled representation in each
pyramid level is concatenated as the final descriptor. Fig.1(b)
shows that our method can recognize more true positive with
less error detections. Our main contributions include:

• Local features are pooled by orders of their radial gra-
dient orientations, which are invariant to rotation. Such
a pooling strategy can encode both gradient orientation
and spatial information to some extent.

• A ordinal pyramid framework is proposed to further
improve the discriminative ability.

The rest of this paper is organized as follows: Section 2
describes how to construct the proposed descriptor, followed
by experiments in Section 3. Finally, we conclude this paper
in Section 4.

2. DESCRIPTOR CONSTRUCTION

In this part, we elaborate construction of the proposed de-
scriptor. In section 2.1, we first analyze the rotation invari-
ance of orders of radial gradient orientations, and then we
show how to obtain more spatial and ordinal information in a
ordinal pyramid framework. Fourier transform feature is used
as low-level feature for pooling in our method and Section 2.2
gives a brief introduction of it.

2.1. Ordinal pyramid pooling

The proposed descriptor is based on radial gradient orienta-
tions. The radial gradient is firstly introduced in RIFT [11]
and the proof of its rotation invariance is given in RIFF [3].
Suppose O is the centre of an image patch and P is a sample
point in the image patch, we establish a local x-y coordinate

Fig. 3. The radial local coordinate system used for gradient
computation.

system of P as shown in Fig.3, where
−−→
OP is defined as the

positive x-axis. In this coordinate system, the gradient of P
can be computed as:

dx(P ) = I(x1(P ))− I(x3(P )), (1)

dy(P ) = I(x4(P ))− I(x2(P )). (2)

We call this gradient as radial gradient, and its orientation is
computed as:

θ (P ) = tan−1

(
dy(P )

dx(P )

)
. (3)

Obviously, radial gradient is rotation invariant as this local
coordinate system is constructed independent of image rota-
tion. Fig. 2 gives an example, in which a handwritten digit
image is rotated by 8 different orientations (Fig. 2 (Top)).
Their radial gradient orientations are calculated and shown in
Fig. 2 (Bottom). We can observe that: (1) the radial gradient
orientations on the same parts of different rotated images are
almost same; (2) the radial gradient orientations in local re-
gion are similar to each other. According to the first observa-
tion, when we sort sample points in the image patch according
to their radial gradient orientations, the sorted list of samples
would not be affected by rotation. Meanwhile, because of the
second observation, sorting by gradient orientations tends to
preserve spatial adjacency. Consequently, on the one hand,
partitioning sample points into groups by their orders of gra-
dient orientations could encode ordinal information of gradi-
ent orientation while maintaining rotation invariance. On the
other hand, pooling in the ordered groups provides stable lo-
cal region information as sample points in local region tend
to be partitioned into same groups.

Suppose {X1, X2, · · · , XN} are N sample points in an
image patch, and θ (Xi) is the radial gradient orientation of
Xi. Sorting these sample points according to their orienta-
tions, we can obtain a set of sorted sample points:{

Xf(1), Xf(2), · · · , Xf(N) :
θ(Xf(1)) ≤ θ(Xf(2)) ≤ · · · ≤ θ(Xf(N))

}
,

where f (1) , f (2) , · · · , f (N) is a permutation of 1, 2, · · · , N .
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Once the sample points are sorted by their gradient ori-
entations, we partition them into k groups equally and local
features are pooled together in these groups. Inspired by the
spatial pyramid [13], we consider partitioning sample points
and pooling their low-level features by a pyramid strategy,
which we call ordinal pyramid pooling. More specifically,
we partition the sorted samples in multiple levels in a pyra-
mid framework and k = 2level−1 groups are obtained in each
level. Then we use the sum pooling operation, i.e., all the low-
level features of the sample points in each group are summed
together to obtain a pooled vector, and those pooled vectors
concatenated together in each level are normalized to unit
length. Finally, the normalized vector of each pyramid level
is concatenated as the final descriptor. This pyramid pool-
ing method not only provides more mutual information about
spatial layout and gradient orientation distribution, but also
improves robustness to shift of orientation order. For exam-
ple, in case of different background, the orientations of sam-
ple points in background would affect the orientation orders
of sample points in object in interest. By the pyramid pool-
ing, the redundant information representation can reduce this
influence and improve the discriminative ability as a result.

2.2. Local features in Fourier space

Fourier HOG [12] is a rotation invariant local descriptor for
image patches. Although losing partial phase information, it
has strong discriminative ability because it is represented by
the continuous distribution and is rotation invariant theoret-
ically. In this paper, we use the Fourier HOG to describe a
25 × 25 local region of each sample point as its low-level
feature. Due to the space limit, readers are referred to [12]
for a detailed description of Fourier HOG, here we describe
some modifications that we adapt so as to make it flexible in
our method: (1) we reduce the regional feature sample ra-
dius from 6 to 4; (2) we give up the coupling features be-
tween different radii since we only need a local representa-
tion of each sample point; (3) we convert some dimensions
of Fourier HOG vector of each sample point into double di-
mensions as they may have negative values, which are not
suitable for pooling. In this case, a value R is converted into
[max(R,0) max(-R,0)]. Finally, each sample point has a 143
dimensional Fourier HOG feature.

Algorithm 1 gives the pseudo code of our descriptor con-
struction. As our descriptor pools local Fourier transform
features in ordinal pyramid pooling framework, we call our
method as OPP.

3. EXPERIMENTS

To evaluate the effectiveness of our proposed method, here we
conduct experiment on aerial car recognition, and compare its
performance with the state of the art.

Algorithm 1 Ordinal Pyramid Pooling Descriptor Construction
Input: Image patch I
Output: Patch descriptor f
1: Calculate Fourier HOG feature Fi and radial gradient ori-

entation for each sample point Xi

2: Sort sample points by their radial gradient orientations
3: for all pyramid level l do
4: Partition the ordered samples into k = 2l−1 groups
5: Pool local feature Fi of sample points in each group
6: Concatenate the pooled vectors to form a feature vector

fp(l) of level l and normalize fp(l) to unit length
7: end for
8: Concatenate all fp(l) to form the final descriptor f

3.1. Dataset description

The aerial car dataset [14] is used in our experiment. It con-
sists of 30 satellite images with 1319 labeled cars. The cars
are rotated arbitrarily but only annotated with axis-aligned
bounding boxes. The dataset provides candidates for detec-
tion with fixed window size of 45×45 pixels. 15 even named
images containing 9339 candidates are chosen for train and
other 15 images with 9850 windows are used for test.

3.2. Evaluation criterion

Performance of different methods are measured by average
precision recall (AP), which is widely used in PASCAL VOC
[15]. LetArea(Target) be pixels in the bounding box and let
Area(GroundTruth) be the ground truth set of pixels where
the car is actually located. A detection window is labeled
as a car if the Area(Target) and the Area(GroundTruth)
satisfy the following condition:

Area(Target ∩GroundTruth)
Area(Target ∪GroundTruth)

≥ 0.2, (4)

Precision = TP
TP+FP is the number of true positives di-

vided by the total number of detected positives and Recall =
TP

TP+FN is the number of true positives divided by the to-
tal number of groundtruth positives. They are calculated
in a ranked threshold sequence, and can be plotted as a
precision-recall curve. At eleven equally spaced recall levels
t = {0, 0.1, · · · , 1}, the precision at recall level ti is calcu-
lated as the maximum in all precisions whose corresponding
recalls exceed ti. The mean precision of all these recall levels
is defined as AP.

3.3. Evaluated methods

HOG [4] is the common descriptor used for object recogni-
tion, hence we use it as baseline. Its implementation [16] is
8× 8 in pixel cells and 9 orientation bins in each cell. Fourier
HOG [12] is a recently proposed descriptor for rotation invari-
ant object recognition. We use the implementation supplied
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Fig. 4. Detection results of the aerial car candidates by OPP (true positives in blue, false positives in red)

Fig. 5. Precision-Recall curve by different methods on the
aerial car dataset.

Table 1. The average precision of different methods on the
aerial car dataset.

Methods HOG Fourier HOG OP OPP
AP(%) 46.96 72.58 74.00 75.94

by authors. Two methods (OP and OPP) of the proposed de-
scriptor are evaluated. OP is our proposed ordinal pooling
descriptor without using the pyramid structure. In this im-
plementation, we divide sample points in an image patch into
16 groups according to their gradient orientation orders, com-
bined with 143 dimensional Fourier HOG feature, OP finally
gets a 2288 dimensional descriptor used for object recogni-
tion. OPP is the proposed ordinal pyramid pooling descriptor,
in which a 5-level pyramid is used, resulting a 4433 dimen-
sional descriptor used for object recognition. The extracted
features are fed into SVM classifier with linear kernel [17], in
which the parameter C is selected via five-fold cross valida-
tion.

3.4. Results and analysis

The precision-recall curves for HOG, Fourier HOG, OP and
OPP are depicted in Fig. 5, and the average precisions are
listed in Table 1. As can be seen, HOG performs the worst
in this task as it is sensitive to image rotation. Owing to the
rotation invariant property, Fourier HOG achieves a much im-

proved performance. It is clear that both OP and OPP out-
perform Fourier HOG, demonstrating the effectiveness of the
proposed pooling strategy. In particular, Fig. 5 shows that OP
and OPP get higher precisions than Fourier HOG when the
higher recall rate (≥ 0.8) is required. This means that OP and
OPP detect less false negatives when more true positives are
demanded. OPP further improves OP about 2%, and achieves
the best performance in this dataset. This indicates the impor-
tance of the proposed ordinal pyramid, which could encode
coarse to fine ordinal information of the gradient orientations.
To sum up, both pooling based on the ordered orientations and
the ordinal pyramid are critical for improving the discrimina-
tive ability. Both of them contribute to the good performance
of our method. Some detection results are shown in Fig. 4,
where most of cars are detected with a few false positives. It
is noted that OPP also detects some cars in shadow or poor
centralized, which are difficult to be detected.

4. CONCLUSIONS

This work proposes a novel method for rotation invariant de-
scriptor construction. The main contributions of our work are
from two aspects. Firstly, pooling by orders of radial gradi-
ent orientations is not only invariant to in-plane rotation, but
also encodes gradient orientation information into descriptor
as well as spatial information to some extent. Secondly, the
ordinal pyramid framework which includes coarse to fine gra-
dient orientation ordinal and spatial information further im-
proves the discriminative ability of our proposed descriptor.
Experimental results show that OPP is suited to recognize ro-
tated objects and can achieve better performance.

The potential improvement of the discriminative ability
remains to be investigated in our future work. For example,
radial gradient orientations of background sample points may
affect the stability of orientation orders, and this may lead to
wrong recognition results, hence more discriminative feature
could be considered to form robust and rotation invariant or-
ders for samples. In addition, more spatial information could
be obtained by the ring shaped structure, and concatenating
feature vectors by ordinal pyramid pooling in rings may im-
prove the discriminative ability.
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